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1. Introduction

The association between human migration and environmental conditions has received 

increasing scholarly attention in the past several years (e.g., Gray & Bilsborrow, 2012). Yet 

lacking precise geographic identifiers for household-level data can yield challenges for 

empirically modeling the migration-environment linkages. The methodological exercise 

presented here reveals important spatial non-stationarity and aggregation effects that may 

impact empirical estimates within demographic analyses. Unique socio-demographic and 

environmental data from rural South Africa are used to examine models of the migration-

environment association under increasing aggregation starting from the household level. 

Although we use the migration-environment association as illustration, lessons regarding the 

impacts of spatial non-stationarity and aggregation can likely be more broadly applied to a 

variety of socio-demographic phenomena.

1.1 Background

Demographic and socio-economic data are often collected at various levels of aggregation 

(i.e. census unit, county, village, etc.) and the structure of aggregation can pose significant 

challenges for analysis and interpretation. These challenges are referred to as the modifiable 

areal unit problem (MAUP) (Openshaw & Taylor, 1979; Flowerdew, Geddes & Green, 

2001). A primary reason for such aggregation effects is spatial autocorrelation, or pair-wise 

correlation between neighbors for a given characteristic, which can lead to bias in 

conventional statistical methods (Cliff & Ord, 1981).

As another methodological challenge, many socio-demographic processes, such as 

migration, operate at a relatively local scale (i.e., the individual or household) and ideally 

data used to examine such processes should have a spatial resolution sufficiently close to the 

scale of operation (Leyk et al., 2012a). Yet confidentiality concerns constrain the geographic 
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identifiers typically included within publicly available individual- or household-level 

microdata. Even if data are available at finer spatial resolution, social and demographic 

phenomena often exhibit spatial non-stationarity whereby model coefficients show patterns 

of spatial variation (Fotheringham, Carlton, & Brunsdon, 1996).

Combined, aggregation effects and non-stationarity complicate spatial analytical procedures 

as applied to the investigation of socio-demographic questions. The research presented here 

grapples with these challenges while taking migration-environment associations as our 

substantive focus. Using spatially explicit (GPS-measured) household-level surveillance data 

from the Agincourt Health and Demographic Surveillance Site (AHDSS) in a remote rural 

region of South Africa, we examine the implications of aggregation effects in combination 

with spatial non-stationarity by developing global and local migration models fit across 

increasing levels of simulated data granularity. Results indicate that model association 

between variables can be characterized by their behavior as data are aggregated. Some 

associations are more sensitive and lose significance at higher aggregation levels, a 

phenomenon we call operational scale sensitivity. Such sensitivity has ramifications for 

choice of variables, model performance and substantive interpretation when working with 

aggregated data.

1.1 MAUP in the Context of Migration Modeling

The delineation of aggregated units in demographic surveys is typically an administrative 

and non-data driven process. Therefore, any analytical procedure, spatial or aspatial, will be 

influenced and confounded by the aggregation’s nature (Openshaw, 1983). MAUP, and its 

inherent zoning and scale effects, can be seen as the geographical manifestation of 

ecological fallacy which occurs if inferences from an aggregated analysis are assumed to 

pertain to individuals (Wong, 1995; Waller & Gotway, 2004). A methodological challenge 

logically arises when research questions target the individual-level, which consequently 

defines the operational scale of the process of interest, but researchers have only group-level 

data (Piantadosi, Byer, & Green, 1988). In this way, there exists a mismatch between the 

operational and analytical scales.

Focusing on demographic data, the MAUP’s impact on correlation coefficients and 

regression models has been studied extensively at nested aggregation levels (i.e. census 

blocks, block groups and tracts) (Openshaw & Taylor, 1979; Wong, 2009). Yet typically 

only a few aggregation levels are available for analyses. In response, some researchers have 

generated synthetic datasets of different granularities as opposed to using observed data 

(Amrhein, 1995; Steel and Holt, 1996). Reynolds & Amrhein (1998) show that synthetic 

data allow for more control and systematic understanding of aggregation effects. Research 

into the MAUP’s impact on regression analysis reveal that models estimated at different 

levels of aggregation can yield coefficient estimates that fluctuate significantly and even 

exhibit changes in the estimated direction of effect (Fotheringham & Wong, 1991).

More recent research has addressed effects of random aggregation using observed data 

(Flowerdew, Geddes & Green, 2001), analytical bias associated with group-level compared 

to individual-level synthetic data (Pawitan & Steel, 2006), and, specific to this research 

paper, scale dependence of population-environment interactions (Walsh, Crews-Meyer, 
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Crawford & Welsh, 2004). These studies suggest that estimated relationships between 

demographic and environmental variables fluctuate across different analytical scales.

