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Abstract

ADCN: An Anisotropic Density-Based Clustering Algorithm for Discovering Spatial

Point Patterns with Noise

by

Gengchen Mai

Density-based clustering algorithms such as DBSCAN have been widely used for spa-

tial knowledge discovery as they offer several key advantages compared to other clustering

algorithms. They can discover clusters with arbitrary shapes, are robust to noise and do

not require prior knowledge (or estimation) of the number of clusters. The idea of using

a scan circle centered at each point with a search radius Eps to find at least MinPts

points as a criterion for deriving local density is easily understandable and sufficient for

exploring isotropic spatial point patterns. However, there are many cases that cannot

be adequately captured this way, particularly if they involve linear features or shapes

with a continuously changing density such as a spiral. In such cases, DBSCAN tends to

either create an increasing number of small clusters or add noise points into large clus-

ters. Therefore, in this paper, we propose a novel anisotropic density-based clustering

algorithm (ADCN). To motivate our work, we introduce synthetic and real-world cases

that cannot be sufficiently handled by DBSCAN (and OPTICS). We then present our

clustering algorithm and test it with a wide range of cases. We demonstrate that our

algorithm can perform as equally well as DBSCAN in cases that do not explicitly benefit

from an anisotropic perspective and that it outperforms DBSCAN in cases that do. We

show that our approach has the same time complexity as DBSCAN and OPTICS, namely

O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementa-

tion and test the runtime over multiple cases. Finally, we apply DBSCAN, OPTICS, and

viii



ADCN to the task of extracting urban areas of interest (AOI) from geotagged photos in

six cities. Visual comparison shows that, comparing to DBSCAN and OPTICS, ADCN

is inclined to extract AOIs with linear shapes which follow the underline road networks.

ADCN also turns out to connect clusters when the spatial distribution of them shows

similar directions.
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Chapter 1

Introduction and Motivation

Cluster analysis is a key component of modern knowledge discovery whose objective is to

maximize the intra-cluster similarity while minimizing the inter-cluster similarity at the

same time. The objects as a basic analytic unit can be anything whose attributes can

be quantified, including geographic footprints from social media platforms [1, 2, 3, 4],

human activity traces [5], places, documents [6, 7], and so on. Because of the domain

independent definition of ”objects” in cluster analysis, it has been widely applied to data

analysis tasks from many research disciplines and is widely considered a key technique

used for reducing dimensionality, identifying prototypes, cleansing noise, determining

core regions, and segmentation.

A wide range of clustering algorithms have been proposed and implemented over the

last decades to achieve the objective of clustering analysis from different perspectives.

Common examples include DBSCAN [8], OPTICS [9], K-means [10], K-medians [11],

ASCDT [12], and Mean Shift [13]. These techniques often yield different clustering re-

sults for the same data due to differences in the underlying understanding of what should

be clustered and how. K-means and K-medians, for instance, first find representatives

for each cluster and update them as well as the cluster memberships of each object by

1



Introduction and Motivation Chapter 1

minimizing the distance between cluster representatives and other objects in the same

cluster. Hence, detected clusters will have spherical shapes with similar sizes. Both tech-

niques also have no notion of noise as each object belongs to some cluster. In contrast,

DBSCAN, OPTICS or other density-based clustering algorithms try to find clusters in

which the density of objects is larger than a threshold. The resulting clusters can have

arbitrary shapes and varied sizes but with similar or homogenous object densities. Noise

is defined as objects in low density regions. Delaunay triangulation-based clustering

algorithms, like ASCDT [12], find clusters based on spatial proximity between objects

defined via Delaunay triangulations. due to different distance metrics (Delaunay trian-

gulation based distance metrics), ASCDT can discover clusters of complicated shapes

and non-homogeneous densities in a spatial database. However, Delaunay triangulation

based clustering algorithms cannot be easily scaled up to a large spatial dataset because

of the high time complexity for computing the triangulation.

Many clustering algorithms including all algorithms we discussed above depend on

distance as their main criterion [14]. They assume isotropic second-order effects (i.e., spa-

tial dependence) among spatial objects thereby implying that the magnitude of similarity

and interaction between two objects mostly depends on their distance. However, the gen-

esis of many geographic phenomena demonstrates clear anisotropic spatial processes. As

for ecological and geological features, such as the spatial distribution of rocks [15], soil

[16], and airborne pollution [17], their spatial patterns vary in direction [18]. Similarly,

data about urban dynamics from social media, the census, transportation studies, and so

forth, are highly restricted and defined by the layout of urban spaces, and thus show clear

variance along directions. To give a concrete example, geo-tagged images be it in the

city or the great outdoors, show clear directional patterns due to roads, hiking trails, or

simply for the fact that they originate from human, goal-directed trajectories. Isotropic

clustering algorithms such as DBSCAN have difficulties dealing with the resulting point

2



Introduction and Motivation Chapter 1

patterns and either fail to eliminate noise or do so at the expense of introducing many

small clusters. One such example is depicted in Figure 1.1. Due to the changing den-

sity, algorithms such as DBSCAN will classify some noise, i.e., points between the spiral

arms, as being part of the cluster. To address this problem, we propose an anisotropic

density-based clustering algorithm.

Figure 1.1: A spiral pattern clustered using DBSCAN. Some noise points are indicated
by red arrows.

More specifically, the research contributions of this paper are as follows:

• We introduce an anisotropic density-based clustering algorithm (ADCN 1). While

1This paper is based on the short paper [19] and the paper [20]. It also adds an open source imple-

3
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the algorithm differs in the underlying assumptions, it uses the same two parameters

as DBSCAN, namely Eps and MinPts, thereby providing an intuitive explanation

and integration into existing workflows.

• We motivate the need for such algorithm by showing 12 synthetic and 8 real-world

use cases and each with 3 different noise definitions modeled as buffers that generate

a total of 60 test cases.

• We demonstrate that ADCN performs as well as DBSCAN (and OPTICS) for

isotropic cases but outperforms both algorithms in cases that benefit from an

anisotropic perspective.

• We argue that ADCN has the same time complexity as DBSCAN and OPTICS,

namely O(n log n) when using a spatial index and O(n2) otherwise.

• We provide an implementation for ADCN and apply it to the use cases to demon-

strate the runtime behavior of our algorithm. As ADCN has to compute whether a

point is within an ellipse instead of merely relying on the radius of the scan circle,

its runtime is slower than DBSCAN while remaining comparable to OPTICS. We

discuss how the runtime difference can be reduced by using a spatial index and by

testing the radius case first.

• Finally, we apply ADCN, DBSCAN, and OPTICS to a 2013-2014 Flickr geotagged

photo dataset from six cities to extract urban areas of interest (AOI). Although

there is no ground truth in this task, by comparing the extracted AOIs from different

algorithms, we are able to show that the AOIs extracted from ADCN tend to have

linear shapes that follow road networks. We perform this analysis to show that

mentation of ADCN, a test environment, as well as new evaluation results on a larger sample.

4
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ADCN does not only yield different results for test cases but that these differences

have impact on cluster formation using large scale real-world data.

The remainder of the paper is structured as follows. First, in Chapter 2, we discuss

related work including variants of DBSCAN, anisotropicity of spatial point patterns, and

clustering comparison indexes. Next, we introduce ADCN and discuss two potential

realizations of measuring anisotropicity in Chapter 3. In Chapter 4, several experiments

are described to demonstrate the effectiveness of ADCN. Use cases, the development of

a test environment, and a performance evaluation of ADCN are presented in Chapter

4. Next, in Chapter 5, ADCN, DBSCAN and OPTICS are applied to a real-world

application, namely urban AOI extraction, to show the advantages of ADCN. Finally, in

Chapter 6, we conclude our work and point to directions for future work.

5



Chapter 2

Related Work

Clustering algorithms can be classified into several categories, including but not limited

to partitioning, hierarchical, density-based, graph-based, and grid-based approaches [21,

12]. Each of these categories contains several well known clustering algorithms with

their specific pros and cons. Partitioning clustering, such as K-Means, PAM [22] and

CLARANS [23], aims at finding mutually exclusive clusters of spherical shapes. It has

difficulties in handling clusters of different sizes and shapes. Hierarchical clustering,

such as single-link and complete-link, approaches build a hierarchical tree of clusters.

When there are some erroneous merges or splits during the hierarchical tree construction

process, they cannot be corrected later. Grid-based clustering segments the data space

into grid cells [24]. That means it will suffer from the common drawbacks of image

operations. Here we focus on the density-based approaches and we will review them

below.

6



Related Work Chapter 2

2.1 Density-based Clustering Algorithm

Density-based clustering algorithms are widely used in big geo-data mining and analy-

sis tasks, like generating polygons from a set of points [25, 26, 27], discovering urban areas

of interest [2], revealing vague cognitive regions [3], detecting human mobility patterns

[28, 29, 30, 31], and identifying animal mobility patterns [32].

Density-based clustering algorithms, such as DBSCAN [8], OPTICS [9], DENCLUE

[33], have many advantages over other approaches. Figure 2.1 shows the best clustering

results from K-Means and DBSCAN based on one clustering result comparison index 1.

