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Summary

Energy harvesting wireless sensor networks are a promising solution for low cost,
long lasting civil monitoring applications. But management of energy consumption
is a critical concern to ensure these systems provide maximal utility. Many common
civil applications of these networks are fundamentally concerned with detecting and
analysing infrequently occurring events. To conserve energy in these situations, a
subset of nodes in the network can assume active duty, listening for events of interest,
while the remaining nodes enter low power sleep mode to conserve battery. How-
ever, judicious planning of the sequence of active node assignments is needed to
ensure that as many nodes as possible can be reached upon the detection of an event,
and that the system maintains capability in times of low energy harvesting capabili-
ties. In this paper, we propose a novel reinforcement learning agent which acts as a
centralised power manager for this system. We develop a comprehensive simulation
environment to emulate the behaviour of an energy harvesting sensor network, with
consideration of spatially varying energy harvesting capabilities, and wireless con-
nectivity. We then train the proposed reinforcement learning agent to learn optimal
node selection strategies through interaction with the simulation environment. The
behaviour and performance of these strategies are tested on real unseen solar energy
data, to demonstrate the efficacy of the method. The deep reinforcement learning
agent is shown to outperform baseline approaches on both seen and unseen data.
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1 INTRODUCTION

Low power, low cost energy harvesting wireless sensor net-
works promise to dramatically reduce instrumentation costs
and drive widespread adoption in monitoring of structural
health, seismicity and environmental conditions. These sys-
tems are comprised of many individual nodes, each with
computing capability, wireless communication, battery power
and one or more sensors. A typical battery powered sensor
node can last years in the lowest power sleep mode, but only
days when fully active. When in low power sleep mode, sensor

nodes have limited capability, and designing a system which
balances immediate functionality with longevity is a difficult
task.
Many structural and vibration monitoring applications are

fundamentally concerned with the detection and recording of
specific events, rather than the continuous collection of data.
Events of interest in structural health monitoring applications
include seismic activity, periods of high wind, heavy vehicle
loading or user-initiated requests for data. To conserve energy,
a subset of nodes can be kept active, listening for events, while
the remaining nodes sleep. On detection of an event, active
nodes trigger sleeping nodes to wake up and record data. This
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scheme is implemented by Rice et al. (2010), as part of the
Illinois Structural Health Monitoring Project software toolset.
However, active nodes deplete their battery quickly, and so are
generally either continuously powered, or adopt a low duty
cycle. For example Jang et al. (2010), deploy a bridge monitor-
ing system where ’sentry’ nodes record acceleration and wind
data for 10 seconds every 10 minutes, triggering a system wide
wakeup upon exceeding a predetermined threshold. Actively
listening nodes are frequently referred to as sentry nodes in the
literature; well will use the term active node and sentry node
interchangeably in this paper.
Both Liu, Cao, Tang, & Wen (2016), and Jang et al. (2010),

describe battery powered wireless sensor systems, in which
battery reserves monotonically decrease over time. Energy
harvesting capabilities can be a relatively cost effective addi-
tion to sensor nodes, extending node lifetime and achievable
duty cycle levels. Many sources of energy, especially solar,
exhibit strong temporal variations, which lead to fluctuations
in battery levels. This presents unique challenges in planning
and scheduling the behaviour of sensor nodes. The increased
availability of energy enables battery powered sentry nodes
with much higher duty cycles than in non-energy harvest-
ing networks. But these sentry nodes deplete energy quickly
in periods of low energy availability, while sleeping nodes
maintain battery reserves. Rotating the set of active nodes
based on available battery reserves is an obvious solution to
this problem, but careful planning of the sequence of active
nodes is needed to ensure network performance meets service
requirements during times of low energy availability.
In this paper we treat sentry node selection as a sequential

decision making problem, and propose a centralised reinforce-
ment learning solution. In this approach, nodes report their
state at regular intervals to a centralised power manager, which
returns instructions to alter the set of sentry nodes if necessary.
The power manager aims to maximise the average number of
reachable nodes in the network over time: Nodes are reachable
if they are within a single hop of a sentry node. Unlike Liu et
al. (2016), we do not consider multi-hop wakeup procedures.
Casting this problem as a sequential decision making problem
ensures that the centralised power manager explicitly accounts
for tradeoffs between current and future utility, balancing
between actions which have immediate reward (assume sen-
try node duty), and delayed reward (preserve battery for future
sentry node duty). This is especially useful in solar energy
harvesting nodes, which exhibit strong temporal variations in
available energy.
A comprehensive simulation environment which allows

for realistic modelling of sensor node energy consumption,
recharging capability and communication is developed to train
and evaluate the proposed reinforcement learning approach.
This simulation environment adheres to the OpenAI Gym

(Brockman et al., 2016) framework, which provides a standard-
ised interface to allow modular testing of different learning
and control agents. The reinforcement learning agent is then
trained through interaction with this simulation environment.
Finally comparison with several baselines adapted from exist-
ing literature is conducted, and analysis and visualisation of
the learned strategies is provided.
This approach is intended for structural health and vibration

monitoring applications which share two important character-
istics: 1) Events of interest occur relatively infrequently, and
data recorded outside of these events is of little or no value,
2) One node, or a small subset of the total nodes in the net-
work, can reliably detect the onset of an event of interest. As
a result, we do not consider the problem of minimising energy
consumption arising from data transmission, nor do we con-
sider in this paper the effect of sentry node selection on the
likelihood of event detection.