In all, the effects of the MAUP on analyses of spatially aggregated demographic data are 

relatively well understood (Wong, 2009). Even so, there remains a gap with regard to 

understanding the impacts of mismatch between the operational and analytical scales when 

aggregating from a finer-scale phenomenon such as individual- or household-level 

migration. Indeed, many demographic processes are resultant of decision-making at a 

relatively fine scale – consider fertility decision-making as another example. As such, local 

contextual influences are logically of importance, and contextual data at finer spatial 

resolutions would support analysis at the operational scale. Unfortunately, socio-

demographic individual and household level data are commonly aggregated to coarse spatial 

resolution due to confidentiality concerns (e.g., PUMAS with a minimum of 100,000 

people). This is likely one main reason why the impact of the MAUP on migration modeling 

and migration-environment associations remains widely unrecognized and understudied. 

Putting “people into place” is challenged by lack of precise geographic identifiers (Entwisle 

2005).

1.2 Spatial Non-Stationarity in Migration Models

Spatial non-stationarity within model associations is also receiving attention within 

population-environment modeling. Associations exhibit spatial non-stationarity when the 

relationship between variables is dependent on, and varies with, observation locations. The 

concern here is that the associations themselves spatially vary and are, therefore, not 

stationary (i.e., not constant). The traditional aspatial regression model, referred to as a 

global model here, is generally fit using all observations (or units of analysis). A global 

model returns one set of coefficient estimates and, therefore, is unable to reveal spatial non-

stationarity.

In contrast, a local model estimates a set of coefficients for each observation based on a 

user-defined neighborhood of nearby observations. Local estimators have been proposed as a 

means of examining non-stationarity in model associations, illustrating that spatial effects 

can confound global regression models (Hastie & Tibshirani, 1993; Fotheringham, Brunsdon 

& Charlton, 2000). A number of local estimators have been developed, including varying 

coefficient models (Hastie & Tibshirani, 1993), local regression (Loader, 1999), and 

geographically weighted regression (GWR) (Fotheringham, Brunsdon & Charlton, 2002). 

This family of local estimators modifies the traditional regression equation by applying a 

spatial weights matrix (i.e., a distance decay function) to neighboring observations. A 

separate regression is then run for each observation.

While GWR is the most commonly used local estimator, critiques argue that the approach 

lacks robustness for statistical inference and should only be used for exploratory purposes 

(O’Sullivan & Unwin, 2010, p. 233). In addition, GWR may induce multicollinearity 

(Griffith, 2008; Wheeler & Tiefelsdorf, 2005) and artificial patterns of spatial heterogeneity 

in coefficient surfaces (Cho, Lambert & Chen, 2010) as a result of the spatial weights matrix 

applied to overlapping neighborhoods.

Maclaurin et al. Page 3

Trans GIS. Author manuscript; available in PMC 2017 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methodological advancements continue including the development of spatial interaction 

models for origin and destination effects (LeSage & Llano, 2006), which extends early work 

by Schelling (1971) on spatial autocorrelation in neighborhood dynamics. Recent research 

on spatial filtering, which decomposes data into a trend component, a spatially structured 

component and random noise, has been applied in linear regression models (Tiefelsdorf & 

Griffith, 2007; Griffith & Chun, 2014). Yet questions remain for the field at-large including 

the most appropriate means of defining the kernel for spatial weighting (Berk, 2008; Leyk et 

al., 2012b). Tiefelsdorf (2000, p. 23) argues that spatial structure is a function of the strength 

of spatial relationships. If these relationships in the process under examination are weak, the 

spatial structure is trivial and therefore should not be explicit in the modeling framework. 

Alternatively, if these relationships are strong and a spatially explicit model is appropriate, 

spatial weighting can confound the impacts of spatial structure for the reasons described 

above.

With specific application to migration-environment associations and in response to the 

concerns of spatial weighting in local estimators, an alternative modeling framework has 

been proposed allowing for more robust analysis and diagnostics (Leyk et al., 2012a). This 

framework produces distributions of local coefficient estimates without the use of a spatial 

weights matrix by implicitly incorporating spatial structure, characterized by the existence 

of spatial non-stationarity of model associations. In our earlier research, we chose this 

method over those discussed above for its overall simplicity and lack of assumptions about 

the data’s spatial structure.