By comparing the clustering results between these two algorithms, we can observe sev-

eral advantages of DBSCAN including: 1) the ability to discover clusters with arbitrary

shapes; 2) robustness to noise; and 3) no requirement to pre-define the number of clus-

ters. While DBSCAN remains the most popular density-based clustering method, many

related algorithms have been proposed to compensate for some of its limitations. Most

of them, such as OPTICS [9] and VDBSCAN [34], address problems arising from density

variations within clusters. Others, such as ST-DBSCAN [35], add a temporal dimension

which means the objects within each extracted cluster are approximated to each other

spatio-temporally. However, an additional temporal parameter is necessary. GDBSCAN

[36] extends DBSCAN to include non-spatial attributes into clustering and enables the

clustering of high dimensional data. NET-DBSCAN [37] revises DBSCAN for network

data by redefining the distance matrics based on network structures. To improve the

computational efficiency, algorithms such as IDBSCAN [38] and KIDBSCAN [24] have

been proposed.

1Here we use Normalized Mutual Information index which we will discuss in Section 4.
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(a) K-Means (b) DBSCAN

Figure 2.1: Clustering result comparison between K-means and DBSCAN.

2.2 Anisotropicity

All of these algorithms use distance as the major clustering criterion. They assume

that the observed spatial patterns are isotropic, i.e., that intensity dose not vary by

direction. For example, DBSCAN uses a scan circle with an Eps radius centered at each

point to evaluate the local density around the corresponding point. A cluster is created

and expanded as long as the number of points inside this circle (Eps-neigborhood) is

larger than MinPts. Consequently, DBSCAN does not consider the spatial distribution

of the Eps-neigborhood which poses problems for linear patterns.

Some clustering algorithms do consider local directions. However, most of these so-

call direction-based clustering techniques use spatial data which have a pre-defined local

direction, e.g., trajectory data. The local direction of one point is pre-defined as the

direction of the vector which is part of the trajectories with the corresponding point as

its origination or destination. DEN [39] is one direction-based clustering method which

uses a grid data structure to group trajectories by moving directions. PDC+ [40] is

another trajectory specific DBSCAN variant that includes the direction per point. DB-

8
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SMoT [41] includes both the direction and temporal information of GPS trajectories

from fishing vessel into the clustering process. Although all of these three direction-

based clustering algorithms incorporate local direction as one of the clustering criteria,

they can be applied to only trajectories data.

Many spatial data sets do not have predefined local direction information which can

show the moving directions of objects under study. However, because the underline

spatial point process is anisotropic, the spatial patterns shown by the cumulative spatial

datasets generated from this process varies in direction and demonstrates the direction

information of underline spatial point process. For example, geotagged social media

data, like Foursquare check-in data, geotagged tweets, reflects human dynamic mobilities

in/across the urban area which are highly restricted by the urban spatial structure (road

networks). So these user-generated geospatial data show a spatial pattern distributed

along road networks. Figure 2.2 shows the spatial distribution of geotagged tweets during

April 2014 in California, USA. The major road networks in California is clearly revealed

from these tweets.

Anisotropicity [18] describes the variation of directions in spatial point processes in

contrast to isotropicity. It is another way to describe intensity variation in spatial point

process other than first- and second-order effects. Anisotropicity has been studied in

the context of interpolation where a spatially continuous phenomenon is measured, such

as directional variogram [17] and different modifications of Kriging methods based on

local anisotropicity [42, 43, 44]. In this work we focus on anisotropicity of spatial point

processes. Researchers studied anisotropicity of spatial point processes from a theoretical

perspective by analyzing their realizations such as detecting anisotropy in spatial point

patterns [45] and estimating geometric anisotropic spatial point patterns [46, 47]. Here,

we study anisotropicity in the context of density-based clustering algorithms.

A few clustering algorithms take anisotropic processes into account. For instance,

9
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Figure 2.2: Geo-tagged tweets during April, 2014 in California, USA

in order to obtain good results for crack detection, an anisotropic clustering algorithm

[48] has been proposed to revise DBSCAN by changing the distance metric to geodesic

distance. QUAC [49] demonstrates another anisotropic clustering algorithm which does

not make an isotropic assumption. It takes the advantages of anisotropic Gaussian kernels

to adapt to local data shapes and scales and prevents singularities from occurring by

fitting the Gaussian mixture model (GMM). QUAC emphasizes the limitation of an

isotropic assumption and highlights the power of anisotropic clustering. However, due

to the use of anisotropic Gaussian kernels, QUAC can only detect clusters which have

ellipsoid shapes. Each cluster derived from QUAC will have a major direction. In real-

world cases, spatial pattern will show arbitrary shapes. Even more, the local direction

is not necessary the same between and even within clusters. Instead, it is reasonable to

assume that local direction can change continuously in different parts of the same cluster.

From the above discussion of different clustering algorithms, it is clear that an

10
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isotropic assumption may be inappropriate for many geographic phenomena. On top

of local density, it is necessary to consider local direction during the clustering process.

This local direction is not necessary the same for one cluster. Instead, it is reasonable

that the local direction is changing continuously in different parts of one cluster.

2.3 Clustering Comparison Indexes

Evaluating the clustering result is the final and important step in cluster analysis. In

general, clustering evaluation methods can be divided into two categories: intrinsic and

extrinsic [50]. Given a similarity metric between objects, intrinsic clustering evaluation

methods compute how similar objects in one cluster are to each other, and how dissimilar

to objects from different clusters they are. In other words, intrinsic evaluation assesses the

goodness of a clustering by computing how well the clusters are separated [21]. When a

ground truth/gold standard is available, extrinsic clustering evaluation methods will play

a role by comparing the output from one clustering algorithm to the ground truth. Here,

ground truth/gold standard is the ideal clustering result obtained from human experts,

prior knowledge, convention, or otherwise. In this work, we focus on extrinsic methods.

Many clustering comparison indexes have been proposed for extrinsic clustering eval-

uation. Marina et al. [51], Nguyen Xuan et al. [52], and more recent Jiawei et al. [21]

have presented a review of these clustering comparison indexes. Traditionally, many re-

searchers agree that measures for comparing clusterings can be classified as pair-counting

based measures, set-matching based measures, and information theoretic measures. But

recently, new measures have been proposed which cannot be classified into these three

categories, such as clustering measure using density profile [53], Mallows distance based

measures [54], and transportation distance based measure [55]. We will briefly discuss

them below.

11
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Pair-counting based measures count pairs of items on which two clusterings agree

or disagree (one clustering result and the ground truth), such as Wallace index [56],

FowlkesMallows index [57], Rand index [58], Adjusted Rand index [59], Jaccard index

[60], Mirkin index [61]. In this work, we use Rand index to evaluate our proposed

clustering algorithm ADCN and we will discuss it in detail in Section 4.

Set matching based measures match the ‘best’ clusters between two clustering results

based on the number of shared objects, such as Clustering Error [62], the asymmetric

metric proposed by Larsen et al. [63], and the metric proposed by van Dongen et al.

[64]. A problem with Set matching based measures is that the criteria it uses completely

ignore the information of the ”unmatched” part of each cluster [62].

Information theoretic measures, which are based on information theory, measure the

amount of mutual information shared by two clustering results via the number of objects

they agree, such as Mutual Information [65], Normalize Mutual Information with different

normalize methods [66, 67, 68, 69], Adjusted-for-Chance MI [52], Unnormalized distance

measures [66, 62], and Normalized distance measures [68, 52]. In this work, we utilize

Normalize Mutual Information from Strehl et al. [67] which we will discuss in detail

in Section 4 in addition to Rand index to ensure that we use measures from different

families.

All the clustering comparison measure we mentioned above are purely from a statistic

perspective and treat clusterings as partitions of atoms. They compare clusterings based

on the memberships of objects to different clusters. That means that an object clustered

into any other clusters will be treated as equally wrong. But Zhou et al. [54], Bae et

al. [53], Coen et al. [55] made an argument that miss classifying one object to different

clusters will have different effects on the clustering similarity judgement. Figure 2.3

illustrates such idea. Figure 2.3 (a) shows the ground truth in which there are three

clusters A, B, and C. Figure 2.3 (b) and (c) shows the clustering result of Clustering

12
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X and Y in which 10 objects/points in Cluster B’(C”) have been miss classified into

Cluster A’(A”). Zhou et al. [54], Bae et al. [53], Coen et al. [55] argued that existing

clustering comparison measures (the traditional three categories we discussed above)

will yield the same similarity between the ground truth and Clustering X/Y while it is

”intuitive” [53] that Clustering X is more similar to the ground truth than Clustering

Y. That is because Cluster B is closer to Cluster A than Cluster C. We call this Spatial

Proximity Effect.

Figure 2.3: An Illustration of how spatial proximity can affect the clustering compar-
ison: (a) shows the ground truth of 3 clusters; (b) shows the result of Clustering X;
(c) shows the result of Clustering Y.

Cluster similarity sensitive distance(CSS) proposed by Zhou et al. [54] applied Mal-

lows distance function to compute clustering similarity. This makes the similarity com-

putation become a linear programming problem in which both objects’ memberships to

clusters and the similarity between clusters’ representatives are considered. CSS takes

the distances between representatives of clusters into account when computing the clus-

tering similarity. So it considers theSpatial Proximity Effect.