2 RELATED WORK

A related problem arises in hierarchical sensor networks,
where networks are comprised of clusters of nodes, each with
a cluster head node, which collects and potentially aggregates
data from other nodes, before forwarding it to a central server,
e.g. Gao, Spencer Jr, & Ruiz-Sandoval (2006), Sim, Carbonell-
Márquez, Spencer Jr, & Jo (2011). In these hierarchical net-
works, the number and location of cluster heads impacts the
energy efficiency of the system as a whole. Extensive research
has been conducted on developing algorithms which find
data transmission routes which minimise energy consumption
and/or balance energy consumption between nodes, e.g. Shah
&Rabaey (2002), S.-C. Huang& Jan (2004). Unlike this paper,
these algorithms are fundamentally concerned with managing
energy consumption arising from data transmission, with the
assumption that sensor nodes are continuously sensing data
which must be collected at a base station. In SHM specific
applications, there is often an additional tradeoff between the
energy efficiency of the sensor network layout, and the qual-
ity of the modal information obtained from measurements.
Fang, Liu, & Teng (2018) derive an analytical expression for
the maximally energy efficient number of clusters in two layer
hierarchies comprised of i) cluster head (router) nodes, and ii)
leaf nodes. A genetic algorithm is then developed to choose
the number of sensors and sensor spacing which achieves the
best tradeoff between energy efficiency and modal informa-
tion quality. Fu, Ghosh, Johnson, & Krishnamachari (2013)
propose an energy efficient routing tree for grid layouts of sen-
sor nodes with centrally located base stations and multiple
layers, and observe that a tradeoff between energy efficiency
and modal information quality arises as a function of the grid
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size: For closely spaced configurations data can be transmit-
ted at low cost, but modal information quality deteriorates as
a smaller total area is covered. In this work we assume a pre-
determined fixed sensor network layout, and for simplicity do
not consider the modal information quality obtained from the
network.
Energy-efficient configurations, even when they are specif-

ically designed with energy-balancing in mind, can still lead
to situations where nodes in high-traffic locations deplete
their battery more quickly than others. Adaptive cluster-
ing approaches, which periodically rotate node assignments
between cluster head duties and non-cluster head duties,
can ameliorate this issue. Heinzelman, Chandrakasan, &
Balakrishnan (2002), propose a method for rotating cluster
head duties called low energy adaptive clustering hierarchy
(LEACH). In the centralised version of this approach, cluster
head duties are chosen at discrete time intervals by a simulated
annealing procedure which minimises the summed squared
distances between non cluster head nodes and their closest
cluster head node. Non cluster head nodes are then assigned a
specific time slot to transmit data in a time-division multiple
access scheme, outside of which they may conserve energy.
Xiao, Zhang, & Dong (2013) propose a modified version of

LEACH for application in sensor networks with energy har-
vesting capabilities. In Xiao et al. (2013), an energy potential
function is defined for each node, describing its energy har-
vesting capabilities. This function is then used in selection of
cluster head nodes, increasing the likelihood of selecting those
with high energy harvesting capabilities. Bahbahani & Alsusa
(2017) develop another adaptation of LEACH, in which duty
cycle levels between 0 and 1 are set for each node, describ-
ing what proportion of time they spend as a cluster-head, and
what proportion of their available time slots they utilise for data
transmission when not a cluster head. Each nodes cluster-head
duty cycle is set so that the expected number of cluster-heads
minimises the total energy consumption of the network. Data
transmission duty cycles are adjusted to ensure that each node’s
energy consumption matches the amount of energy it harvests:
a condition called energy neutral operation (ENO).
Achieving energy neutral operation of sensor nodes is itself

the focus of a significant number of studies. Previous work has
focused on adapting individual nodes duty cycle levels so that
the amount of energy consumed by the node is less than the
amount of energy harvested. The maximum duty cycle level
which still maintains energy neutral operation is termed node
level energy neutrality, or ENO-max, as defined by Kansal,
Hsu, Srivastava, & Raghunathan (2006).
Various different algorithmic approaches have been pro-

posed to solve the problem of achieving node level energy
neutrality. Kansal et al. (2006) formulate a linear program-
ming approach which, combined with a predictive model of

energy harvesting, solves for the highest possible duty cycle
that meets the criteria of energy neutral operation. Energy
harvesting predictions are made by adaptively fitting an expo-
nentially weighted moving average model to measurements
of harvested energy. Vigorito, Ganesan, & Barto (2007), pro-
posed a linear quadratic tracking algorithm, which unlike the
approach in Kansal et al. (2006), does not require a model of
future energy generation.
More recently, reinforcement learning (RL) algorithms have

been proposed as a more flexible and powerful approach to
achieving node level energy neutrality in energy harvesting
sensor networks. In Chan et al. (2015) the challenge of max-
imising quality of service while maintaining battery reserves
is framed as a continuous time markov decision process, and
solved using tabular Q-learning. Hsu, Liu, & Wang (2014)
propose a tabular Q-learning approach for query driven wire-
less sensor networks. This approach assumes that a certain
throughput level is demanded by a query to a sensor net-
work, and aims to meet this demanded throughput while
maintaining energy neutral operation. Shresthamali, Kondo,
& Nakamura (2017), propose a similar approach, but using
a tabular SARSA algorithm for reinforcement learning, and
incorporating weather forecast data to improve performance.
Research on energy neutral operation of sensor nodes has

focused on the individual node level, and omitted considera-
tions of the resulting impacts on network level performance.
Achieving the ENO-max condition at each node individually
may lead to suboptimal network level behaviour. If 0 % duty
cycle periods occur simultaneously at all nodes in the network,
any events occurring in this period will go undetected. Tabu-
lar reinforcement learning algorithms as proposed in (Chan et
al., 2015), (Hsu et al., 2014), (Shresthamali et al., 2017) are
likely to be intractable when considering the entire network,
due to the size of the state-action space, and so more powerful
reinforcement learning approaches are required, which utilise
function approximators instead of lookup tables, as in (Mnih et
al., 2015), (Mnih et al., 2016), (Peters & Schaal, 2008). Deep
neural network based approaches have also been proposed for
civil and structural monitoring problems recently, outside the
context of reinforcement learning, as in Y. Huang, Beck, & Li
(2018), Rafiei & Adeli (2017), and Rafiei & Adeli (2018).