Using this framework, traditional, aspatial linear regression models were run on local extents 

defined by a spatially-constrained random region permutation. This procedure was repeated 

hundreds of times to produce a robust set of coefficient estimates for each observation. 

When modeling outmigration at the household level, this local estimator provided improved 

model fit compared to a global model while accounting for spatial non-stationarity without 

the shortcomings of spatial weighting (Leyk et al., 2012a).

Consideration of spatial non-stationarity within the migration-environment association is not 

only of methodological interest. In many rural communities across the globe, daily life and 

decisions about livelihoods are closely tied to very local environmental conditions and may, 

therefore, actually be characterized by important spatial variation. Such variation is not 

revealed within global regression models. In South Africa, for example, case studies in two 

rural villages demonstrate that 70% of households made use of non-timber forest products, 

such as fuelwood, wild fruit, and edible herbs, during times of shortage and crisis 

(Paumgarten & Shackleton, 2011). Even in rural South African villages with readily 

available electricity, over 90% of households use fuelwood as a primary energy source due 

to the cost of electricity and appliances (Twine, Moshe, Netshiluvhi & Siphugu, 2003). 

However, the proximate availability of these natural resources varies at regional and local 

scales and even for households within the same village. Consequently, local shifts in the 

availability of natural resources influence households differently and may result in livelihood 

adaptations that concomitantly exhibit spatial variation. One important livelihood adaptation 

is temporary or permanent migration by individual household members (Bilsborrow, 2002; 

McLeman & Hunter, 2010). Brought together, these variations in natural resources 
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availability and livelihood adaptations such as migration can yield spatial variation in the 

migration-environment association. Further, this spatial non-stationarity can be anticipated 

to interact with aggregation effects to additionally confound analyses and influence 

estimated coefficients.

While research on migration-environment associations has burgeoned over the past several 

years, few studies consider the impacts of spatial variability or data aggregation, not to 

mention their potential interaction and/or combined influence. Making use of detailed 

georeferenced (i.e., GPS measured) demographic data at the household level, this research 

examines precisely this issue.

We build on recent research demonstrating the importance of local migration models and 

non-stationarity (Leyk et al., 2012a), through examination of aggregation effects in both 

global and local statistical models as compared to the operational scale (i.e., the household 

level). Exploration of interactions between aggregation and non-stationarity, as related to 

migration-environment associations, also fills an important knowledge gap in the spatial 

sciences.

2. Data and Preprocessing

This study employs the 2007 household census conducted at the Agincourt HDSS in a rural 

region of northeastern South Africa. The study site is operated by the MRC/Wits Rural 

Public Health and Health Transitions Research Unit. The surveillance dataset consists of 

9,374 geo-referenced households in 21 villages, with data representing 38,118 individuals. 

We conceptualize the household level as the operational scale (i.e., at which the process of 

interest takes place) since temporary migration tends to be a household, rather than an 

individual, decision in this region (Collinson, Wolff, Tollman & Kahn, 2006).

The study site is characterized by a decreasing west-east rainfall gradient resulting in 

substantial spatial variation in natural resource availability. Further, households within the 

region tend to rely heavily on proximate natural resources collected from communal 

landscapes both for sustenance and for raw materials to generate goods for sale (e.g., 

baskets, mats) (Hunter, Twine & Patterson, 2007; Twine, Moshe, Netshiluvhi & Siphugu, 

2003). Finally, approximately 20 percent of residents annually engage in circular, temporary 

migration in which a migrant does not permanently relocate but moves between home and 

workplace with various regularity (Collinson et al., 2006; Collinson, Wolff, Tollman & 

Kahn, 2006). Detailed demographic and spatial data combined with information on local 

environmental conditions provide a unique modeling opportunity to study the combined 

effects of aggregation and spatial non-stationarity in the migration-environment association.

The models estimate the number of temporary migrants (tempmign) as the outcome. A 

temporary migrant is defined as 15+ year old household member who spends more than six 

months in a year away from home while remaining linked to the household.

We focus on the association between temporary migration and locally available natural 

resources. A “greenness” variable was created from MODIS-derived Normalized Difference 

Vegetation Index (NDVI) surfaces by first creating a 2000-meter buffer around each 
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household, informed by an understanding of the distance residents tend to travel to collect 

natural resources (Giannecchini et al., 2007). The area within village boundaries was 

excluded from these buffers since it is not used for natural resource collection. The sum of 

NDVI pixel values within the buffer (outside of villages) was divided by the number of 

households inside the buffer, representing an approximation of per household availability of 

communal natural resources.