13
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Another clustering comparison measure which considers theSpatial Proximity Effect

is ADCO [53]. It segments the attribute space into high dimension grids. Each object

from the dataset will occupy exactly one cell. The density profiles are computed based on

this grid. And the similarity between two clusters corresponds to the similarity between

distributions of the objects from each cluster over this grid. ADCO will match each

cluster in one clustering result to one in another clustering result. This means it is more

similar to Set matching based measures. What’s more, ADCO requires the clusterings

under consideration to have the same number of clusters which is not usually the case in

real-world applications.

CDistance proposed by Coen et al. [55] also takes the Spatial Proximity Effect into

consideration. Naive transportation distance which is also a linear programming problem

has been proposed to compute the similarity distance between two weighted points sets.

CDistance can also compare clustering result from different datasets.

It is worthy mentioning that whether spatial proximity of clusters will affect clustering

similarity is still under investigation. CSS and CDistance have a much higher computa-

tion complexity compared to Rand index and NMI and are hard to implement. Hence,

researchers are inclined to use the traditional clustering comparison measures which are

also the choice for this work. This can also be seen from the clustering performance

evaluation package of python scikit-learn library 2.

Table 2.1 lists all the clustering comparison indexes we discussed above. We compare

their pros and cons from different perspectives, such as symmetry, requirements for the

same number of cluster, normalized or not, the ability to compare clustering across

datasets, considering spatial proximity effect or not.

2http://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
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2.4 Research Question

From the discussion above, we realize that, as an important aspect of spatial data,

anisotropicity , especially local anisotropicity, has not been well explored in clustering

analysis. Based on this observation, we will investigate the following research question:

How to design a clustering algorithm such that:

• It is based on the same, well studied, parameters of density-based clustering tech-

niques such as DBSCAN (namely Eps and MinPts).

• It has the same time complexity class as DBSCAN and can, therefore, operate on

large datasets.

• It is better suited than DBSCAN (and density-based algorithms in general) for clus-

tering anisotropic point patterns while remaining as good as DBSCAN for isotropic

cases.
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Anisotropic Density-based

Clustering with Noise (ADCN)

In this section we introduce the proposed Anisotropic Density-based Clustering with

Noise (ADCN) starting with DBSCAN as foundation.

3.1 Anisotropic Perspective on Local Density

Without predefined direction information from spatial datasets, one has to compute

the local direction for each point based on the spatial distribution of points around it.

The standard deviation ellipse (SDE) [71] is a suitable method to get the major direction

of a point set. In addition to the major direction (long axis), the flattening of the SDE

implies how much the points are strictly distributed along the long axis. The flattening

of an ellipse is calculated from its long axis a and short axis b as given by Equation 3.1:

f =
a− b
a

(3.1)
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Given n points, the standard deviation ellipse constructs an ellipse to represent the

orientation and arrangement of these points. The center of this ellipse O(X, Y ) is defined

as the geometric center of these n points and is calculated by Equation 3.2:

X =

∑n
i=1 xi
n

, Y =

∑n
i=1 yi
n

(3.2)

The coordinates (xi, yi) of each point are normalized to the deviation from the mean

areal center point (Equation 3.3):

x̃i = xi −X, ỹi = yi − Y , (3.3)

Equation 3.3 can be seen as a coordinates translation to the new origin (X, Y ). If

we rotate the new coordinate system counterclockwise about O by angle θ (0 < θ ≤ 2π)

and get the new coordinate system Xo-Yo, the standard deviation along Xo axis σx and

Yo axis σy is calculated as given in Equation 3.4 and 3.5.

σx =

√∑n
i=1(ỹi sin θ + x̃i cos θ)2

n
(3.4)

σy =

√∑n
i=1(ỹi cos θ − x̃i sin θ)2

n
(3.5)

The long/short axis of SDE is along the direction who has the maximum/minimum

standard deviation. Let σmax and σmin be the length the of semi-long axis and semi-short

axis of SDE. The angle of rotation θm of the long/short axis is given by Equation 3.6[71].

18
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tan θm = −A±B
C

(3.6)

A =
n∑
i=1

x̃i
2 −

n∑
i=1

ỹi
2 (3.7)

C = 2
n∑
i=1

x̃iỹi (3.8)

B =
√
A2 + C2 (3.9)

The ± indicates two rotation angles θmax, θmin corresponding to long and short axis.

3.2 Anisotropic Density-Based Clusters

In order to introduce an anisotropic perspective to density-based clustering algorithms

such as DBSCAN, we have to revise the definition of an Eps-neighborhood of a point.

First, the original Eps-neighborhood of a point in a dataset D is defined by DBSCAN

as given by Definition 1.

Definition 1 (Eps-neighborhood of a point) The Eps-neighborhood NEps(pi) of Point pi

is defined as all the points within the scan circle centered at pi with a radius Eps, which

can be expressed as:

NEps(pi) = {pj(xj, yj) ∈ D|dist(pi, pj) ≤ Eps}

Such scan circle results in an isotropic perspective on clustering. However, as we

discuss above, an anisotropic assumption will be more appropriate for some geographic

phenomena. Intuitively, in order to introduce anisotropicity to DBSCAN, one can employ

a scan ellipse instead of a circle to define the Eps-neighborhood of each point. Before
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we give a definition of the Eps-ellipse-neighborhood of a point, it is necessary to define

a set of points around a point (Search-neighborhood of a point) which is used to derive

the scan ellipse; See Definition 2.

Definition 2 (Search-neighborhood of a point) A set of points S(pi) around Point pi is

called search-neighborhood of Point pi and can be defined in two ways:

1. The Eps-neighborhood NEps(pi) of Point pi.

2. The k-th nearest neighbor KNN(pi) of Point pi. Here k = MinPts and KNN(pi)

does not include pi itself.

After determining the search-neighborhood of a point, it is possible to define the

Eps-ellipse-neighborhood region (See Definition 3) and Eps-ellipse-neighborhood (See

Definition 4) of each point.

Definition 3 (Eps-ellipse-neighborhood region of a point) An ellipse ERi is called Eps-

ellipse-neighborhood region of a point pi iff:

1. Ellipse ERi is centered at Point pi.

2. Ellipse ERi is scaled from the standard deviation ellipse SDEi computed from the

Search-neighborhood S(pi) of Point pi.

3. σmax
′

σmin
′ = σmax

σmin
;

where σmax
′,σmin

′ and σmax,σmin are the length of semi-long and semi-short axis of

Ellipse ERi and Ellipse SDEi.

4. Area(ERi) = πab = πEps2

20
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According to Definition 3, the Eps-ellipse-neighborhood region of a point is computed

based on the search-neighborhood of a point. Since there are two definitions of the search-

neighborhood of a point (See Definition 2), each point should have a unique Eps-ellipse-

neighborhood region given Eps (using the first definition in Definition 2) or MinPts

(using the second definition in Definition 2) as long as the search-neighborhood of the

current point has at least two points for the computation of the standard deviation ellipse.

Definition 4 (Eps-ellipse-neighborhood of a point) An Eps-ellipse-neighborhood ENEps(pi)

of point pi is defined as all the point inside the eillpse ERi, which can be expressed as

ENEps(pi) = {pj(xj, yj) ∈ D| ((yj−yi) sin θmax+(xj−xi) cos θmax)2

a2 +
((yj−yi) cos θmax−(xj−xi) sin θmax)2

b2
≤

1}.

There are two kinds of points in a cluster obtained from DBSCAN: core point and

border point. Core points have at least MinPts points in their Eps-neighborhood, while

border points have less than MinPts points in their Eps-neighborhood but are density

reachable from at least one core point. Our anisotropic clustering algorithm has a similar

definition of core point and border point. The notions of directly anisotropic-density-

reachable and core point are illustrated bellow; see Definition 5.

Definition 5 (Directly anisotropic-density-reachable) A point pj is directly anisotropic

density reachable from point pi wrt. Eps and MinPts iff:

1. pj ∈ ENEps(pi).

2. |ENEps(pi)| ≥MinPts. (Core point condition)

If point p is directly anisotropic reachable from point q, then point q must be a core

point which has no less than MinPts points in its Eps-ellipse-neighborhood. Similar to

the notion of density-reachable in DBSCAN, the notion of anisotropic-density-reachable

is given in Definition 6.
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Definition 6 (Anisotropic-density-reachable) A point p is anisotropic density reachable

from point q wrt. Eps and MinPts if there exists a chain of points p1, p2, ..., pn, (p1 = q,

and pn = p) such that point pi+1 is directly anisotropic density reachable from pi.

Although anisotropic density reachability is not a symmetric relation, if such a directly

anisotropic density reachable chain exits, then except for point pn, the other n−1 points

are all core points. If Point pn is also a core point, then symmetrically point p1 is also

density reachable from pn. That means that if two points p, q are anisotropic density

reachable from each other, then both of them are core points and belong to the same

cluster.

Equipped with the above definitions, we are able to define our anisotropic density-

based notion of clustering. DBSCAN includes both core points and border points into

its clusters. In our clustering algorithm, only core points will be treated as cluster

points. Border points will be excluded from clusters and treated as noise points, because

otherwise many noise points will be included into clusters according to experimental

results. In short, a cluster (See definition 7) is defined as a subset of points from the

whole points dataset in which each two points are anisotropic density reachable from

another. Noise points (See Definition 8) are defined as the subset of points from the

entire points dataset for which each point has less than MinPts points in its Eps-ellipse-

neighborhood.