3 PROBLEM STATEMENT

The goal of this paper is to develop a strategy which max-
imises the utility of the overall system by intelligently selecting
which subset of nodes is active at each period in time. This
problem is fundamentally one of sequential decision making
under uncertainty, and can naturally be cast as a reinforce-
ment learning problem. In the following section we will first
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FIGURE 1 Overall schematic of the proposed system archi-
tecture, showing the peer to peer communication in the local
network, and remote node to power manager communication
used for reporting state and action instructions

describe the overall architecture of the wireless sensor system,
before providing details used in simulating the power con-
sumption, recharging capabilities and wireless connectivity of
nodes in the network. In Section 5, we will introduce the pro-
posed reinforcement learning framework, and formulate our
problem in this framework.
We assume in this problem that events during which

recorded data is of high value occur infrequently, are of rela-
tively short duration, and that any information outside of these
event windows is of little to no value. These assumptions are
not valid in all structural monitoring applications, but are rea-
sonable in most seismic monitoring applications, bridge and

structural monitoring applications where high amplitude exci-
tations occur due to rail, very heavy vehicle or high wind load-
ing, or wireless sensor network applications where requests for
data are initiated by users. We additionally assume that events
of interest can be reliably detected by any node in the network.
This limits the scope of this approach to networks of moderate
size, and events which are non-local in nature, both commonly
valid in structural and vibration monitoring applications.

4 SYSTEM MODEL

Our model is comprised of n individual sensor nodes, which
together make up the set G. We assume two distinct modes of
communication in the network: 1) Node to remote power man-
ager, which is used for infrequent, time insensitive messaging,
in this case, communicating the current status and battery
life and receiving action instructions. The node to manager
connection can be achieved through cellular LTE or LoRa con-
nection, as implemented for example in Addabbo et al. (2019).
2) Peer to peer communication, which can be achieved via
Bluetooth or Zigbee radio and is used for time sensitive, low
volumemessaging, for example, triggering a neighboring node
to wake up and record an event of interest. A schematic of this
system is shown in Figure 1 . At regular intervals, each node in
the network reports its state directly to the power manager. The
power manager then publishes action to nodes as necessary,
allowing the set of active nodes to change over time. Active
nodes maintain local peer-to-peer connections which are used
to trigger a system wide wake up when an event of interest is
detected.
Each individual node in our network model is equipped with

a battery, a processor, a radio, a physical sensor, and ameans of
harvesting energy from its environment. In this section we will
provide details on the battery and power consumption char-
acteristics of each node, recharging capabilities, and wireless
connectivity properties.

4.1 Node energy consumption
Every node has a fixed, and identical battery capacity, denoted
Bmax. We consider a discrete time model, in which each dis-
crete time slice is denoted tk, and has duration Δt. The battery
reserve of node i at the onset of time slice tk is given by Bi(tk)
For every period tk, the status of each sensor is given byXi(tk)
where Xi ∈ {0, 1, 2}, where Xi = 0 indicates that node i is in
deep sleep mode, Xi = 1 indicates that it is in idle mode, and
Xi = 2 indicates the node is active. Individual sensor nodes
consume available power at a fixed ratePa while active, a lower
rate Pi when idle and a much lower rate Ps, while in deep sleep
mode.
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The active energy consumption rate of a sensor Pa is calcu-
lated by summing the active power consumption of the sensor
node microcontroller, the radio, and theMEMS accelerometer.
In idle mode, the processor board and MEMS accelerome-
ter are deactivated. The peer to peer radio remains in active
mode, listening for a signal from a neighboring node to wake
up. Pi is therefore calculated by summing the idle mode
power consumption rate of the microcontroller and the MEMS
accelerometer, and the active mode power consumption rate of
the radio. Pi is dominated by the active mode power consump-
tion rate of the radio.
Although idle nodes can be triggered to wake up and record

data when an event occurs, we neglect the energy consumed
during this potential brief period of activity. As noted in
Section 1, we assume that events of interest occur relatively
infrequently, and are of relatively short duration, and therefore
the total time by an idle node in recording data during any one
discrete time period is insignificant. For applications in which
events of interest occur frequently, or are of long duration, this
assumption may not be valid.
Deep sleep mode consumes the least amount of power, but

severely limits the functionality of the node. In deep sleep
mode, the radio, processor and sensor all enter their lowest
power consumption state. The processor can exit this state
through a scheduled interrupt, allowing it to then wake the
radio and sensor using pin interrupts. Nodes are uncommu-
nicative for the entire time period when in deep sleep mode.
Specific values used in this study are given in Table 1, but

the methodology presented can be adapted without any loss
of generality. For reference, the chosen battery capacity Bmax
used in simulations in this paper is 2000 mAh, with an average
discharge voltage of 3.7V.

Deep sleep
(mW)

Idle
(mW)

Active
(mW)

Processor 0.185 1.85 203.5
Radio 0.03 166.5 166.5
Sensor 0.185 1.85 55.5

Total 0.4 170.2 425.5

The total energy consumed in period tk, Ec(tk) can be
written as follows:

Ec(tk) =

⎧

⎪

⎨

⎪

⎩

Ps ⋅ Δt when Xi(tk) = 0
Pi ⋅ Δt when Xi(tk) = 1
Pa ⋅ Δt when Xi(tk) = 2

(1)

4.2 Energy harvesting
The energy consumed by sensor i in time period tk, Eci(tk),
is offset by the energy harvested Eℎi(tk), such that the battery

level at time t + 1, can be calculated as follows:

Bi(tk+1) = Bi(tk) + Eℎi(tk) − Eci(tk) (2)