Although our analytical focus is the migration-environment association, prior migration 

scholarship, in addition to our earlier modeling efforts with Agincourt data, suggest the 

importance of education and socio-economic status (SES) as migration correlates (Hunter et 

al., 2014; White & Lindstrom, 2006). As such, we also include indicators of total years of 

education for all household members (HHeduc) as well as SES. In rural settings, monetary 

and non-monetary forms of income are common, and are subject to seasonal fluctuation 

(Montgomery et al., 2000). Thus, an additive index is used to reflect SES which includes 

household assets important to local livelihoods and reflective of livelihood security. These 

include five major asset categories: modern assets (e.g., cell phone and automobile 

ownership), livestock assets, energy sources, dwelling material, and, water and sanitation 

(Agincourt HDSS, 2009).

Also based on prior migration scholarship (e.g. White & Lindstrom, 2006), the following are 

included as control variables at the household-level: female head (Boolean variable—

femhead), married head (Boolean variable—marhead), proportion working (HHwork), 

proportion male (mascprop), dependency ratio (members over 65 years divided by members 

between 15–65 years—deprop), and household size (HHpop). Household size is modeled as 

an independent variable rather than an exposure variable (i.e., an offset).1 No significant 

collinearity was found among the independent variables using the variance-inflation factor 

(VIF) as a diagnostic tool (Hill & Adkins, 2007).

3. Methods

Our aim is to provide a modeling framework for comparatively investigating aggregation 

effects on local and global regression models of outmigration. The local model (described in 

more detail below) has been adjusted and extended from a method developed by the authors 

(Leyk et al., 2012a).

As a point of reference, both the local and global models are first computed at the household 

level, referred to as the baseline. As discussed above, this is the operational level, the scale at 

which the process of interest—household temporary outmigration—predominantly operates. 

Using the positional measurements, household data are systematically aggregated to spatial 

units of increasing size. These aggregations are then used as analytical units in estimating 

outmigration with both global and local models. This comparative approach allows 

1While larger households have more potential to send a migrant, the relationship is not linear (or log-linear). There is a moderate 
correlation between the number of temporary migrants and household size (0.58) which, although substantial, we argue does not 
represent an exposure variable. Use of an offset fixes the coefficient to 1 and forces a log-linear relationship with the dependent 
variable. Therefore we simply control for household size and estimate the regression coefficient.
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examination of model behavior for aspatial global models versus local models which 

account for spatial non-stationarity across increasing aggregation levels.

3.1 Creating aggregated analytical units

The aggregation algorithm is based on a so-called binary partition tree scheme which 

recursively divides the household-level data (household locations) into subregions until each 

of these regions meets a size criterion defined by the number of households. Starting with 

the original household locations (i.e., the complete set of point features), the algorithm 

randomly chooses two seed points (household locations) and then groups all remaining 

households to one of the two seed points based on minimum (Euclidean) distance. This 

creates two spatially contiguous regions which are each then subdivided again into two new 

contiguous regions using the same procedure. This procedure is repeated until each of the 

resulting subregions has a number of households that is within a set range of thresholds. The 

lower threshold determines the minimum number of households for each region, and the 

upper threshold is twice this minimum, allowing the size of regions to vary in a way that is 

similar to an administrative unit (e.g., a rural community or a census unit). While other 

random regionalization algorithms are available (e.g. Rey & Anselin, 2010), this approach 

was developed for computational efficiency and because of the partitioning scheme’s 

simplicity.

Nine levels of aggregation are examined: level one has regions (analytical units) with 2 to 4 

households; level two has regions with 3 to 6 households, and so forth. Level nine has 

regions with 10 to 20 households. Aggregating to regions larger than those at level nine with 

this dataset would result in too few sample units on which to run the local model. Nine 

aggregation levels are sufficient in this study, as the main goal is to better understand how 

aggregation impacts the analysis in comparison to the household level (the baseline). 

Observing such fine aggregation steps is only possible if household level spatial identifiers 

are available.

The groups of households in the determined subregions represent the new units of analysis at 

each aggregation level and are spatially referenced by the region’s centroid. Attributes of the 

households within one region are aggregated by calculating the mean for HHeduc, HHwork, 

deprop, mascprop, SES and Greenness, and the sum for tempmign, HHpop, femhead, and 

marhead. This aggregation procedure is repeated 500 times for each level (one through nine) 

to allow robust comparisons of the models described below.

Note that each simulation at a given aggregation level produces a unique outcome of 

analytical units (regions) due to the random choice of seed points for the regions. Thus the 

study area is partitioned differently for each simulation, and therefore locations of resulting 

centroids do not correspond. Accordingly, the summarized attributes for the aggregated units 

vary across the 500 simulations.