Definition 7 (Cluster) Let D be a points dataset. A cluster C is a no-empty subset of

D wrt. Eps and MinPts, iff:

1. ∀p ∈ C, ENEps(p) ≥MinPts.

2. ∀p, q ∈ C, p, q are anisotropic density reachable from each other wrt. Eps and

MinPts.
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A cluster C has two attribute:

∀p ∈ C and ∀q ∈ D, if p is anisotropic density reachable from q wrt. Eps and

MinPts, then

1. q ∈ C.

2. There must be a directly anisotropic density reachable points chain C(q, p): p1, p2,

..., pn, (p1 = q, and pn = p), such that pi+1 is directly anisotropic density reachable

from pi. Then ∀pi ∈ C(q, p), pi ∈ C.

Definition 8 (Noise) Let D be a points dataset. A point p is a noise point wrt. Eps

and MinPts, if p ∈ D and ENEps(p) < MinPts.

Let C1, C2, ..., Ck be the clusters of the points dataset D wrt. Eps and MinPts.

From Definition 8, if p ∈ D, and ENEps(p) < MinPts, then ∀Ci ∈ {C1, C2, ..., Ck},

p /∈ Ci.

According to Definition 2, and in contrast to a simple scan circle, there are at least two

ways to define a search neighborhood of the center point pi. Thus, ADCN can be divided

into a ADCN-Eps variant that uses Eps-neighborhood NEps(pi) as the search neighbor-

hood and ADCN-KNN that uses k-th nearest neighbors KNN(pi) as the search neighbor-

hood. Figures 3.1 and 3.2 illustrates the related definitions for ADCN-Eps and ADCN-

KNN. The red points in both figures represent current center points. The blue points

indicate the two different search neighborhoods of the corresponding center points accord-

ing to Definition 2. Note that for ADCN-Eps, the center point is also part of its search

neighborhood which is not true for ADCN-KNN. The green ellipses and green crosses

stand for the standard deviation ellipses constructed from the corresponding search neigh-

borhood and their center points. The red ellipses are Eps-ellipse-neighborhood regions

while the dash line circles indicate a DBSCAN-like scan circle. As can be seen, ADCN-
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Figure 3.1: Illustration for ADCN-Eps

KNN will exclude the point to the left of the linear bridge-pattern while DBSCAN would

include it.

3.3 ADCN Algorithms

From the definitions provided above it follows that our anisotropic density-based clus-

tering with noise algorithm takes the same parameters (MinPts and Eps) as DBSCAN

and that they have to be decided before clustering. This is for good reasons, as the

proper selection of DBSCAN parameters has been well studied and ADCN can easily

replace DBSCAN without any changes to established workflows.

As shown in Algorithm 1, ADCN starts with an arbitrary point pi in a points dataset
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Figure 3.2: Illustration for ADCN-KNN

D and discovers all the core points which are anisotropic density reachable from point pi.

According to Definition 2, there are two ways to get the search neighborhood of point pi

which will result in different Eps-ellipse-neighborhood ENEps(pj) based on the derived

Eps-ellipse-neighborhood-region in Algorithm 2. Hence, ADCN can be implemented by

two algorithms (ADCN-Eps, ADCN-KNN). Algorithm 2 needs to take care of situations

when all points of the Search-neighborhood S(pi) of Point pi are strictly on the same

line. In this case, the short axis of Eps-ellipse-neighborhood region ERi becomes zero

and its long axis become Infinity. This means ENEps(pi) is diminished to a straight line.

The process of constructing Eps-ellipse-neighborhood ENEps(pi) of Point pi becomes a

point-on-line query.
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Algorithm 1: ADCN(D, MinPts, Eps)

Input : A set of n points D(X, Y ) ; MinPts ; Eps ;
Output: Clusters with different labels Ci[]; A set of noise points Noi[]

1 foreach point pi(xi, yi) in the set of points D(X, Y ) do
2 Mark pi as Visited ;
3 //Get Eps-ellipse-neighborhood ENEps(pi) of pi
4 ellipseRegionQuery(pi, D, MinPts, Eps);
5 if |ENEps(pi)| < MinPts then
6 Add pi to the noise set Noi[];
7 else
8 Create a new Cluster Ci[];
9 Add pi to Ci[];

10 foreach point pj(xj, yj) in ENEps(pi) do
11 if pj is not visited then
12 Mark pj as visited;
13 //Get Eps-ellipse-neighborhood ENEps(pj) of Point pj
14 ellipseRegionQuery(pj, D, MinPts, Eps);
15 if |ENEps(pj)| ≥MinPts then
16 Let ENEps(pi) as the merged set of ENEps(pi) and ENEps(pj);
17 Add pj to current cluster Ci[];

18 else
19 Add pj to the noise set Noi[];
20 end

21 end

22 end

23 end

24 end

According to Algorithm 3, ADCN-Eps uses the Eps-neighborhood NEps(pi) of point pi

as the search neighborhood which will be used later to construct the standard deviation

ellipse. In contrast, ADCN-KNN (Algorithm 4) uses a k-th nearest neighborhood of

point pi as the search neighborhood. Here point pi will not be included in its k-th

nearest neighborhood. As can be seen, the run times of ADCN-Eps and ADCN-KNN are

heavily dominated by the search-neighborhood query which is executed on each point.

Hence, the time complexities of ADCN, DBSCAN, and OPTICS are O(n2) without a

spatial index and O(n log n) otherwise.
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Algorithm 2: ellipseRegionQuery(pi, D, MinPts, Eps)

Input : pi, D, MinPts, Eps
Output: Eps-ellipse-neighborhood ENEps(pi) of Point pi

1 //Get the Search-neighborhood S(pi) of Point pi. ADCN-Eps and ADCN-KNN
use different functions.

2 ADCN-Eps: searchNeighborhoodEps(pi, D, Eps); ADCN-KNN:
searchNeighborhoodKNN(pi, D, MinPts);

3 Compute the standard deviation ellipse SDEi base on the Search-neighborhood
S(pi) of Point pi;

4 Scale Ellipse SDEi to get the Eps-ellipse-neighborhood region ERi of Point pi to
make sure Area(ERi) = π × Eps2;

5 if The length of short axis of ERi == 0 then
6 // the Eps-ellipse-neighborhood region ERi of Point pi is diminished to a

straight line. Get Eps-ellipse-neighborhood ENEps(pi) of Point pi by finding
all points on this straight line ERi;

7 else
8 // the Eps-ellipse-neighborhood region ERi of Point pi is an ellipse. Get

Eps-ellipse-neighborhood ENEps(pi) of Point pi by finding all the points
inside Ellipse ERi;

9 end
10 return ENEps(pi);

Algorithm 3: searchNeighborhoodEps(pi, D, Eps)

Input : pi, D, Eps
Output: the Search-neighborhood S(pi) of Point pi

1 // This function is used in ADCN-Eps // Get all the points whose distance from
Point pi is less than Eps

2 foreach point pj(xj, xj) in the set of points D(X, Y ) do

3 if
√

(xi − xj)2 + (yi − yj)2 ≤ Eps then
4 Add Point pj to S(pi);

5 end
6 return S(pi);

27



Anisotropic Density-based Clustering with Noise (ADCN) Chapter 3

Algorithm 4: searchNeighborhoodKNN(pi,D,MinPts)

Input : pi; D; MinPts
Output: the Search-neighborhood S(pi) of Point pi

1 // This function is used in ADCN-KNN // Get the Kth nearest neighbor of Point
pi excluding pi itself

2 KNNArray = new Array(MinPts);
3 distanceArray = new Array(|D|);
4 KNNLabelArray = new Array(|D|);
5 foreach point pj(xj, yj) in the set of points D(X, Y ) do
6 KNNLabelArray[j] = 0;

7 distanceArray[j] =
√

(xi − xj)2 + (yi − yj)2;
8 if j == i then
9 KNNLabelArray[j] = 1;

10 end
11 foreach k in 0:(MinPts− 1) do
12 minDist = Infinity;
13 minDistID = 0;
14 foreach j in 0:|D| do
15 if KNNLabelArray[j] != 1 then
16 if minDist > distanceArray[j] then
17 minDist = distanceArray[j];
18 minDistID = j;

19 end
20 KNNLabelArray[minDistID] = 1;
21 KNNArray[k] = minDistID;
22 Add the point with minDistID as ID to S(pi);

23 end
24 return S(pi);
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Experiments and Performance

Evaluation

In this section, we will evaluate the performance of ADCN from two perspectives: clus-

tering quality and clustering efficiency. In contrast to the scan circle of DBSCAN, there

are at least two ways to determine an anisotropic neighborhood. This leads to two real-

izations of ADCN, namely ADCN-KNN and ADCN-Eps. We will evaluate their perfor-

mance using DBSCAN and OPTICS as baselines. We selected OPTICS as an additional

baseline as it is commonly used to address some of DBSCAN’s shortcomings with respect

to varying densities.