The harvested energy is unlikely to be constant across each
node in the network. Even if the energy harvesting capabilities
of each node are identical, for most energy harvesting systems
we expect spatial variation in the available energy. To model
this effect, we represent the available energy over the area of
the sensor network as a random field. The energy harvested
over the entire area of the sensor network has a baseline mean
value for each time tk. This baseline value Eℎ� is then com-
bined with spatially correlated random variations over the area
of the sensor network. The harvested energy at sensor i in a
given time period tk, Eℎi(tk) is given by:

Eℎi(tk) = E�(tk) ⋅ (1 + Yi) (3)

whereEℎ� (tk) is the average harvested energy of the entire sen-
sor network during period tk, and Yi is the perturbation of the
random field at the location of sensor i. Y is assumed to be a
zero mean, stationary, gaussian random field in this paper, with
standard exponential covariance function:

C(x, y) = �2 exp
(

‖x − y‖
l0

)

(4)

Realisations of Y =
[

Y (x1), ..., Y (xn)
]T can then be gener-

ated using the Cholesky decomposition method, as described
in Dietrich & Newsam (1997).
Given the time series of solar irradiance and meteorologi-

cal data obtained from the National Solar Radiation Database
Habte, Sengupta, & Lopez (2017), and the characteristics of
the solar panel, we use the SystemAdvisorModel (SAM) Blair
et al. (2014), to calculate the total energy produced for a 2W
solar panel, at a 0◦ tilt, located at 42.3587◦N , 71.0915◦W for
every 30 minute interval from January 1st 2008 to December
31st 2013, and draw samples from this to create the baseline
harvested energy time series Eℎ� (t).
The addition of spatially correlated noise to this baseline

time series ensures that the simulation of solar energy harvest-
ing is more physically realistic: Some regions of the sensor
network experience may have lower solar energy availability
due to shading or other environmental factors. The stochas-
tic nature of this simulation also provides the reinforcement
learning agent with noisy sequences whichmay help to prevent
overfitting and improve robustness to variations in the solar
energy availability.

4.3 Wireless connectivity
Local peer to peer messages are not guaranteed to reach their
target, and a method of modelling this uncertainity is needed
for a realistic simulation. The soft geometric graph model as
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described in Waxman (1988) and Penrose et al. (2016) pro-
vides a realistic model of network connectivity, where the
probability of connection between node, i and j, is:

Hij = � exp
(

−
(rij
r0

)�)

(5)

where rij is the Euclidean distance between node i and node j,
r0 is a range parameter, � is an environment specific parameter
describing signal decay over distance, here assumed to be 1,
and � is a distance independent parameter,here also assumed
to be 1, which linearly scales the probability of a connection.
The parameter �may vary spatially, if some areas of the sen-

sor network experience higher signal decay than others. For
simplicity we assume � has a constant value of 1 over the area
of the sensor network.

5 REINFORCEMENT LEARNING

Reinforcement learning is a framework in which an agent
learns to maximise long term utility by interacting with an
environment, and receiving rewards. The reinforcement learn-
ing problem is based on the Markov Decision Process (MDP)
(Bellman, 1957), which is canonically described by a set of
possible states S, and actions A, a reward model Ra(s, s′),
which gives the reward earned by transitioning from each
state s to each state s′ and a transition model Pa(s, s′) which
describes the probability of transitioning from state s to state s′
if action a is taken. If a sequential decisionmaking problem can
be modelled as a MDP, then it is possible to solve for the opti-
mal policy using dynamic programming. The optimal policy
defines which action a to take in each state s, with optimality
typically defined as the action which maximises the expected
value of (possible discounted) future rewards from the current
state.
However, in many real world problems, either the transition

function is not known explicitly, or the state-action space is too
large, causing the solution of the MDP to become intractable.
Reinforcement learning allows an agent to learn policies by
acting and observing, without an explicit model of the envi-
ronment. Specifically, in discrete time problems, the RL agent
may observe its state at the beginning of each time period, and
choose from the set of available actions. At the beginning of
the next time period, the agent observes its new state and the
reward earned in the previous period, and must then choose its
next action. In Q-LearningWatkins (1989), a table of Q-values
is maintained for each state-action pair and updated using the
Bellman equation:

Qi+1(si, ai) = (1 − �)Qi(si, ai) + �
(

ri + Vi(si+1)
)

where Vi(s) = maxa Qi(s, a) (6)

These Q-values are an estimate of the expected discounted
reward for executing action a in state s. The Q-learning
algorithm is guaranteed to converge to the optimal policy,
given an infinite number of iterations. However, when the
state-action space is large, the convergence rate may be unac-
ceptably slow, and the Q-table may become too large to practi-
cally store. In cases where the state-action space is continuous,
quantization can be used, but this too can prove impracti-
cal unless the quantization is coarse. Instead of maintaining a
lookup table of Q-values, a function approximator can be used
to combat these issues. One such approach which has recently
shown impressive results in a variety of challenging learning
problems is Deep-Q Learning Mnih et al. (2015), which uses a
deep neural network to map input state vectors to an estimated
Q-value for each possible action.

5.1 Deep Q Learning
As described in Mnih et al. (2015), the procedure to learn the
parameters of the deep Q model �, involves the minimisation
of a loss function at each step of the iteration, to fit the current
predicted action-valueQ(s, a; �i) to a target yi. The target yi is
calculated as follows:

yi = ri + maxa′Q(s, a′; �i−1) (7)

Unlike in Mnih et al. (2015), where the mean squared error is
used as the loss function, here we use the Huber loss, which is
more robust to outliers:

L(yi,Q(s, a; �i)) = L�(y, f (x)) =
{

1
2
(y − f (x))2 for ‖y − f (x)‖ ≤ �
�(‖y − f (x)‖) − 1

2
�2 otherwise

(8)

The minimisation of L(�i) can be computed by simple gradi-
ent descent, or by other stochastic optimisation algorithms.We
use the Adam optimisation procedure Kingma & Ba (2014).
The optimization can exhibit instability, as both the target and
predicted values depend on the model parameters, potentially
leading to a positive feedback loop. Note that in Equation 7, the
target value yi is computed using the model parameters �i−1 to
avoid this instability. This is achieved by maintaining a target
model in addition to the Q-model, which maintains an out of
date copy of the model parameters. While Equation 7 suggests
the use of the model parameters from the preceding iteration,
in practice the target model may be updated less frequently.
Even with the use of a target model, it has been observed

that the Deep Q approach tends to overestimate action-values.
This tendency can be addressed through a simple adjustment
to the target value calculation, as proposed in Van Hasselt,
Guez, & Silver (2016), which leads to the Double Deep Q Net-
work (DDQN) formulation. Here, in the evaluation of the target
value, the Q-network is used to select the policy, and the target
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network is used to determine the value of this policy:

yDDQNi = ri + Q(s, a ∗, �i−1) (9)
where a ∗=a Q(s′, a; �i)

Rather than training the DDQN agent online, we use the
experience replay technique, as described inMnih et al. (2013).
At each time step, the agent takes an action at which causes a
transition from state st to state st+1, and a reward rt. In online
Deep-Q learning, this experience et = (st, at, rt, st+1), is used
to update the model at each step. Instead, in experience replay,
the experience et is placed in a replay memory buffer. Then
random samples of experiences are drawn from the memory
buffer to train the model. This has two benefits: 1) Sample effi-
ciency is increased, as each experience can be used more than
once in training. 2) Randomising the order of experiences can
help to stabilise learning and avoid local minima.

5.2 Problem formulation
In this section we will describe the behaviour of the system
as described in Section 4 in terms of a reinforcement learn-
ing problem, and provide details of the experimental procedure
used to learn collaborative duty cycling strategies using this
model.
The state space representation of node i during time period

tk is given by:

Si(tk) = [Bi(tk), Xi(tk), Di(tk)] (10)

Xi(tk) ∈ {0, 1, 2} is an indicator variable that describes
whether node i is active, idle or in deep sleep. Bi(tk) ∈
[0, Bmax] can be calculated as in Equation 2, given the con-
sumed energy Eci(tk−1) which depends only on Xi(tk−1), as
per Equation 1, and the harvested energy in the previous time
step Eℎi(tk−1). Di(tk) ∈ [−Bmax, Bmax] is simply the differ-
ence in battery between the current and previous time step, i.e.
Di(tk) = Bi(tk) − Bi(tk−1)
The overall system state representation is obtained by con-

catenating the individual node states into a single vector, and
adding one additional state parameter Tk ∈ {0, 1, ..., 24∕Δt}
which describes the current time of day, corresponding with
the ktℎ time step from the initial hour T0. Concatenating all
node states gives the full system representation

s(tk) =
[

B0(tk), X0(tk), D0(tk), B1(tk), ..., DN (tk), Tk
]

where Tk =
(

k + T0∕ΔT
)

mod 24∕Δt (11)

The order of entries into the state vector s(tk is determined
using the Hilbert space-filling curve Moon, Jagadish, Falout-
sos, & Saltz (2001). The Hilbert curve provides a mapping
from 2D coordinates to 1D space, which we use to sort the
nodes in the network. This has the advantage of ensuring that
nodes which are adjacent in the state vector are also physically

close in 2D space. The converse is not true; some coordinates
which are close in 2D space are not close on the Hilbert curve.
For each node, there are two available actions, ai0 , and ai1 .

ai0 toggles the idle behaviour of node i: If the node is idle,
it becomes active, otherwise it switches to idle. ai1 , similarly
toggles the deep sleep behaviour of node i, causing it to switch
to deep sleep from either idle or active, and to active if it is in
deep sleep. Only one of these actions, or the null action∞ can
be executed in any time step, so the full action space is given
by A = {a00 , a01 , a10 ...aN0

, aN1
,∞}

5.2.1 Reward function
Given the system state representation for a time period stk we
can cut the set of nodes in the network,G, into the set of active
nodes Ca(tk), the set of idle nodes Ci(tk), the set of nodes in
deep sleep Cs(tk), and the set of nodes which are out of battery
C0(tk). Active nodes, for example, have non-zero battery life
Bi > 0 and have active status Xi = 2:

Ca(tk) = {i ∈ G |Xi(tk) = 2 & Bi(tk) > 0} (12)

The soft geometric graph model described in Section 4 defines
the probability of a successful connection between node i and
node j during a given time period tk. Using Equation 5, the
set of nodes reached by node i, Ri is easily obtained by Monte
Carlo simulation:

Ri(tk) = {j ∈ Ca(tk) ∪ Ci(tk) |Hij > x ∼  (0, 1)} (13)

Note here that we do not include nodes in deep sleep mode,
or nodes with zero battery in the set of reachable nodes. Com-
bining Equations 13 and 12, the set of all reachable nodes in a
given time period is the union of the nodes reachable by each
active node:

R(tk) =
⋃

i∈Ca

Ri (14)

Finally, we can define the reward earned in period tk given
the system state stk as the number of reachable nodes divided
by the total number of nodes.

r(stk) =

{

|R(tk)|
|G|

when |R(tk)| > 0

−1 when |R(tk)| = 0
(15)

Note that a penalty is accrued if no nodes are active during a
given time period. This is designed to heavily disincentivise
this outcome, as missing the occurrence of an event completely
is highly undesirable: Having just one node on for a time period
is much preferable to having none, whereas having two instead
of one is a relatively less important distinction.

5.3 Experimental procedure
In this section we will describe in detail the procedure used
to emulate the sensor network system behaviour, and train a
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Algorithm 1 DDQN adaptive duty cycling learner
Initialise:

Replay memory buffer D.
Master baseline solar energy series Eℎ� .
Exploration variable �=1, �min = 0.01.
Q network with random weights � and
duplicate target network.

for episode = 1 to M do
{(xi, yi) ∀i ∈ G}← Generate node coordinates.
T0 ← Initial time stamp.
tepisode ← [T0, T0 + ΔT , ..., T0 +NΔT ].
Y ← new random field realisation.
Eℎi(tepisode)← Eℎ� (tepisode) ⋅ (1 + Yi).
s0 ← Initial state.
for k = 1 to N do

If � > x ∼  (0, 1) select action at randomly,
otherwise select at = maxaQ(st, a; �).
Observe resulting st+1 and calculate r(t).
Push et = (st, at, rt, st+1) to D.
Set st ← st+1.
Sample minibatch of experiences ej from D.
Set yj for ej as per Equation 9 and perform opti-
mization step to minimize L(yj , Q(s, aj ; �j) as per
Equation 8.
Set � = � − (�0 − �min)∕NM .

end for
Copy weights � from Q to target network.

end for

Double Deep Q Learning agent on this emulation. Algorithm 1
provides a step by step description of the simulation and
training.

5.3.1 Global initialisation
To begin the training procedure, the replay memory buffer is
first set, with a fixed length of 2000, and the Q-network and
target network are initialised with identical, randomly gener-
ated weights. Then the master time series of baseline solar
energy is calculated, as detailed in Section 4.2, which will be
sampled from in each training episode. The exploration vari-
able � controls the degree of randomness the agent exhibits in
selecting actions. If this value is too high, the agent explores
different strategies well, but fails to focus on and fine tune the
most promising strategies. Conversely, if this value is too low,
the agent quickly hones on the most immediately rewarding
strategy, but may fail to explore other more valuable strate-
gies. Here we start with an � of 1, and linearly decrease it so
it reaches a minimum value of 0.01 on the last time step of the
last episode.

5.3.2 Episode initialisation
At the beginning of each new episode, the spatial coordinates
of each node i ∈ G are generated. The configuration of the
nodes is arbitrary, as themethodology presented in this paper is
valid for any configuration in 2D or 3D space. Furthermore, the
spatial configuration can be changed from episode to episode
in an attempt to learn non configuration-specific policies. For
simplicity, in this paper we select a 2D square lattice of 16
nodes as shown in Figure 2 , and keep this configuration for
the entire simulation.
Each training episode consists of a number of time stepsN .

At the beginning of each episode, a start time T0 is chosen. The
master solar energy time series is then sampled for the period
defined by the series tepisode, creating the specific baseline solar
energy time series for that episode. Given the node coordi-
nates, an instance of the random field Y is then created for the
current episode, which allows for the calculation of the har-
vested solar energy at each nodeEℎi(tepisode) as per Equation 3.
Figure 2 , illustrates an instance of the random field over the
lattice network. Values of the randomfield over the entire space
of the 2D grid are shown only for illustrative purposes; it is
only necessary to simulate realisations of this random field at
the specified node locations. The results presented in this paper
are generated with a discretisation parameter ΔT = 3ℎrs, and
with T0 fixed at September 1st at midnight for every episode,
and N = 30 ⋅ 24

ΔT
= 240, such that tepisode represents the

entire month of September in each case. Although T0 is fixed
at September 1st at midnight in every episode, the chosen year
is varied randomly in every episode, so a representative variety
of conditions are experienced by the reinforcement learning
agent. 2013 is excluded for testing purposes.
Shown in Figure 3 are the time series of harvested energies

(in Watts) at each node in the lattice network for two different
days in September 2012. Note here the significant variability
in available energy between the two days, most likely due to
the contrast between overcast and sunny conditions. Note also
the variance between individual nodes arising from the random
field perturbation. The exponential covariance function used
for random field simulation is that given by Equation 4, with
�2 = 0.1, and l0 = l where l is the total width of the lattice
network. �2 controls the variance of the random field, while
l0 controls the length scale of the spatial correlation between
nodes. We can see that these random field parameters result in
a small but noticeable deviation in individual node solar energy
as compared to the baseline , where all nodes harvest equal
energy (i.e. �2 = 0).
Once all episode level initialisation is complete, the inner

training loop begins. At each time step in the episode,an action
is selected randomly, with probability �, which is very high
in early episodes. Otherwise the action which the Q-network
deems to have the highest value is selected. This action is then



Long Büyüköztürk 9

FIGURE 2 Illustration of chosen lattice network configura-
tion, with a typical random field instance, active and idle nodes
assignment, and instantaneous network connectivity.

executed, resulting in a transition to a new state, and an earned
reward. The experience corresponding with this iteration of
the episode is then pushed to the replay buffer. If the buffer is
full, the new experience will overwrite the oldest experience
in the buffer. A minibatch is sampled from the replay buffer,
and the Q network is updated. Finally, the exploration variable
� is decremented, causing the agent to very gradually prefer
exploitation rather than exploration. Once the episode ends, the
target model is updated with a copy of the Q-networks weights,
before a new episode is initialised.

5.3.3 Network architecture
Figure 4 shows the neural network architecture used for both
the Q network and the target network. Our lattice configuration
of 16 nodes, each with 3 state variables (battery, status, battery
difference) as well as the global time variable, gives an input
vector of length 49. This input is then fed through 3 identical
fully connected layers of 512 neurons, each with a rectified

FIGURE 3 Harvested energy by node for two contrasting
days.

linear unit (ReLu) activation function. Finally, the output layer
consists of 33 neurons, which predict the Q-value of each of
the available actions. The network is constructed and trained
using the Keras library Chollet et al. (2018).

6 RESULTS

In this section we describe the results obtained by training our
DDQN agent for 6500 episodes on the lattice network con-
figuration. For benchmarking purposes, we will first define
two baseline agents. First, the eno agent, which optimises the
duty cycle level of each individual node in the network, using
the linear programming approach described in Kansal et al.
(2006), and assuming perfect knowledge of the future solar
energy time series. This agent sets a percentage duty cycle
level for each time step, and maximises the sum of these duty
cycle levels, while ensuring that the battery level never falls
below zero, and that the battery level at the end of each day is
higher than or equal to the previous day. Nodes are in active
mode for the given duty cycle percentage of each time step,
and otherwise in deep sleep mode. Additionally, it is assumed
that within a given time period, the probability of being active
is equally likely at all times. This implies that each individual
node behaves independently of all others. Secondly, we define
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FIGURE 4 Neural network architecture for both Q and target
networks

a greedy agent, closely related to the LEACH approach for
adaptive clustering proposed in Heinzelman et al. (2002). The
greedy agent aims to keep 50 percent of the nodes in the net-
work active at every time step. If fewer than half the nodes are
active, it greedily adds the idle node with the maximum bat-
tery life. Additionally at every time step, when possible, the
greedy agent churns active nodes with low battery in favour of
any available idle nodes with more battery life. More formally,
the policy of the greedy agent can be stated as in Algorithm 2:

Algorithm 2 Greedy adaptive duty cycling agent
for k = 1 to N do

Find active set Ca ⊆ G as per Equation 12
Find idle set Cs = G − Ca
Find idle node j = maxj∈Cs B(j) > 0 with maxi-
mum battery life
Find active node i = mini∈Ca B(i) with minimum
battery life
If |Ca| ≤ |G|∕2 then take action aj
ElifB(i) < B(j) then take action ai
Else take action∞

end for

Shown in Figure 5 , is the learning curve of the DDQN agent,
compared with both the greedy and eno agents. Here we define
the performance metric of interest as the episode score, or the
sum of rewards, as defined in Equation 15, earned over the
course of the episode. The initial performance of the DDQN
agent is very poor, as it acts almost entirely randomly in early
episodes while it explores the state space. The performance

of the greedy agent is significantly better than the eno agent,
primarily because the eno agent frequently accrues negative
penalties in night-time periods when all nodes enter a 0 %duty
cycle. As training progresses, the DDQN agent improves its
performance, eventually surpassing both the eno agent and the
greedy agent.
Figure 6 compares the performance of all three agents on

both the held out unseen data, and data included in the train-
ing set. Shown in this figure is the results of 30 individual runs
for each agent on both sets of data, with the mean, and the
interquartile range indicated by the box plot. While the per-
formance of the DDQN agent is slightly worse on the unseen
data, this appears to be the case for both of the baseline agents
also, indicating that this is due to a worse energy harvesting
environment, rather than overfitting.
In Figure 7 , we illustrate the difference in earned rewards

for each agent over every 3 hour period in a full week of unseen
data, to investigate where the DDQN agent gains an advan-
tage over the baseline approaches. The DDQN agent and the
greedy agent exhibit similar performance for many of the time
periods. However, the DDQN agent appears more robust to
multi-day periods of low solar energy availability (e.g. Septem-
ber 3rd and September 4th), and therefore avoids entering a
state where no nodes are active. This further demonstrates that
the DDQN agent’s robustness to variations in solar energy, as it

FIGURE 5 Learning curve of the DDQN agent, compared to
random and greedy agents.
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FIGURE 6 Performance of the DDQN agent compared with
greedy and eno agents on both unseen and training data

demonstrates this capability on a sequence of solar energy data
which it has not previously been trained on. Unsurprisingly,
the ENO agent, which explicitly optimizes to avoid using more
energy than it harvests over a 24 hour period, is more suscep-
tible to losing event detection capability at night time when no
solar energy is available.
Further analysis of the behaviour of the system under the

control of the trained agent is necessary to understand how the
learned policy outperforms the baselines. For a given time step,
we define the configuration of the sensor network to be the
vector containing just the status variable of each node C(ti) =
[X0(ti), X1(ti), ...XN (ti)]. Then for each unique configuration,
we count the transition frequencies to each other unique con-
figuration, to estimate an empirical transition matrix P. If njk is
the number of occurrences whereC(ti) = j & C(ti+1) = k,
then assuming there are m total unique configurations, each
element of the transition matrix can be estimated as Pij =
nij∕

∑m
k=1 nik. Provided this matrix corresponds with an irre-

ducible and aperiodic Markov chain, we can analyse its steady
state behaviour. The steady state distribution of aMarkov chain
represents the long term probability of being in any given state,
independent of the initial conditions. This provides a useful
tool for interpreting patterns in simulated time series to under-
stand the strategy of the trained reinforcement learning agent.

FIGURE 7 Comparison of the earned rewards of each agent
over a week long period.

Given the empirical transition matrix P, the steady state dis-
tribution π can be found by solving the eigenvalue problem
(P−�I)π = 0, for � = 1. The 6 configurations with the highest
steady state probabilities are shown in Figure 8 .
Inspecting Figure 8 , we see several different behaviours of

the network emerge. Two of these configurations, 1) and 5),
show node 2 as the only active node, while the remaining nodes
are either idle or out of battery. Twomore of the configurations
,3) and 4), show 50% of the nodes active, with the remainder of
the nodes idle, with the exception of node 2 which is in standby
mode.
Figure 9 yields further insight into the strategy of the

DDQN agent. In this figure a 5 day slice is illustrated, with
each node’s behaviour indicated by a vertical line: Solid black
indicates the node is active, dashed black indicates idle, dashed
red indicated standby, and a thin dotted line indicates the node
is out of battery. Here we can clearly see the cyclical behaviour
of the network. Active nodes tend to run out of battery at night
time when solar energy is not available. In order to maintain
the networks event detection capability during these periods,
node 2 enters standby mode in advance, allowing it to to pre-
serve battery and then assume active duty while other nodes
have depleted their reserves.
This behaviour may raise questions of reliability: In a sce-

nario where only one node is on active duty, how robust
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FIGURE 8 Highest probability steady state configurations of
the 16 node lattice network under the control of the trained
DDQN agent.

is the system to communication failures? Although this is a
valid concern, the simulation environment does incorporate
a stochastic simulation of communication success, which is
reflected in the reward function. Although the trained rein-
forcement learning agent earns a higher reward than other
approaches on average, there may be a concern that its strat-
egy causes a higher variance: However, examining Figure 6 ,
we see that the variance of the average episode score for the
reinforcement learning agent is similar to the other approaches.
An alternative view of the behaviour of the newtork under

the control of the trained agent is shown in Figure 10 , where

FIGURE 9 Detailed evolution of network wide statuses over
time

the spatio-temporal behaviour of the network over a full day
cycle is illustrated. This figure shows the evolution of both
status and battery reserve over time, with battery reserve
indicated by the arc shown around each node location. Investi-
gating the spatial behaviour of the DDQN strategy we can see a
few interesting patterns. Examining the diagonal set of nodes,
5,7,13 and 15, we can see that in this time slice, these nodes
tend to remain idle, with active nodes off this diagonal. Finally,
we investigate the behaviour of the network over a longer time
period, as shown in Figure 11 . Here we select 5 nodes which
exhibit distinct groups of long term behaviours. In this figure,
we examine the ratio of time active to time idle for each node,
averaged over a single day. Note that for clarity, we omit time
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periods when nodes are out of battery. Node 0 spends 100 % of
its on time in active duty. In comparison node 13 spends almost
100% of its time in idle duty. Other nodes switch between these
opposing behaviours, but generally exhibit either one or the
other over the course of a full day. For example node 4 spends
almost 100 % of its on time in idle mode in the first 10 days,

FIGURE 10 Spatio-temporal visualisation of evolution of
network statuses and battery levels over a full day.

but then switches to spend the entire remaining days in active
duty only. Node 11 spends long periods in idle mode, but inter-
mittently switches to spend an entire day or two in active duty.
Finally, node 2, as we have already seen, exhibits an entirely
different behaviour: It is active much more often than it is idle,
but never spends a full day in active duty. It does not spend
any time in idle mode, but rather in standby mode, as shown in
Figure 10 , and Figure 9 , allowing it to preserve battery.

FIGURE 11 Long term evolution of nodes behaviour, aver-
aged over each day.

7 CONCLUSIONS

In this study a novel reinforcement learning based approach
for adaptive duty cycling in energy harvesting sensor networks
is proposed. This approach considers specifically the system
requirements for event detection applications. Within this con-
text, a system wide performance metric is developed, and a
reinforcement learning agent is formulated to maximise this
performance metric by controlling node duty cycling.
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To validate this approach a simulation environment is devel-
oped which emulates node power consumption, energy har-
vesting and connectivity properties. We consider specifically
a 16 node network in a 2D lattice configuration, where each
node is equipped with a small photovoltaic panel. Using this
simulation environment, the proposed reinforcement learning
approach is tested against two different baseline strategies, and
outperforms each on both training data and unseen data
Investigation of the learned agents behaviour yields several

insights.Most notably, the advantage of the sequential decision
making framework used in this paper is demonstrated clearly:
Some nodes exhibit foresight, preserving battery in times of
solar energy availability, in order to later assume active duty
when no energy is available. This can be viewed as a sort
of ’rainy day’ planning. When compared with the baseline
agents, the DDQN agent appears as a result to demonstrate
more robustness to periods of low solar availability, and as a
result, can avoid scenarios in which no node is available for
active duty. Secondly, the agent also learns what proportion
of nodes to maintain in active duty when battery is available:
Even though all nodes have battery reserves, only a subset
of these nodes need to be in active duty to reach the entire
network.

7.1 Future work
In this work we make the simplifying assumption that all
node locations are equally capable of detecting events. Con-
sidering varying detection capabilities is an interesting avenue
for future work, especially in monitoring applications where
events tend to propagate in an obvious pattern. Consider a
bridge monitoring system, where events of interest are trig-
gered by heavy goods vehicle loading. In this instance, nodes
located near the ends of the bridge may provide greater utility
by allowing earlier event detection.
Relatedly, we assume in this work that data recorded by each

node is of equal value. In reality, in vibration analysis appli-
cations, the quality of the estimated dynamic properties will
depend on the set of nodes chosen for recording. One possi-
ble future extension of the framework presented in this paper
would be to modify the reward function to reflect the expected
information value of the reachable nodes.
In addition, here we assume that events of interest are

equally likely to occur at any time. In many applications, event
occurrence is non-random. Consider again a bridgemonitoring
application: Traffic loading shows distinct temporal peaks. By
incorporating amodel of event arrival into the reward function,
our reinforcement learning agent could learn that it is more
important to maximise coverage at certain times.
Although the reinforcement learning approach proposed in

this paper exhibits good performance once trained, training is

relatively slow. Recent work on reinforcement learning from
demonstrations (Hester et al., 2017), allows an agent to learn
from its own exploration, combined with system behaviour
under the control of an expert. Because we have access to
relatively sophisticated human created strategies, such as the
greedy agent described in this paper, this technique could help
to accelerate the agent’s learning curve.
Finally, to validate the capability and advantages of the pro-

posed approach, a case study demonstrating the performance
of a deployed sensor network in a real structural monitoring
application would be of interest. The reinforcement learning
based strategies developed in this paper are learned from inter-
action with a simulated environment. In a real deployment,
there may be inconsistencies between the simulation envi-
ronment, and the real physical environment, which decrease
the efficacy of the learned strategy. One potential avenue to
account for this issue is to use techniques from transfer learning
Taylor & Stone (2009), to efficiently fine tune the performance
of the reinforcement learning agent using observed data from
the real deployment.
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