Sensitivity to the number of simulations was examined and we found that beyond 300 

simulations, the overall results did not vary significantly. The coefficient of variation is less 

than 10% for variables across the nine aggregation levels, and did not change significantly 

from 300 to 500 simulations. Local neighborhoods created from a spatially constrained 
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permutation has a much smaller number of possible configurations than an unconstrained 

simulation, and therefore 500 simulations were considered sufficient to generate robust 

results within this modeling framework.

3.2 Statistical modeling

For the non-aggregated data (baseline) and for each of the 500 simulations at each 

aggregation level (one through nine), we estimate both global and local regression models 

using the same variables. This allows direct comparison of results and the corresponding 

residual surfaces across aggregation levels, as well as between global and local models. Our 

dependent variable is the count of temporary migrants per household or per spatially 

aggregated unit of analysis (groups of households) which follows a Poisson distribution.

The data were tested at all levels of aggregation for overdispersion using the log-likelihood 

ratio test implemented in R statistical software for count data by Jackman (2012). The log-

likelihoods of a negative binomial model and a Poisson model were compared to test the 

validity of the assumption of equal conditional mean and variance for a Poisson model 

(Cameron & Trivedi, 1998). The log-likelihood ratio test indicated that at each aggregation 

level, a Poisson model was preferred over a negative binomial model. The data were also 

tested for zero-inflation using the Vuong likelihood ratio test (Vuong, 1989) against a 

Poisson model. At all levels of aggregation the test rejected the zero-inflated Poisson model 

for the standard Poisson model with a significance level of 0.05. Thus a Poisson Generalized 

Linear Model (GLM) with the standard log link function is employed in the global and as 

well as in the local model (described below):

where μ̂i is the expected value of the dependent variable at location i, xi is a vector of 

predictor variables and β is a vector of coefficient estimates. Deviance (log-likelihood) 

residuals of the Poisson GLM are asymptotically normal, allowing for robust analysis of 

error surfaces for spatial autocorrelation using Moran’s I (Lin & Zhang, 2007). In a Poisson 

model, the deviance residual for location i is calculated as:

where yi is the dependent variable and μ̂ is the same as above (Agresti, 2002).

We assess spatial autocorrelation of the deviance residuals from both the global and local 

models using a permutation test for Moran’s I (Cliff & Ord, 1981). Specifically, we use a 

Monte Carlo test based on 999 random permutations under the asymptotic normality 

assumption of Poisson deviance residuals and normalized Moran’s I statistics (i.e., z-scores) 

are reported. The implementation of a permutation test on linear regression residuals is 

directly applicable to deviance residuals from a GLM (Lin & Zhang, 2007). To further 
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investigate the spatial structure of error surfaces, local indicators of spatial association 

(LISA) (Anselin, 1995) are used to identify local clustering of high or low deviance 

residuals. Spatial autocorrelation and local clusters in model residuals often indicate 

systematic over- or under-prediction resulting in non-random error structures.

3.3 Global statistical models under aggregation

The global Poisson GLM is run for each of the 500 simulated partitions at each aggregation 

level (one through nine). Coefficient estimates, corresponding p-values, Moran’s I for 

residuals, and the number of statistically significant LISA clusters (p<0.05) from residuals 

are recorded. Thus, for each level of aggregation, 500 sets of global model results are stored. 

The results are then summarized by aggregation level providing: average coefficients and 

their standard deviations, the proportion significant for each variable (p<0.05), average 

Moran’s I and the average number of significant local clusters in model residuals derived 

from LISA analysis. The global model is run only once on the non-aggregated data 

(baseline).

3.4 Local statistical models under aggregation

The local modeling for temporary outmigration is based on a random region permutation 

approach, similar to the aggregation procedure. The algorithm randomly generates 

subregions and a Poisson GLM is fitted to each of these subregions thus allowing for robust 

estimation of existing statistical relationships at local geographic scales (extents). The same 

equation used in the global model is used applied here to a local neighborhood of 

observations, and then repeated hundreds of times. This allows direct for comparison with 

the global model results, providing better insight into the impacts of aggregation and spatial 

non-stationarity.

One important advantage of this random spatial permutation approach is model simplicity. 

There are no assumptions about the data’s underlying spatial structure, and the model is 

therefore more parsimonious than commonly used spatial models (i.e. GWR, spatial lag or 

spatial error models). Thus spatial autocorrelation of model associations is implicit rather 

than assumed and structured into the algorithm. Furthermore, the GLM framework allows 

for extensive model diagnostics.

At the baseline and for each level of aggregation (and herein for each of the 500 simulated 

partitions), spatially contiguous subregions were randomly generated using the same binary 

partition tree algorithm described above for aggregation although with a different intention. 

We now use the resulting subregions as geographic extents across which local models are fit 

on the units of analysis (i.e., households at the baseline level and aggregated units (groups of 

households) at all other levels). To ensure sufficiently large populations similar in size at 

each aggregation level, the subregions generated for local modeling are constrained to 

between 100 and 200 analytical units. These thresholds are based on preliminary analysis to 

minimize prediction error and optimize the Akaike Information Criterion (AIC) while 

maintaining sufficient degrees of freedom for statistical inference. To illustrate the local 

modeling procedure, when analyzing the baseline data, units (households) are randomly 

partitioned into spatially contiguous regions containing between 100 and 200 units. A 
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Poisson GLM is run on the units (households) within each region. The coefficient estimates, 

their corresponding p-values and model residuals are stored for all units in each region. This 

procedure is repeated 500 times, each time randomly generating a different partition 

(permutation) of regions for local modeling. Then for each unit, the mean is calculated 

across all 500 permutations for the coefficient estimates of each independent variable and for 

the model residuals. The proportion significant for each variable (p<0.05) is calculated and 

recorded for each unit across all permutations. Thus the results of the 500 local model runs 

are summarized for each unit (household). Testing for sensitivity to the number of 

simulations of the local model found that after 350 permutations, variation in results was not 

statistically significant. This local modeling procedure is then repeated at each of the nine 

levels of aggregation. However, in each case after the baseline, the units of analysis are not 

households but the aggregated units (i.e., groups of households) as described above. Thus 

subregions created for local modeling are constrained to 100–200 units of analysis, which, 

for instance, are aggregates of 10–20 households for aggregation level nine. As such, the 

number of subregions created across the study area for local modeling decreases with 

increasingly aggregated units of analysis. The local GLM permutation model applied at the 

household level is now conducted on the corresponding aggregated units of analysis for each 

of the 500 simulated aggregations at each of the nine aggregation levels. This framework 

results in 2.25 million local model permutations for levels one through nine (plus 500 local 

model runs for the baseline), emphasizing the importance of high degrees of efficiency.

Our overall objective is to contrast results from the global and local models at each level of 

aggregation. This detailed comparison will allow for improved understanding of the impacts 

of aggregation and spatial non-stationarity as they manifest in migration-environment 

associations as well as with other important migration predictors.

4. Results

4.1 Global model results

As shown in Table 1, the coefficient estimates for Greenness remain relatively stable, 

positive, and are statistically significant across all levels—indicating that in a global model 

proximate natural resources remain a strong predictor of temporary migration and stable 

under various levels of aggregation. This is in line with prior work in the Agincourt HDSS 

and elsewhere suggesting assets in the form of natural resources provide a foundation from 

which livelihood migration may occur – the “natural capital hypothesis” (Gray, 2009; Hunter 

et al., 2014).

Similar to the migration-environment association, the coefficients for HHeduc are, on 

average, relatively consistent and highly significant across simulations for each aggregation 

level. The positive value is also in line with substantive migration research linking higher 

education to higher migration probabilities (White & Lindstrom, 2006).

However, the mean coefficient values for SES decrease substantially with increasing 

aggregation and, on average, are not statistically significant (p<0.05) at level three or 

beyond. These shifting results indicate that SES is a significant predictor only at local scales, 

close to the operational household level. Substantively, SES exhibits a positive association 
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with temporary outmigration consistent with research in some regions that demonstrate the 

necessity of household assets to support migration’s costs (e.g., Gray & Mueller, 2012). 

Interestingly, just as the variable loses explanatory power at increasing aggregation within 

the Agincourt HDSS, the positive substantive association is also not consistent across 

regional scales in rural South Africa.

In all, Greenness and HHeduc are stable under aggregation and do not suffer from 

‘operational scale sensitivity’ in the global model. In contrast, the observed instability of 

SES raises concern when making inferences from statistical models based on aggregated 

data, and could lead researchers to omit variables from their analysis which are indeed 

important at the operational level. This phenomenon can be viewed as related to MAUP as a 

geographical manifestation of ecological fallacy (Waller & Gotway, 2004).

4.2 Local model results

To visualize local model results across all 500 simulations at each aggregation level, the 

point vector features (household locations at baseline and centroids of aggregated analytical 

units at all other levels) were converted to a raster representation with 30m resolution. Such 

a data reduction and visualization strategy was necessary since the modeling process 

resulted in extremely large datasets. For example, running 500 simulations at level one alone 

resulted in 1.6 million points. For each independent variable, mean coefficients and 

proportions significant were calculated from all points inside a given raster cell. Hence this 

conversion process results in surfaces of regression coefficients and proportions significant 

for each variable. Coefficient estimates and proportions significant of Greenness, HHeduc, 

and SES are shown for the baseline level and three aggregation levels in Figs. 1 through 6 as 

they represent the trends across all nine aggregation levels.

The Greenness coefficient surfaces show the highest spatial variation at the baseline level 

(Fig. 1), yet the most rapid smoothing process under aggregation. This leads to a 

homogenized coefficient surface by level five, which changes little by level nine. This trend, 

however, is not mirrored by the surfaces of the proportion significant (Fig. 2), which present 

a smoothing process that is more stable than the other two variables discussed below. 

Specifically, note that areas of high proportion significant remain while coefficients 

approach zero and coefficient surfaces become rather spatially homogenous overall.

The surfaces of HHeduc coefficient estimates (Fig. 3) and the corresponding proportions 

significant (Fig. 4) are highly correlated as can be seen in the spatial distributions (i.e. highly 

positive and highly negative local model coefficients correspond spatially with high 

proportions significant). Pockets of high coefficient values and high proportions significant 

indicate a considerable degree of spatial variation across the study area in model 

performance indicative of spatial non-stationarity in statistical associations. In other words, 

the migration-HHeduc association varies substantially across the Agincourt HDSS.

In addition, the results for HHeduc reveal significant changes with increasing aggregation in 

the surfaces reflecting coefficient estimates and proportions significant. Changes in the 

coefficient sign occur in a few regions between the baseline and level one (see Fig. 3). A 

general smoothing effect is apparent, in addition to a diminished pattern of spatial non-
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stationarity in the coefficient surfaces with increasing aggregation (see Fig. 3). This leads to 

a rather regional phenomenon at level nine (bottom right panel). While this phenomenon is 

expected from the local model under aggregation, there is an important substantive shift with 

areas of high positive significant coefficients at the baseline changing to areas of negative 

non-significant coefficients at level nine. This is accompanied by an increasingly noticeable 

north-west to south-east gradient in coefficient values and proportions significant with 

increasing aggregation. Spatial non-stationarity of model associations is greatly reduced in 

the aggregation process, leading rapidly towards a homogenous, global trend.

For SES, the patterns are similar to HHeduc with a few important differences. Very local 

pockets of positive high-valued coefficients (Fig. 5) overlap with the highest proportions 

significant (Fig. 6), as seen with HHeduc. However, the smoothing process of spatial non-

stationarity in the local model associations is stronger by level nine (see Fig. 5). Both 

coefficient and proportion significant surfaces show a stronger smoothing effect than 

HHeduc indicating less stability of the surface at higher levels of aggregation. In contrast to 

the surfaces related to HHeduc, SES shows only a weak gradient at level nine across the 

study site. The decrease in the range of coefficient estimates and the low proportions 

significant indicate that SES is less stable and has lower explanatory power across 

aggregation levels compared to HHeduc. This is in line with the global results.

4.3 Residual analysis

Spatial autocorrelation of model residuals measured by the Moran’s I z-scores is 

systematically lower for local models as compared to global models (Table 2). A trend of 

increasing Moran’s I is seen in both cases suggesting that spatial autocorrelation is more 

severe in the error surfaces at higher aggregation levels. The Moran’s I statistic was 

significant (p<0.05) for all model runs on all aggregation levels for both global and local 

models.

The trend of spatial structure is similar between global and local model residuals across 

aggregation levels, although with systematically lower numbers of statistically significant 

LISA clusters for the local model (Table 2). This indicates that local models show lower 

degrees of local clustering in their residuals, which has been explored more extensively with 

this dataset in recent research (Leyk et. al., 2012a).

5. Discussion and Concluding Remarks

The association between human migration and environmental conditions has received 

increasing scholarly attention in the past several years (e.g., Gray & Bilsborrow, 2012). 

Much of this attention has been driven by concern with the potential effects of climate 

change on livelihood viability and migration as a possible adaptation (e.g., Adamo & 

Izazola, 2010). The research presented here offers methodological insight from a 

geographical perspective for researchers examining these migration-environment linkages. 

Specifically, the methodological exercise reveals important spatial non-stationarity and 

aggregation effects that may influence and bias statistical inference.
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The global models presented here shed light on aggregation effects in statistical migration 

models if spatial non-stationarity is not considered. Local natural resource availability 

(Greenness) remains an important positive predictor of temporary migration even at very 

high levels of aggregation, as does the household educational level (HHeduc). Yet 

socioeconomic status (SES) reveals significant predictive power only at scales close to the 

operational scale, the household. In this way, empirical research examining the migration-

environment association at higher levels of aggregation may miss important relationships 

that tend to reveal only closer to the operational scale.

Yet, once spatial non-stationarity is accounted for through the use of local models, the 

associations with migration evidenced by natural resources and household education become 

less similar. In general, this indicates that natural resource availability is more consistently 

linked with outmigration across the study site, while the association between household 

education and migration exhibits more geographic variability. As represented in terms of 

predicted spatial coefficient surfaces, the Greenness variable presents a much stronger 

smoothing process under aggregation in which local model associations rapidly approach a 

relatively homogenous surface. This is likely a response to the underlying spatial structure of 

the non-aggregated variables – the Greenness variable is derived using a distance measure 

and is therefore highly spatially autocorrelated by construction; neighbors have very similar 

availability of natural resources. On the other hand, the HHeduc variable presents a 

heterogeneous spatial pattern, while the SES variable falls somewhere in between (higher 

spatial autocorrelation than HHeduc yet much lower than Greenness). This is confirmed by 

the Moran’s I values for the raw non-aggregated variables of 0.16, 0.18 and 0.99 for 

HHeduc, SES and Greenness, respectively.

The results from the local models allow for more in-depth interpretations: increasing levels 

of aggregation reduce the effects of spatial non-stationarity in the local model relationships. 

While this is an expected outcome, our study provides important quantitative evidence of a 

decrease in local variation which can result in an overall smoothing of coefficient surfaces 

with either low (e.g., SES) or higher proportions significant (e.g., Greenness) or in a rather 

regional gradient of coefficient values and their proportions significant (e.g., HHeduc).

The MAUP’s aggregation effect has been extensively examined in the spatial analysis of 

demographic data, but mostly at higher levels of aggregation. Researchers rarely have the 

opportunity to compare results from different aggregation levels to the operational scale. In 

this study, household level demographic survey data containing geographic coordinates from 

a rural area in South Africa are used to examine effects of aggregation on models of 

temporary outmigration in comparison to the operational scale of the process of interest, the 

household-level. Moreover this study examined aggregation effects within two different 

model frameworks, a global and a local approach. By including a local model it was possible 

to evaluate interactions between aggregation effects and local migration-related associations 

while accounting for inherent spatial non-stationarity. Such interactions have not been 

investigated to-date.

Overall, the results reveal that specific migration predictors can show very different behavior 

in both global and local models under aggregation possibly due to their underlying spatial 
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distribution at the household level, as well as the way they are constructed or derived. These 

observations emphasize that model relationships can be influenced by “operational scale 

sensitivity.” Such sensitivity may influence the choice of variables to be included, as well as 

a model’s performance, estimated coefficients and substantive interpretation.

Future research will focus on the substantive dimension of these findings which could lead 

to the formulation of more general interpretations regarding the role of different predictive 

variables in migration models at various spatial scales. In the longer term, this modeling 

framework will be tested for other demographic processes of interest in order to examine its 

more general usability.
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Figure 1. 
Spatial distribution of coefficient estimates for Greenness from local models computed for 

household level (baseline) and nine aggregation levels (levels one, five and nine shown).

Maclaurin et al. Page 17

Trans GIS. Author manuscript; available in PMC 2017 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Spatial distributions of the proportions significant of the coefficient estimates from local 

models for the Greenness variable across different levels of aggregation as shown in Figure 

1.
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Figure 3. 
Spatial distribution of coefficient estimates for household education (HHeduc) from local 

models computed for household level (baseline) and nine aggregation levels (levels one, five 

and nine shown).
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Figure 4. 
Spatial distributions of the proportions significant of the coefficient estimates from local 

models for the HHeduc variable across different levels of aggregation as shown in Figure 3.
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Figure 5. 
Spatial distribution of coefficient estimates for socio-economic status (SES) from local 

models computed for household level (baseline) and nine aggregation levels (levels one, five 

and nine shown).
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Figure 6. 
Spatial distributions of the proportions significant of the coefficient estimates from local 

models for the SES variable across different levels of aggregation as shown in Figure 5.
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