According to the research contributions outlined in Section 1, we intend to establish:

(1) that at least one of the ADCN variants performs as good as DBSCAN (and OPTICS)

for cases that do not explicitly benefit from an anisotropic perspective; (2) that the

aforementioned variant performs better than the baselines for cases that do benefit from

an anisotropic perspective; and finally (3) that the test cases include point patterns

typically used to test density-based clustering algorithms as well as real-world cases that

highlight the need for developing ADCN in the first place. In addition, we will show
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runtime results for all four algorithms.

4.1 Experiment Designs

We have designed several spatial point patterns as test cases for our experiments.

More specifically, we generated 20 test cases with 3 different noise settings for each of

them. These consist of 12 synthetic and 8 real-world use cases which results in a total of

60 case studies. Note that our test cases do not only contain linear features such as road

networks but also cases that are typically used to evaluate algorithms such as DBSCAN,

e.g., clusters of ellipsoid and rectangular shapes.

In order to simulate a “ground truth” for the synthetic cases, we created polygons

to indicate different clusters and randomly generated points within these polygons and

outside of them. We took a similar approach for the eight real-world cases. The only

difference is that the polygons for real world cases have been generated from buffer zones

with a 3-meter radius of the real-world features, e.g., existing road networks. This allows

us to simulate patterns that typically occur in geo-tagged social media data.

Although we use this approach to simulate the corresponding spatial point process,

the distinction between clustered points and noise points in the resulting spatial point

patterns may not be so obvious even from a human’s perspective. To avoid cases in

which it is unreasonable to expect algorithms and humans to differentiate between noise

and pattern, we introduced a clipping buffer of 0m, 5m, and 10m. For comparison, the

typical position accuracy of GPS sensors on smartphones and GPS collars for wildlife

tracking is about 3-15 meters [72](and can decline rapidly in urban canyons).

The generated spatial point patterns of 12 synthetic and 8 real-world use cases with

0m buffer distance are shown in the first column of Figure 4.2 and Figure 4.3. Note that

in all test cases, points generated from different polygons are pre-labeled with different
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cluster IDs which are indicated by different colors in the first column of Figure 4.2 and

Figure 4.3. Points generated outside polygons are pre-labeled as noise which are shown

in black. These generated spatial point patterns serve as ground truth which are used in

our clustering quality evaluation experiments.

In order to demonstrate the strength of ADCN, we need to compare the performance

of ADCN with that of DBSCAN and OPTICS from two perspectives: clustering quality

and clustering efficiency. The experiment designs are as follow:

• As for clustering quality evaluation, we use several clustering quality indices to

quantify how good the clustering results are. In this work, we use Normalized

Mutual Information (NMI) and the Rand Index. We will explain these two indices

in detail in Section 4.3. We stepwise tested every possible parameter combinations

of Eps, MinPts computationally on each test case. For each clustering algorithm,

we select the parameter combination which has the highest NMI or Rand index.

By comparing the maximum of NMI and Rand index across different clustering

algorithms in each test case, we can find out the best clustering technique.

• As for clustering efficiency evaluation, we generate spatial point patterns with dif-

ferent numbers of points by using the polygons of each test case mentioned earlier.

For each clustering algorithm and each number of points setting, we computed the

average runtime. By constructing a runtime curve of each clustering algorithm, we

are able to compare their runtime efficiency.

4.2 Test Environment

In order to compare the performance of ADCN with that of DBSCAN and OPTICS,

we developed a JavaScript test environment to generate patterns and compare the results.
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It allows us to generate use cases in a Web browser, such as Firefox or Chrome, or load

them from a GIS, change noise settings, determine DBSCAN’s Eps via a KNN distance

plot, perform different evaluations, compute runtimes, index the data via an R-tree, and

save and load the data. Consequently, what matters is the runtime behavior, not the

exact performance (for which JavaScript would not be a suitable choice). All cases have

been performed on a cold setting, i.e., without any caching using an Intel i5-5300U CPU

with 8 GB RAM on an Ubuntu 16.04 system. This Javascript test environment as well

as all the test cases can be downloaded from here1.

Figure 4.1 shows a snapshot of this test environment. The system has two main

panels. The map panel on the left side is an interactive canvas in which the user can

click and create data points. The tool bar on the right side is composed of input boxes,

selection boxes, and buttons which are divided into different groups. Each group is used

for a specific purpose, which will be discussed as below.

Figure 4.1: The Density-Based Clustering Test Environment

1http://stko.geog.ucsb.edu/adcn/
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The “File Operation” tool group is used for point dataset manipulation. For simplic-

ity, our environment defines a simple format for point datasets. Conceptually, a point

dataset is a table containing the coordinates of points, their ground truth memberships,

and the memberships produced during the experiments. The ground truth and experi-

mental memberships are then compared to evaluate the cluster algorithms. The “Open

Pts File” box is used for loading point datasets produced by other GIS. The data points

can also be abstract points which represent objects, such as documents [7], in a feature

space. The prototype takes the coordinates of points and maps out these points after

rescaling their coordinates based on the size of the map panel. During the clustering

process it uses Euclidean distance as the distance measure. The “PointSet Name” input

box lets the user name the current point dataset displayed on the map panel. The “Select

PointSet” selection box lists all the point datasets loaded into the system.

The “Clustering Operation” tool group is used to operate clustering tasks. The “Eps”

and “MinPts” input boxes let users enter the clustering parameters for all clustering

algorithms. The “DBSCAN”, “OPTICS”, “ADCN-Eps”, “ADCN-KNN” buttons are

for running the algorithms. A user can click one of them to run the corresponding

clustering algorithm on current point dataset based on the parameters (s)he entered

earlier. As for the implementation of DBSCAN and OPTICS, we used a JavaScript

clustering library from GitHub 2. This library has basic implementations of DBSCAN,

OPTICS, K-MEANS, and some other clustering algorithms without any spatial indexes.

Our ADCN-KNN and ADCN-Eps algorithms were implemented using the same data

structures as used in the library. Such an implementation ensures that the evaluation

result will reflect the differences of the algorithms rather than be affected by the specific

data structures used in the implementations. Finally, we implemented an R-tree spatial

index to accelerate the neighborhood search. We have used the R-tree JavaScript library

2https://github.com/uhho/density-clustering
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from GitHub 3.

The “Clustering Evaluation” tool group is composed of “Quality Evaluation” and

“Efficiency Evaluation” subgroups. As for the clustering quality evaluation, we imple-

mented two metrics, Normalized mutual Information (NMI) and Rand Index, to quantify

the goodness of the clustering results. The first four buttons in this subgroup will run the

corresponding clustering algorithm on the current dataset based on all possible parameter

combinations. They will compute two clustering evaluation indexes for each clustering

result. The “SAVE Index As...” button will save these results to a text file.

Efficiency evaluation is another important part for comparing clustering algorithms.

Density-based clustering algorithms are widely applied on large-scale data points. There-

fore it is important to demonstrate the scalability of ADCN. The “Efficiency Evaluation”

button will run these four clustering algorithms on datasets with different sizes. The

“SAVE Efficiency Test As...” button can be further used to save the result into a text

file.

Finally, the “KNN” tool group is used to draw the kth nearest neighbor plot (KNN

plot) of the current dataset based on the MinPts parameter specified by the user. For

each point, the KNN plot obtains the distance between the current point and its kth

nearest point (here K is MinPts). Then it ranks these kth nearest distance of each point

in an ascending order. The KNN plot can be used for estimating the appropriate Eps

for the current point dataset given MinPts. More details this estimation can be found in

the original DBSCAN paper [8].

Note that we provide the test environment to make our results reproducible and to

offer a reusable implementation of ADCN, without implying that JavaScript would be

the language of choice for future, large-scale applications of ADCN.

3https://github.com/imbcmdth/RTree
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4.3 Evaluation of Clustering Quality

We use two clustering quality indices - the normalized mutual information (NMI)

and the Rand Index - to measure the quality of clustering results of all algorithms. NMI

originates from information theory and has been revised as an objective function for

clustering ensembles [67]. NMI evaluates the accumulated mutual information shared

by the clusters from different clustering algorithms. Let n be the number of points in a

point datasets D. X = (X1, X2, ..., Xr) and Y = (Y1, Y2, ..., Ys) are two clustering results

from the same or different clustering algorithms. Note that noise points will be treated

as their own cluster. Let n
(x)
h be the number of points in cluster Xh and n

(y)
l the number

of points in cluster Yl. Let n
(x,y)
h,l be the number of points in the intersect of cluster Xh

and Yl. Then the normalized mutual information Φ(NMI)(X, Y ) is defined in Equation

4.1 as the similarity between two clustering results X and Y :

Φ(NMI)(X, Y ) =

∑r
h=1

∑s
l=1 n

(x,y)
h,l log

n·n(x,y)
h,l

n
(x)
h ·n

(y)
l√

(
∑r

h=1 n
(x)
h log

n
(x)
h

n
)(
∑s

l=1 n
(y)
l log

n
(y)
l

n
)

(4.1)

Rand Index [58] is another objective function for clustering ensembles from a differ-

ent perspective. It evaluates to which degree two clustering algorithms share the same

relationships between points. Let a be the number of pairs of points in D that are in the

same clusters in X and in the same cluster in Y . b is the number of pairs of points in D

that are in different clusters in X and Y . c is the number of pairs of points in D that

are in the same clusters in X and in different cluster in Y . Finally, d is the number of

pairs of points in D that are in different clusters in X and in the same cluster in Y . The

Rand Index Φ(Rand)(X, Y ) is then defined as given by Equation 4.2:
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Φ(Rand)(X, Y ) =
a+ b

a+ b+ c+ d
(4.2)

For both NMI and Rand index, larger values indicate higher similarity between two

clustering results. If a ground truth is available, both NMI and Rand can be used to

compute the similarity between the result of an algorithms and the corresponding ground

truth. This is called the extrinsic method [21].

We use the aforementioned 20 test cases to evaluate the clustering quality of DB-

SCAN, ADCN-Eps, ADCN-KNN, and OPTICS. All of these four algorithms take the

same parameters (Eps, MinPts). As there are no established methods to determine the

best overall parameter combination (we use KNN distance plots to estimate Eps) with re-

spect to NMI and Rand Index, we stepwise tested every possible parameter combinations

of Eps, MinPts computationally. An interactive 3D visualization of the NMI and Rand

index results with changing Eps and MinPts for the spiral case with 0m buffer distance

can be accessed online 4. Table 4.1 shows the maximum NMI and Rand Index results

for the four algorithms over all test cases. Note that for each case, the best parameter

combination with the maximum NMI does not necessarily yields the maximum Rand

Index. However, among all of these 60 cases, there are 39, 35, 27, 39 cases for DBSCAN,

ADCN-Eps, ADCN-KNN, OPTICS in which the best parameter combination for the

maximum NMI is also the maximum Rand Index. For those cases where parameter com-

binations of maximum NMI and maximum Rand do not match, their parameters tend

to be close to each other because NMI and Rand values are changing continuously while

Eps and MinPts increase. This indicates that NMI and Rand Index have a medium to

high similarity in terms of measuring the clustering quality.

4http://stko.geog.ucsb.edu/adcn/
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As for the 60 test cases, ADCN-KNN has a higher maximum NMI/Rand Index than

DBSCAN in 55 cases and has a higher maximum NMI/Rand Index than OPTICS in

55 cases; see also Figures 4.4 and 4.5. Even more, ADCN-KNN has a higher maximum

NMI/Rand Index than ADCN-Eps in 31 cases; see Table 4.2. This indicates that ADCN-

KNN gives the best clustering results among the tested algorithms. Our test cases do not

only contain linear features but also cases that are typically used to evaluate algorithms

such as DBSCAN, e.g., clusters of ellipsoid and rectangular shapes. In fact, these are

the only cases were DBSCAN slightly out-competes ADCN-KNN, i.e., the maximum

NMI/Rand Index of ADCN-KNN and DBSCAN are comparable. Summing up, ADCN-

KNN performs better than all other algorithms when dealing with anisotropic cases and

equally well as DBSCAN for isotropic cases. In the following paragraphs, we will use

ADCN-KNN and ADCN interchangeably.

Figure 4.2 and 4.3 show the point patterns as well as the best clustering results of

all algorithms for the twelve synthesis cases and eight real-world cases without buffering,

i.e., with the 0m buffer distance. By comparing best clustering results of these four

algorithms, we can find some interesting patterns: 1) Connecting clusters along local

directions : ADCN has a better ability to detect the local direction of spatial point

patterns and connect the clusters along this direction; 2) Noise filtering : ADCN does

better in filtering out noise points. A good example of connecting clusters along local

directions is the ellipseWidth case in Figure 4.2. As for the thinnest cluster in the bottom,

the other 3 algorithms except ADCN-KNN extract multiple clusters from these points

while ADCN-KNN is able to “connect” these clusters to a single one. Many cases show

the noise filtering advantage of ADCN. For example, thebridge case, the multiBridge case

in Figure 4.2, and theBrooklyn Bridge case in Figure 4.3, reveal that ADCN is better at

detecting and filtering out noise points along bridge-like features.
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(a) (b)

Figure 4.2: Ground truth and best clustering result comparison for 12 synthesis cases.

4.4 Evaluation of Clustering Efficiency

This section discusses runtime differences of the four tested algorithms. Without a

spatial index, the time complexity of all algorithms is O(n2). Eps-neighborhood queries

consume the major part of the run time of density-based clustering algorithms [9], and,

therefore, also of ADCN-KNN and ADCN-Eps in terms of Eps-ellipse-neighborhood

queries. Hence, we implemented an R-tree to accelerate the neighborhood queries for all

algorithms. This changes their time complexity to O(n log n).

In order to enable a comprehensible comparison of the run times of all algorithms

on different sizes of point datasets, we performed a batch of performance tests. The

polygons from the 20 cases shown above have been used to generated point datasets of

different sizes ranging from 500 to 10000 in 500 step intervals. The ratio of noise points
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to cluster points is set to 0.25. Eps, MinPts are set to 15, 5 for all of these experiments.

The average run times for the same size of point datasets is depicted in Figure 4.6.

Unsurprisingly, the runtime of all algorithms increases as the number of points in-

creases. The runtime of ADCN-KNN is larger than that of DBSCAN and similar that of

OPTICS. As the size of the point dataset increases, the ratio of the runtimes of ADCN-

KNN to DBSCAN decrease from 2.80 to 1.29. The original OPTICS paper states a 1.6

runtime factor compared to DBSCAN. The used OPTICS library failed on datasets ex-

ceeding 5500 points. We also fit the runtime data to the xlog(x) function. Figure 4.6

shows the fitted curves and functions of each clustering algorithm. We can see that all R2

of these functions are larger than 0.95 which means that the xlog(x) function well cap-

tures the trends of the real runtime data of these clustering algorithms. For ADCN, our

implementation tests for point-in-circle for the radius of the major axis before computing

point-in-ellipse to significantly reduce the runtime. Further implementation optimiza-

tions are possible but out of scope of this paper.
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Figure 4.3: Ground truth and best clustering result comparison for eight real-world cases.
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Table 4.1: Clustering quality comparisons
NMI Rand

Case Buffer DBSCAN ADCN-Eps ADCN-KNN OPTICS DBSCAN ADCN-Eps ADCN-KNN OPTICS
bridge 0m 0.937 0.957 0.957 0.937 0.985 0.991 0.992 0.985

5m 0.948 0.966 0.967 0.949 0.989 0.993 0.994 0.989
10m 0.938 0.973 0.968 0.944 0.988 0.995 0.995 0.989

circle 0m 0.864 0.865 0.912 0.864 0.955 0.964 0.978 0.955
5m 0.859 0.897 0.916 0.859 0.955 0.974 0.978 0.955
10m 0.864 0.911 0.923 0.864 0.960 0.979 0.982 0.960

circleNarrow 0m 0.914 0.951 0.958 0.914 0.974 0.988 0.991 0.974
5m 0.939 0.946 0.965 0.939 0.983 0.987 0.993 0.983
10m 0.923 0.962 0.962 0.923 0.976 0.991 0.992 0.976

circleRoad 0m 0.689 0.704 0.725 0.689 0.934 0.945 0.952 0.934
5m 0.737 0.758 0.779 0.737 0.950 0.963 0.962 0.951
10m 0.730 0.778 0.821 0.730 0.946 0.963 0.971 0.946

curve 0m 0.918 0.946 0.955 0.918 0.978 0.989 0.991 0.978
5m 0.924 0.947 0.956 0.924 0.980 0.990 0.992 0.980
10m 0.916 0.943 0.947 0.916 0.978 0.988 0.989 0.978

ellipse 0m 0.978 0.982 0.976 0.978 0.996 0.997 0.995 0.996
5m 0.979 0.982 0.980 0.979 0.996 0.997 0.996 0.996
10m 0.975 0.980 0.978 0.974 0.996 0.997 0.996 0.996

ellipseWidth 0m 0.917 0.935 0.935 0.917 0.985 0.989 0.988 0.985
5m 0.919 0.933 0.939 0.919 0.988 0.989 0.989 0.988
10m 0.931 0.938 0.941 0.931 0.990 0.991 0.991 0.989

multiBridge 0m 0.935 0.790 0.957 0.938 0.983 0.935 0.992 0.984
5m 0.958 0.883 0.977 0.958 0.992 0.968 0.996 0.992
10m 0.964 0.830 0.985 0.964 0.994 0.947 0.998 0.994

rectCurve 0m 0.886 0.893 0.907 0.886 0.963 0.969 0.973 0.963
5m 0.909 0.910 0.908 0.915 0.974 0.977 0.974 0.974
10m 0.921 0.923 0.911 0.922 0.975 0.977 0.977 0.975

spiral 0m 0.740 0.756 0.774 0.740 0.913 0.930 0.938 0.913
5m 0.776 0.812 0.809 0.776 0.927 0.946 0.948 0.927
10m 0.745 0.788 0.795 0.745 0.918 0.950 0.952 0.918

square 0m 0.745 0.751 0.794 0.745 0.934 0.920 0.944 0.934
5m 0.751 0.778 0.830 0.752 0.932 0.928 0.959 0.932
10m 0.744 0.716 0.801 0.743 0.935 0.893 0.944 0.935

star 0m 0.887 0.901 0.914 0.887 0.968 0.977 0.980 0.968
5m 0.903 0.899 0.916 0.900 0.974 0.977 0.982 0.974
10m 0.902 0.778 0.909 0.902 0.974 0.924 0.981 0.974

Brooklyn Bridge 0m 0.378 0.542 0.490 0.378 0.888 0.930 0.925 0.888
5m 0.442 0.604 0.579 0.440 0.900 0.943 0.941 0.900
10m 0.504 0.639 0.581 0.507 0.915 0.950 0.944 0.915

Brooktrail 0m 0.441 0.431 0.421 0.440 0.742 0.765 0.756 0.742
5m 0.476 0.512 0.489 0.475 0.750 0.825 0.800 0.750
10m 0.387 0.555 0.498 0.387 0.712 0.852 0.799 0.711

Eiffel Tower 0m 0.397 0.481 0.492 0.397 0.851 0.882 0.898 0.851
5m 0.459 0.566 0.571 0.459 0.868 0.906 0.921 0.868
10m 0.411 0.553 0.553 0.411 0.861 0.907 0.923 0.861

LAX 0m 0.557 0.607 0.593 0.557 0.867 0.898 0.905 0.867
5m 0.591 0.667 0.584 0.591 0.883 0.921 0.903 0.883
10m 0.485 0.590 0.637 0.479 0.857 0.903 0.925 0.857

Laicheng 0m 0.768 0.807 0.804 0.768 0.857 0.874 0.874 0.857
5m 0.761 0.815 0.808 0.761 0.856 0.878 0.905 0.856
10m 0.773 0.823 0.809 0.773 0.861 0.880 0.911 0.861

Skylawn 0m 0.618 0.822 0.733 0.618 0.871 0.956 0.927 0.871
5m 0.642 0.690 0.807 0.642 0.877 0.899 0.955 0.877
10m 0.729 0.703 0.822 0.729 0.927 0.905 0.957 0.927

Stelvio Pass 0m 0.640 0.715 0.717 0.656 0.945 0.962 0.963 0.946
5m 0.739 0.791 0.768 0.739 0.962 0.974 0.975 0.962
10m 0.686 0.798 0.766 0.686 0.953 0.975 0.978 0.953

Zhangjiajie 0m 0.760 0.832 0.799 0.760 0.964 0.978 0.976 0.964
5m 0.772 0.868 0.839 0.772 0.967 0.987 0.982 0.967
10m 0.835 0.911 0.873 0.835 0.978 0.991 0.990 0.978

Table 4.2: The number of cases with maximum NMI/Rand for each clustering algorithm

# of cases Max NMI Max Rand
DBSCAN 1 0
ADCN-Eps 25 19
ADCN-KNN 33 41
OPTICS 1 0
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Figure 4.4: Clustering quality comparisons: NMI Difference between 3 clustering
methods and DBSCAN for each case. Synthetic cases are on the left, real-world cases
on the right.

Figure 4.5: Clustering quality comparisons: Rand Difference between 3 clustering
methods and DBSCAN for each case. Synthetic cases are on the left, real-world cases
on the right.

42



Experiments and Performance Evaluation Chapter 4

Figure 4.6: Comparison of clustering efficiency with different dataset sizes; runtimes
are given in millisecond (The used OPTICS library failed on datasets exceeding 5500
points)
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Real World Application

In this chapter, we will discuss the application of ADCN for the computation of urban

areas of interest (AOI) from user-generated geotagged photos collected by the Flickr plat-

form. In Chapter 2 Section 2.1, we already mentioned multiple applications of density-

based clustering algorithms. Since ADCN is part of the density-based clustering algo-

rithm family, all the applications we discussed before can also use ADCN instead. Here,

our focus is on how the results of ADCN differ from those of DBSCAN for common

application examples in GIScience and computer science. Put differently, does the use of

ADCN over DBSCAN produce significantly different results when it matters? We will

focus on comparison here by relying on previous work as a ground truth for AOI is not

available.

In previous work, Hu et al. [2] proposed a framework for extracting urban AOIs from

geotagged photos. We will use the same workflow as Hu et al. did except we will apply

four different algorithms, namely DBSCAN, OPTICS, ADCN-Eps, and ADCN-KNN, to

the geotagged Flickr photos data to extract clusters. By comparing the extracted urban

AOIs from different clustering algorithms, we can further understand the performance

difference of these algorithms. We will briefly describe the workflow below. Readers
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with further interests are referred to the original paper [2]. In order to compare our

results with that of Hu et al., we use the same datasets as they did which are the Flickr

geotagged photos data from six cities including Dubai, London, Mumbai, New York,

Paris, Shanghai. We only show the results of 2013-2014 Flickr data here.

5.1 Data Preprocessing and Clustering

The first step is data preprocessing and selection of appropriate Eps and MinPts

for each clustering algorithm. As Hu et al. stated,“Due to the varying numbers of

Flickr users and photos in different cities and different years, a single absolute value for

MinPts may not be suitable. Thus, we handle this variation issue by setting MinPts as

a percentage of the Flickr users who have visited that city in that year”. We did the

same thing in this work. The results of the clustering quality evaluation experiments

show that the four algorithms, ADCN-Eps, ADCN-KNN, DBSCAN and OPTICS, will

not achieve the best clustering results with the same Eps and MinPts. So we need to

identify the proper values of Eps and MinPts for each algorithm. As for DBSCAN, we

use the same parameter combination as Hu et al. which is Eps as 200m and MinPts

as 2%. We use NYC as the reference for parameters’ calibration. We stepwise change

the parameter combinations with Eps from 100m to 500m and MinPts from 1% to 5%.

In each iteration, we use the value of Eps as the search radius to pre-process the data

such that each user, i.e., person who took a picture, has one geotagged photo within the

search neighborhood. Thereby we reduce the dominance effect of active users which is a

common problem in social media. The best parameter combination for each clustering

algorithm can be seen in Table 5.1. The best parameter combinations for each clustering

algorithms are used to process the 2013-2014 Flickr data of the six cities in our study to

retrieve the point clusters. One best clustering result is obtained for each city and each
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clustering algorithm. In total, we have 24 clustering results.

Table 5.1: The best parameter combinations for four clustering algorithm.
algorithm Eps MinPts λp
DBSCAN 200 2% 39
OPTICS 200 2% 41
ADCN-Eps 170 1.7% 34
ADCN-KNN 185 1.7% 29

5.2 Constructing AOI from point clusters using chi-

shape algorithm

After 24 clustering results have been identified, areas (polygons) need to be con-

structed from each cluster of these clustering results. A typical method to approximate

such shapes of a point cluster are convex hulls, i.e., finding the minimum bounding con-

vex polygon for a set of points which are all within this convex polygon. However, since

the clusters identified by four algorithms have arbitrary shapes, using a convex hull to

approximate the shape of a point cluster may lead to large empty space which are not

occupied by the original point cluster. The Chi-shape (concave hull) algorithm [26] is

instead used for this step to obtain a better estimation of the shape of each cluster. It

first computes a Delaunay triangulation based on the set of point of this cluster whose

outer boundary is the convex hull of the point cluster. Then it erodes the convex hull

step-by-step until the longest edge of the generated polygon is less than a threshold which

is controlled by a normalized length parameter λp ∈ [1, 100]. A simple polygon for each

point cluster is derived for each point cluster as the output of Chi-shape algorithm.

In order to get an appropriate value for λp, the fitness function proposed by Akdag

et al. [73] is applied as Equation 5.1:
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φ(P,D) = Emptiness(P,D) + C ∗ Complexity(P ) (5.1)

Here φ is the fitness function/score which is used to balance the complexity [74]

and the emptiness of the constructed polygons. P and D represent the derived simple

polygon and the Delaunay triangulationof the corresponding point cluster. We use the

implementation of fitness function from Hu et al. 1. The fitness score φ is computed per

point cluster which is a function of normalized length parameter λp. So we iterate λp

from 1 to 100. For each λp, we compute the average fitness score of all point clusters from

the six cities for each clustering algorithm. The resulting curves of the average fitness

scores for each clustering algorithm are shown in Figure 5.1. Table 5.1 shows the best λp

for each algorithm.

Figure 5.1: Curve plot of the normalized length parameter and the average fitness score.

By using the best λp for each clustering algorithm, we construct the urban AOI for

1https://github.com/YingjieHu/BalancedConcaveHull
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Figure 5.2: Comparison of extracted urban AOI in Dubai from four clustering algorithms.

each city and each algorithm. Figure 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 compare the extracted

AOIs from different clustering algorithms in these six cities. Some interesting informa-
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Figure 5.3: Comparison of extracted urban AOI in London from four clustering algorithms.

tion can be obtained when we compare these AOIs. Since there is no ground truth for

urban AOI extraction task, we cannot draw a conclusion about which algorithm is the

best for this task. However, a visual comparison among AOIs from different algorithms

does help us to understand how different these four algorithms perform on real-world

datasets. Here, we select two examples: Brooklyn Bridge in New York and Nanjing

Road in Shanghai which are depicted as areas within blue boxes in Figure 5.5 and 5.7.

These two areas are further shown in detail in Figure 5.8 and 5.9 2. Compared with the

AOIs extracted from DBSCAN and OPTICS, AOIs extracted from ADCN are better

aligned with the underline road network and ADCN turns out to discover AOIs with

linear shapes. For example, In Figure 5.9, the AOIs extracted from Brooklyn Bridge in

2We change the base map to Openstreet Map with more detail geographic information which can
help us to understand the semantic of the extracted AOIs.
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Figure 5.4: Comparison of extracted urban AOI in Mumbai from four clustering algorithms.

NYC does follow the shape of the bridge while filtering out the Flickr photos on the river

(i.e., noise). In contrast, the AOIs extracted from DBSCAN and OPTICS for the same

area are stretched out because of some geotagged photos located in the river have been

included into the clusters. In Figure 5.7, AOIs extracted near Nanjing Road in Shanghai

by DBSCAN show two separated areas while ADCN-KNN extracts one linear-shape AOI

which follows Nanjing Road.

Through a visual comparison across the AOIs extracted by using the different cluster-

ing algorithms, we can draw some interesting conclusions: 1) ADCN is a good alternative

of DBSCAN for the Urban AOI Extraction task. The AOIs extracted by ADCN have

similar spatial distributions and shapes as those extracted by DBSCAN and OPTICS

with an appropriate clustering parameter combination. 2) ADCN tends to connect mul-

tiple small clusters which have similar cardinal directions and create a larger cluster
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Figure 5.5: Comparison of extracted urban AOI in New York from four clustering
algorithms.
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Figure 5.6: Comparison of extracted urban AOI in Paris from four clustering algorithms.

which follows the underline spatial structures like road networks. 3) ADCN is better at

filtering out noise and extracts linear-shape clusters when the points of the clusters follow

a similar local direction. Summing up, while there is no ground truth for AOI extraction,

our comparison shows that ADCN results differ clearly from DBSCAN for areas that

show anisotropicity. Put differently, while we established the benefits of using ADCN for

synthetic and real-world use cases before, here we showed that these differences are also

notable in practical applications.
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Figure 5.7: Comparison of extracted urban AOI in Shanghai from four clustering
algorithms.
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Figure 5.8: Comparison of extracted urban AOI around Brooklyn Bridgein New
York from four clustering algorithms.
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Figure 5.9: Comparison of extracted urban AOI around Nanjing Road in Shanghai
from four clustering algorithms.
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Chapter 6

Conclusion and Future Work

In this work, we proposed an anisotropic density-based clustering algorithm (ADCN).

We evaluate the clustering quality and clustering efficiency of ADCN to demonstrate the

advantages it has over two other density-based clustering algorithms, namely DBSCAN

and OPTICS. We then applied ADCN, DBSCAN, and OPTICS to a specific geographic

information retrieval and discovery task, namely Urban AOI extraction. By visually com-

paring the results from different clustering algorithms, we highlighted differences resulting

from the usage of ADCN. This chapter summarizes our results of these experiments and

discusses future directions for research.

6.1 Conclusion

Density-based clustering algorithm has been widely applied to numerous spatial knowl-

edge discovery tasks. Many of these tasks are aimed at extracting interesting patterns

from human mobility or animal trajectories. For example, Huang et al. [29] applied

DBSCAN to extract physical activity areas of individuals from sparse footprints accu-

mulated over a long period from geotagged tweets. Damiani et al. [32] used SeqScan,
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which is similar to ST-DBSCAN, to detect fine-grained movement patterns from the

trajectories of roe and red deer. By doing so, an isotropic assumption is accepted implic-

itly. However, the genesis of many geographic phenomena demonstrates clear anisotropic

spatial processes. For example, geotagged social media data are following the spatial

distribution of transportation networks, trajectories, e.g., of a vessel, building floors, and

so forth, because human activity are highly restricted by urban design and topography.

That means if we apply clustering algorithms which take an isotropic assumption like

DBSCAN to these kind of data, it is possible that the clustering algorithms will seg-

ment a single line-segment shaped cluster into multiple circle-shape clusters. Hence an

anisotropic version of DBSCAN is desirable. Hence, in this work we developed and tested

an anisotropic density-based clustering algorithm (ADCN).

Both synthetic and real-world cases have been used to verify the clustering quality

and efficiency of our algorithm compared to DBSCAN and OPTICS. As for the clustering

quality evaluation, two clustering quality evaluation metrics have been used to compare

the clustering results with the ground truth, namely Normalized Mutual Information and

Rand Index. We demonstrate that ADCN-KNN outperforms DBSCAN and OPTICS

for the detection of anisotropic spatial point patterns and performs equally well in cases

that do not explicitly benefit from an anisotropic perspective. As for the clustering

efficiency evaluation, we implement two versions of each clustering algorithm, one with a

R-tree spatial index and one without any spatial indexes. And we show that ADCN has

the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a

spatial index and O(n2) otherwise. With respect to the average runtime, the performance

of ADCN is comparable to OPTICS.

Our algorithm as well as DBSCAN and OPTICS are further applied to the task of

Urban AOI Extraction task. We follow the same workflow as Hu et al. did [2] and use

the same dataset to extract AOIs from Flickr geotagged photos. The only difference is
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that we use those four clustering algorithms for clustering instead of just DBSCAN. Since

different clustering algorithms achieve their optimal performance with different clustering

parameter combinations, we selected the appropriate clustering parameter combinations

for each clustering algorithm. After detecting the point clusters, chi-shape has been

applied to construct concave hulls of all clusters. During the concave hull construction

process, we used a fitness function (See Equ. 5.1) to select the optimal λp for each

clustering algorithms. Visual comparison among the urban AOI derived from different

clustering algorithms shows that ADCN is a good alternative of DBSCAN for Urban AOI

extraction. It tends to extract linear-shaped AOIs and connects areas when the spatial

distribution of these areas show similar directional trends.

6.2 Future Work

From the clustering evaluation, we can clearly see that ADCN has a better perfor-

mance than DBSCAN and OPTICS when the spatial data shows a clear anisotropic

trend. As geospatial data is often generated from anisotropic spatial processes, we can

see a wide range of application areas for this algorithm. They include (but are not lim-

ited to) cleaning and clustering geotagged social media data, e.g., from Twitter, Flickr

or Strava, and analyzing trajectories collected from car sensors, wildlife tracking, and so

forth. The Urban AOI extraction is one such application example.

As with other clustering techniques, an important and challenging question for ADCN

and other density-based clustering algorithms is how to derive an optimal parameter

combination (Eps, MinPts) given a specific spatial knowledge discovery task and a

specific dataset. In this work, we stepwise tried every possible parameter combinations

computationally. In each iteration, we used two clustering quality metrics, NMI and

Rand Index, to compare the results from the clustering algorithm with the ground truth.
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The best parameter combination is determined by finding the highest NMI or Rand

Index. This is called an extrinsic evaluation method. It will fail if the ground truth

is not available which is usually the case. This problem is not specific to ADCN but

many other clustering techniques as well. In fact, the Urban AOI extraction task well

demonstrates this problem. Using samples for ground truthing is a common approach

but other methods should be studied in the future.

There are also some intrinsic methods which do not use ground truth to evaluate

clustering results, like Silhouette [75] which is usually used to determine the number of

clusters in data sets [76]. The basic idea behind Silhouette is that they evaluate how well

two clusters are separated from each other. The closer each point of clusters is to their

own cluster prototype point and the further each cluster is to each other, the better the

clustering result is. We can see that Silhouette does not consider the density information

and direction information in the clustering evaluation process which is not true for human

interpretation of the clustering results. So in order to have an intrinsic measure of the

clustering quality, we need to study the cognition aspects of clustering. That means we

need to better understand how humans interpret the direction and density information

in a spatial point data set and how humans perform noise detection task visually.
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[70] A. Kraskov, H. Stögbauer, R. G. Andrzejak, and P. Grassberger, Hierarchical
clustering using mutual information, EPL (Europhysics Letters) 70 (2005), no. 2
278.

[71] R. S. Yuill, The standard deviational ellipse; an updated tool for spatial description,
Geografiska Annaler. Series B, Human Geography 53 (1971), no. 1 28–39.

[72] M. G. Wing, A. Eklund, and L. D. Kellogg, Consumer-grade global positioning
system (gps) accuracy and reliability, Journal of forestry 103 (2005), no. 4 169–173.

[73] F. Akdag, C. F. Eick, and G. Chen, Creating polygon models for spatial clusters, in
International Symposium on Methodologies for Intelligent Systems, pp. 493–499,
Springer, 2014.

[74] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and A. Braun, Measuring the complexity
of polygonal objects., in ACM-GIS, p. 109, 1995.

[75] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis, Journal of computational and applied mathematics 20 (1987)
53–65.

65



[76] R. C. de Amorim and C. Hennig, Recovering the number of clusters in data sets
with noise features using feature rescaling factors, Information Sciences 324 (2015)
126–145.

66


	Curriculum Vitae
	Abstract
	Introduction and Motivation
	Related Work
	Density-based Clustering Algorithm
	Anisotropicity
	Clustering Comparison Indexes
	Research Question

	Anisotropic Density-based Clustering with Noise (ADCN)
	Anisotropic Perspective on Local Density
	Anisotropic Density-Based Clusters
	ADCN Algorithms

	Experiments and Performance Evaluation
	Experiment Designs
	Test Environment
	Evaluation of Clustering Quality
	Evaluation of Clustering Efficiency

	Real World Application
	Data Preprocessing and Clustering
	Constructing AOI from point clusters using chi-shape algorithm

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography



