
MIT Open Access Articles

Investigating the association between 
streetscapes and human walking activities using 

Google Street View and human trajectory data

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Li, Xiaojiang, Santi, Paolo, Courtney, Theodore K., Verma, Santosh K. and Ratti, Carlo. 
2018. "Investigating the association between streetscapes and human walking activities using 
Google Street View and human trajectory data." Transactions in GIS, 22 (4).

As Published: http://dx.doi.org/10.1111/tgis.12472

Publisher: Wiley

Persistent URL: https://hdl.handle.net/1721.1/140888

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/140888


This is the author manuscript accepted for publication and has undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/tgis.12472 

This article is protected by copyright. All rights reserved 

<Running Head>Association between streetscapes and human walking activities 

Investigating the association between streetscapes and human 

walking activities using Google Street View and human trajectory 

data 

Xiaojiang Li1, Paolo Santi1,2, Theodore K. Courtney1,3, Santosh K. Verma4, Carlo Ratti1 
1Massachusetts Institute of Technology, Cambridge, MA, USA 
2Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche, Pisa, Italy 
3Harvard T. H. Chan School of Public Health, Boston, MA, USA 
4

 

University of Massachusetts Medical School, Worcester, MA, USA 

Correspondence 

Xiaojiang Li, Senseable City Laboratory, Massachusetts Institute of Technology, 77 Massachusetts 

Avenue, Cambridge, MA 02139, USA 

Email: lixiaojiang.gis@gmail.com 

 

Abstract 

Having an active lifestyle is recognized to positively contribute to public health. Creating more walkable 

streets and neighborhoods is an important way to promote an active lifestyle for urban residents. It is 

therefore important to understand how the urban built environment can influence human walking 

activities. In this study, we investigated the interaction of human walking activities and physical 

characteristics of streetscapes in Boston. A large number of anonymous pedestrian trajectories collected 

from a smartphone application were used to estimate human walking activities. Publicly accessible 

Google Street View images were used to estimate the amount of street greenery and the enclosure of street 

canyons, both of which were used to indicate the physical characteristics of streetscapes. The Walk Score 

and population were also added in the statistical analyses to control the influence of nearby urban 

facilities and population on human walking activities. Statistical analysis results show that both the street 

greenery and the enclosure of the street canyons are significantly associated with human walking 

activities. The associations between the streetscape variables and human walking activities vary in 

different land use types. The results of this study have implications for designing walkable and healthy 
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cities.  

 

1 INTRODUCTION 

Physical inactivity increases the risk of cardiovascular disease, certain cancers, hypertension, and 

obesity (U.S. Department of Health and Human Services, 1996). Lee et al. (2012) estimate that 

physical inactivity causes 6 to 9% of all deaths from non-communicable diseases worldwide, 

with the problem of physical inactivity being more prevalent in developed countries (Rundle & 

Heymsfield, 2016). On the other hand, studies have shown that improving the walkability of 

streets and neighborhoods helps to promote active lifestyles amongst residents (Duncan, Aldstadt, 

Whalen, & Melly, 2013; Rundle et al., 2015). Designing more walkable and pedestrian-friendly 

streets is therefore a promising method to promote human physical activities and prevent chronic 

health issues (Ewing & Handy, 2009; Yin & Wang, 2016). The relationship between the urban 

built environment and physical activity is still not exactly quantified and measured, with only 

some recent efforts in this area (Christian et al., 2011; Zuniga-Teran et al., 2017).  

[AQ1: Rundle et al. (2015) cited in the text but not listed in the references. Please give details] 

As a basic unit in cities for human activities, streets play an important role in influencing 

social interactions and affecting people’s physical activities and social well-being (Miller & Tolle, 

2016; Li, Ratti, & Seiferling, 2017). It is therefore important to understand how the streetscape 

environment can influence human physical activities. Current literature focuses on smaller 

neighborhood scale studies (Harvey, Aultman-Hall, Hurley, & Troy, 2015; Yin & Wang, 2016), 

while considering only reported activities or small-scale samples instead of actual human 

walking activities (Lee & Li, 2014; Villeneuve et al., 2017). Past studies that rely on small 

samples or small-scale questionnaires cannot fully  represent the entire range of human activities. 

Collecting street-level built environment data is another challenge to study the connection 

between the streetscape features and human walking activities (Harvey et al., 2015). Built 

environment metrics were usually calculated at aggregated areal level to indicate the physical 

environment of neighborhoods, which cannot fully reflect the built environment at the street 

level.   

[AQ2: Miller and Tolle (2016) cited in the text but not listed in the references. Please give details] 

In the mobile and big data era, human trajectory data and street-level images are more 
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abundant and available, making it possible to study and validate the relationship between actual 

human activities and streetscape characteristics at a large scale. In this study, we proposed to 

combine a large number of human trajectory data and Google Street View (GSV) images to 

investigate the connection between human walking activities and urban built environment at the 

street level. A large and passively collected human trajectory dataset from a smartphone 

application was used to estimate the actual human walking activities in Boston. In order to better 

represent the physical environment at the street level, we used GSV images to measure the 

streetscape characteristics. Since GSV images were captured along streets with a similar view 

angle to pedestrians (Li et al., 2015), the built environment metrics derived from GSV images 

would help to represent the streetscape more objectively.  

2 LITERATURE REVIEW 

The social–ecological theory of human behavior suggests that environmental factors in cities 

influence the likelihood of people being physically active (Sallis, Bauman, & Pratt, 1998; Sallis, 

Floyd, Rodriguez, & Saelens, 2012; Kraus et al., 2015; Zuniga-Teran et al., 2017). Many 

environmental factors, such as higher housing density, easier access to transit, and greater land 

use mix, have been found to be influential in determining people’s physical activities (Frank, 

Saelens, Powell, & Chapman, 2007; Leslie et al., 2007; Coogan et al., 2009; Kerr et al., 2014; 

Zuniga-Teran et al., 2017). The connection between human physical activities and environmental 

factors gives a motivation to the development of the Walk Score, which incorporates built 

environment variables together with some other variables of amenity categories such as grocery 

stores, restaurants, parks, banks, schools, movie theaters, libraries, and other urban facilities to 

indicate a neighborhood’s capacity to support physical activity (Carr, Dunsiger, & Marcus, 2010; 

Duncan, Aldstadt, Whalen, Melly, & Gortmaker, 2011; Walk Score, 2017). As a publicly 

available online metric, the Walk Score provides an objective measure of walkability at urban 

scale (Duncan et al., 2014; Chiu et al., 2015; Gilderbloom, Riggs, & Meares, 2015). However, it 

is important to observe that the Walk Score measures the number of factors that facilitate 

walking (e.g. for commuting or going to a store), but not the actual human walking activities. In 

addition, the Walk Score is only suitable for representing the urban form at the neighborhood or 

city scale, because streetscape characteristics, which reflect urban features at the street level, are 

not considered in the algorithm for computing the Walk Score. However, streets carry most 
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human walking activities in cities (Li et al., 2017), and it is believed that streetscape 

characteristics would influence human walking preferences directly (Ewing et al., 2005; Harvey 

et al., 2015). Investigating the interplay between the physical characteristics of streetscapes and 

human walking activities is therefore needed.  

[AQ3: Ewing et al. (2005) cited three times in the text but not listed in the references. Please give 

details] 

Proliferating studies have examined the connection between street-level design qualities 

and the human perception of environment (Ewing et al., 2005; Asgarzadeh, Lusk, Koga, & 

Hirate, 2012; Asgarzadeh, Koga, Hirate, Farvid, & Lusk, 2014; Harvey et al., 2015). Ewing et al. 

(2005) summarized several street design features that are important to pedestrians and the 

walkability of streets: imageability, enclosure, complexity, and transparency. Harvey et al. (2015) 

found that streets which are more enclosed by buildings and trees are generally perceived as 

safer than those streets that are more open and less vegetated. However, the perceived safety is 

estimated based on the crowdsourcing website, and people’s perception of the environment may 

not be fully represented by those online street-level images. Azgarzadeh et al. (2012, 2014) 

found that high-rise buildings are more oppressive than low-rise buildings, and street trees would 

mitigate pedestrians’ oppressiveness significantly. The relationship between street greenery and 

human perceived safety is not consistent in previous studies. Street greenery is believed to have a 

connection with decreased crime and increased perceived safety (Kuo et al., 2000; Li et al., 

2015). However, low street trees that obstruct views are associated with increased occurrence of 

crime (Donovan & Prestemon, 2012). Tree canopies in streetscapes also contribute to the 

enclosure and complexity of streetscapes (Arnold, 1993; Jacobs, 1993). On the one hand, the 

street enclosure contributes to the imageability and local awareness (Lynch, 1960). On the other 

hand, the enclosed space may cause stress to pedestrians (Asgarzadeh et al., 2014).  

[AQ4: Kuo et al. (2000); Lynch (1960) cited in the text but not listed in the references. Please 

give details] 

However, there are still few studies in the current literature investigating the connection 

between human walking activities and the characteristics of streetscapes at a large scale, while a 

better understanding of the connection between streetscape and human walking activities would 

help us design more walkable and healthier cities.  
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3 METHODOLOGY 

3.1 Study area and data collection 

As the largest city in Massachusetts, the city of Boston was chosen as the study area. Boston has 

a land area of 106.7 km2

The datasets used in this study include anonymous human trajectory data, GSV data, 

Walk Score data, land use map, and OpenStreetMap data. The anonymous human trajectory data 

were collected from an activity-oriented mobile phone application, which was free and 

downloadable from the App stores. The application was a single proprietary activity-tracking 

software (health and fitness type), intended for later-model smartphones (Apple iPhone, Android 

platform devices). Users who downloaded the software presumably had the intention to better 

track and understand their own activities, as is the case with most available “ fitness tracker” or 

“quantified self”- type software. This application was always on and did not require the user to 

trigger it. The anonymized data, which includes about 300,000 trips of over 6,000 anonymous 

users from May 2014–May 2015, records GPS locations and walking behaviors of anonymous 

individuals in Boston metropolitan area. Although the collected trajectory data may not 

necessarily be representative of the general population, this anonymized data would give us a 

new way to understand the connection between human walking activities and the urban built 

environment at the street level, considering the popularity of the mobile phone application and 

the massively collected trajectories.  

 and a total population of 670,000 (as of 2016). Owing to its relatively 

compact layout, Boston is considered one of the most walkable cities in the United States.  

The GSV data was used to measure and estimate the geometries of street canyons and the 

amount of street greenery. Since GSV panoramas are distributed discretely along streets, we first 

created samples every 100 m along streets in the study area (Figure 1). Based on those created 

samples, we further downloaded 10,846 GSV panoramas through the Google Street View API 

(Google, 2016). The land use map in the study area was taken from MassGIS (2005). We 

aggregated similar land use types in the original land use map into four major land use types: 

residential land, commercial land, recreational land, and industrial land. Table 1 shows 

descriptions of these four aggregated land use types.  
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3.2 Estimating human activities at street level 

The anonymous human trajectory data were used to study human activities in Boston (Vanky, 

Courtney, Verma, & Ratti, 2016). In the anonymous human trajectory data, a random distance of 

0–100 m was removed from the start and end of each trip to further anonymize the users’ 

frequently visited locations (Vanky et al., 2016). However, the original GPS locations in those 

trajectories are very noisy and have location errors because of the obstruction of the GPS signal 

by the high-rise building blocks and street trees in cities (Mooney et al., 2016). Figure 2 shows 

the trajectories of four anonymous individuals in the study area. There are obvious mismatches 

between the human trajectories and the street maps. In order to correct those trajectories, we used 

a map-matching algorithm based on the OpenStreetMap. We used the Hidden Markov Map-

Matching algorithm (HMM) to match the measured longitudes/latitudes in human trajectory 

records to roads. The HMM algorithm accounts for the GPS noise and the layout of the road 

network, and matches the GPS locations to corresponding streets with very good accuracy 

(Newson & Krumm, 2009). Figure 2 shows the original raw trajectories (purple lines) and the 

matched trajectories (green lines) of four anonymous individuals. In this study, more than 90% of 

the raw trajectories were matched successfully to road networks based on the map-matching 

algorithm. However, some matched trajectories failed to adequately capture the actual paths. To 

remove the poorest matched trajectories, we calculated the distance offsets between the original 

trajectories and the matched trajectories, and disregarded those considered outliers using the 

inter-quartile range.  

The matched trajectories were further bound to the study area and aggregated at street 

level to estimate human walking activities. In order to match with the street greenery variables, 

we only selected those human trajectories in green seasons (June, July, August, September, and 

October). In addition, those trajectories on highways, ramps, and motorways were removed from 

the analysis.  

3.3 Streetscape variables 

Previous studies have shown that the visibility of greenery and the enclosure of street canyons 

are associated with human perceptions of the environment (Asgarzadeh et al., 2014; Harvey et al., 

2015; Li et al., 2015) and the walkability of the streets (Yin & Wang, 2016). In this study, we 

used the sky view factor (SVF) and Green View Index (GVI) to represent the enclosure of street 
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canyons and the amount of street greenery, respectively.  

The SVF quantifies the degree of sky visibility or the openness of street canyons. Within 

street canyons, there are two types of obstructions influencing the enclosure of streetscapes: 

building blocks and street tree canopies. In this study, we calculated the contribution of these two 

types of obstructions to the enclosure of street canyons based on GSV panoramas and the 

building height model. Hemispherical images created from GSV panoramas were used to 

measure the enclosure of street canyons with consideration of the obstruction of both building 

blocks and street tree canopies (Li et al., 2017). The ray-tracing algorithm of the building height 

model, which considers the obstruction effect of buildings only, was used to estimate the street 

enclosure by buildings. The difference between these two methods defines the contribution of the 

tree canopies to the enclosure of street canyons.  

In this study, we used the method proposed by Li et al. (2017) to classify the 

hemispherical images into three major types: buildings, tree canopies, and sky pixels. Figure 3 

shows hemispherical images generated based on GSV (Figure 3b) and the ray-tracing algorithm 

of the building height model (Figure 3c) at one site of the study area. Figure 3d shows the 

classification result of a GSV-based hemispherical image.  

The SVF can then be calculated based on the sky classification in the generated 

hemispherical images using the photographic method. The photographic method (Steyn, 1980) 

first divides the fisheye image into n concentric annular rings of equal width, and then sums up 

all annular sections representing the visible sky. The SVF is then calculated as 

SVF =
12� sin � �2��∑ sin ��(2�−1)2� � ����=1     (1) 

where n is the number of rings, i is the ring index, and αi

Enclosure =  1 −  SVF     (2) 

 is the angular width in the ith ring. The 

SVF indicates the openness of the street canyon, and its value ranges from 0 to 1. The SVF value 

is 1 when there is no obstruction, and 0 when the sky is totally obstructed. Therefore, the 

enclosure can be calculated by  

The enclosure of street canyons by buildings can be estimated using the same method 

based on the simulated hemispherical images (Figure 3c) from the building height model. Since 

the ray-tracing algorithm considers the obstruction of buildings only, enclosure of the street 

canyons caused by tree canopies can be estimated as the enclosure difference between the GSV 

method and the ray-tracing method in the building height model.  
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The GVI, which measures the visibility of street greenery based on GSV images (Li et al., 

2015), was used to measure the amount of street greenery within street canyons. In this study, we 

calculated the GVI using six horizontal static GSV images only, since the vertical structure of the 

street greenery has already been considered in the street enclosure metrics. The GVI in this study 

was calculated as: 

GVI =
∑ �����_�6�=1∑ �����_�6�=1        (3) 

where Areag_i is the number of green pixels in a static GSV image, Areat_i

Other than the geometry of street canyons and the amount of street greenery, the Walk 

Score and population were also considered in the analysis. Considering the fact that the Walk 

Score measures the proximity to nearby urban facilities, we also added the Walk Score in our 

analysis as a confounding variable. We collected the Walk Score for all created sample sites 

through the Walk Score API by using the coordinates of those sample sites as input. The 

population information was derived from the 2009–2014 five-year American Census Survey data 

at census tract level.  

 is the number of total 

pixels in one GSV image. Only those GSV images taken in green seasons will be used in the 

computation.  

Different representations of land use diversity may impact the association between 

neighborhood design and specific walking behaviors (Christian et al., 2011). In addition, land use 

types were also used to represent the built environment, considering that the human activities and 

the interaction of people with the physical environment would be different in different land use 

types. Therefore, different land use types were also considered in the analysis.  

3.4 Statistical analysis  

Four streetscape variables were selected (street enclosure by building, street enclosure by tree, 

GVI, and enclosure of the streetscapes) in the statistical analysis. The Walk Score and population 

were also added in order to control the influence of urban amenities and population on the 

pedestrian trip number. Pearson correlation analysis was first conducted between the pedestrian 

trip number and the chosen streetscape variables.  

In order to further investigate the impact of urban design features on human walking 

activities, we applied regression models to study the association between the independent 

variables and the pedestrian trip number. The variable of actual enclosure of street canyons was 
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not included in the regression analysis, because it has strong correlation with street enclosure by 

buildings and street enclosure by trees. Different regression models were applied for each type of 

land use.  

The existence of spatial autocorrelation would violate the assumption of the linear 

regression model (Talen & Anselin, 1998); to account for this, we also checked the spatial 

autocorrelation of the regression residuals by calculating Moran’s I statistics. If there was a 

significant spatial autocorrelation, we then used the spatial regression models to study the 

associations between the dependent variable and the independent variables in different land use 

types (Anselin & Bera, 1998; Anselin, 2005). There have been two common approaches to 

include the spatial dependence in spatial regression models—spatial error regression model 

(SARerr) and spatial lagged regression model (SARlag

4 RESULTS 

)—which incorporate the spatial 

autocorrelation effects in the residual error term and the dependent variable, respectively. The 

Lagrange multiplier and robust Lagrange multiplier tests were used to help choose the right type 

of spatial regression model.  

Figure 4a shows the spatial distribution of the human walking activities in terms of trip number 

at street level in the study area. An expected activity pattern can be observed, with the downtown 

and Back Bay areas having more intensive human activities than the peripheral part of the study 

area. This is consistent with the fact that the downtown area has the most commercial shops, 

workplaces, and public transportation stops. In order to make the street-level trip number directly 

comparable with other independent variables, we further overlaid the sample sites on the street-

level trip number map to get the trip number map at site level (Figure 4b).  

Figure 5 shows the spatial distributions of the four independent variables. Generally, the 

Walk Score map (Figure 5a) has a similar spatial distribution to the trip number map (Figure 4). 

The Walk Score in the downtown area has larger values than the southern and southwestern areas. 

This is because the downtown area has more urban facilities, which would further have larger 

Walk Score values, considering the fact that the Walk Score is calculated based on the proximity 

to different urban facilities and the density of the urban facilities. In the map of street enclosure 

by buildings (Figure 5c), the downtown area has higher enclosure level compared with the 

southern part of the study area. This is explained by the fact that buildings in the southern part of 
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the study area are much lower compared with the downtown areas. The GVI map (Figure 5b) and 

the street enclosure by street trees map (Figure 5d) have a similar spatial distribution. In both of 

these maps, the peripheral parts have higher values than the central part of the study area. This is 

because both variables reflect the amount of street greenery, and the peripheral parts have more 

street greenery than the central part of the study area. The difference between these two variables 

is that the GVI represents the horizontal visibility of street greenery, while the street enclosure by 

trees indicates the amount of street greenery overhead.  

Table 2 shows the Pearson correlation coefficients between the trip number and 

independent variables. The trip number has a significant and positive correlation with the Walk 

Score. The population is significantly and negatively correlated with the trip number. However, 

the correlation coefficient is very low. The street enclosure by buildings has a very significant 

and positive correlation with the trip number. Both the GVI and the street enclosure by trees have 

a significant and negative correlation with the trip number. There is a weakly significant and 

positive correlation between the trip number and the enclosure of the streetscape, which is 

enclosed by joint building blocks and street greenery.  

Considering the fact that the interaction of pedestrians and streetscape variables is 

different in different land use types, we further investigated the relationship between the trip 

number and the independent variables in different land use types. We used ordinary least squares 

(OLS) regression models to investigate the associations between the trip number and different 

independent variables. Since the trip number variable is very skewed, we used a log transform to 

make it satisfy the assumption of normality. The enclosure of the streetscape has a very 

significant and strong correlation with the variable of street enclosure by buildings, therefore we 

only consider the GVI, street enclosure by buildings, street enclosure by trees, population, and 

Walk Score in the regression models as independent variables.  

Table 3 shows the OLS regression analysis results between the trip number and the 

streetscape variables in different land use types. Generally, the Walk Score has a very positive 

and significant association with the pedestrian trip number in all four land use types. The 

population is significantly and negatively associated with the pedestrian trip number. The street 

enclosure by buildings has a very significant and positive association with the trip number. The 

GVI and street enclosure by trees have different associations with the trip number in different 

land use types. In the residential land, commercial land, and recreational land, there is no 
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significant association between the GVI and the trip number. However, for the industrial land, 

there is a significant and negative association between the trip number and the GVI. Different 

from the street enclosure by buildings, the street enclosure by trees has no significant association 

with the trip number in all land use types, except recreational land. In the recreational land use, 

there is a significant and negative association between the street enclosure by trees and trip 

number.  

The residuals in the four OLS regression models have significant spatial autocorrelation, 

therefore we used the spatial regression models to investigate the association between the trip 

number and independent variables in different land use types. For comparison, spatial regression 

models with and without confounding variable were applied. Table 4 shows the spatial regression 

results between the dependent variable and independent variables in four different land use types. 

Generally, adding the confounding variable into the regression models does not have much 

influence on the significance of independent variables. For the residential land, the Walk Score 

remains a significant contributor to the human trip number in the spatial error regression model 

(SARerr). The population is significantly and negatively associated with the trip number. 

Different from the OLS model, after controlling the spatial autocorrelation and the confounding 

variable Walk Score, both the GVI and the street enclosure by buildings have significantly 

negative associations with the trip number. Similar to the OLS model, the street enclosure by 

trees has non-significant association with the trip number. For commercial land, the Walk Score 

has a significant and positive association with the trip number. There is no significant association 

between the population and the trip number. The GVI is significantly and negatively associated 

with the trip number. The street enclosure by buildings and the street enclosure by trees both 

have no significant association with the trip number. For recreational land, the Walk Score and 

population have significantly positive and negative associations with the trip number, 

respectively. There is no significant association between the trip number and the other three 

independent variables after controlling the spatial autocorrelation. For industrial land, the Walk 

Score and street enclosure by buildings have significant and positive associations with the trip 

number in the spatial regression model. The GVI and street enclosure by trees both have no 

significant association with the trip number. The population has a significantly negative 

association with the trip number. 
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5 DISCUSSION 

This study investigates the relationship between human walking activities and the physical 

characteristics of streetscapes. Pervasively collected human trajectory data was used to estimate 

human walking activities in the study area. The large number of human trajectories permit a 

more unbiased estimation of the actual human walking activities compared with previous studies 

based on small-scale samples. In order to represent the characteristics of streetscapes in the study 

area, several streetscape variables were calculated from GSV data and the building height model. 

Tens of thousands of street-level images and panoramas were used to calculate the streetscape 

variables for sample sites along streets at a fine level. Considering the fact that the Walk Score is 

a composite measure of the potential for walking with consideration of the density of, and 

proximity to, urban facilities, the Walk Score was also selected in the analysis as the confounding 

variable to investigate the connection between the characteristics of streetscapes and human 

walking activities.  

Statistical analysis results show that the associations between human walking activities 

and the streetscape variables vary among different land use types after controlling the 

confounding variable of the Walk Score and population. The visibility of the street greenery has 

different associations with human walking activities among different land use types. In 

residential and commercial land use areas, the visibility of the street greenery is negatively 

associated with human walking activities. For recreational land and industrial land, there is no 

significant association between the visibility of the street greenery and human walking activities. 

Different from previous studies, which showed that the enclosure of the streetscape contributes 

to increased walking activities, this study finds that the street enclosure has different associations 

with human walking activities among different land use types. The street enclosure by buildings 

and the street enclosure by trees have different associations with human walking activities in the 

study. The street enclosure by trees has a significant and negative correlation with human 

walking activities. However, regression models show that the street enclosure by trees has no 

significant association with human walking activities in all land use types after controlling other 

independent variables and the spatial autocorrelation. The street enclosure by buildings would 

give more power to the variance of the dependent variable (the trip number), especially in for 

residential land and industrial land. The findings provide a reference for physical activity 

promotion intervention programs in cities.  
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This study contributes a new methodology to investigating the associations between the 

urban built environment and human walking activities at the street level by combining street-

level images and human trajectory data. The human trajectory data and street-level images help 

to objectively represent human walking activities and streetscapes, respectively. Therefore, the 

combination of these two types of dataset would help us to better understand the connection 

between human activities and the built environment. With the public and global availability  of 

street-level images and the increasingly abundant human GPS trajectory data, it is possible to 

deploy the proposed workflow to other cities to understand the connections between streetscapes 

and human activities, which would further benefit urban design and planning in those cities. In 

addition, the proposed methodology using publicly accessible and globally available street-level 

images provides us with a new tool to test the social–ecological theory which could promote 

public health research.  

Additionally, the connections between the streetscape metrics and human walking 

activities could support the development of better metrics to measure the walkability in future. 

Statistical analyses results show that the current state-of-the-art walkability metric, Walk Score, 

shows some power at indicating the walkability at city scale, but still does not fully represent 

actual human walking activities. More factors, especially the streetscape variables, need to be 

considered to better represent the real walkability at street level. 

Although this study used a large number of pervasively collected anonymous trajectories 

to study human walking activities and investigated the association between the physical 

characteristics of streetscapes and human walking activities, the current study still has some 

limitations. First, the large number of human trajectories still cannot fully represent all human 

walking behaviors in the study area. The observed population may not necessarily be 

representative of the general population. Demographic details that could be desirable were 

redacted to protect user anonymity.  Generally, the population of smartphone owners and mobile 

application users tends to skew toward younger, more affluent individuals, though without 

demographic information this could not be confirmed. If we presume that these users were more 

affluent and younger, then the results may underestimate the behavior of older, less affluent 

individuals, who could have different mobility patterns.  Big or “found” data such as those 

utilized here are a new territory for research. While offering information at large scale, they may 

lack detailed information typically collected in traditional studies. Future studies should try to 
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combine different sources, including passively collected trajectory data to get more objective 

estimations of human walking activities.  

Second, although the map-matching algorithm can match most trajectories successfully, a 

small number of paths failed to accurately capture the path represented by the GPS coordinates. 

These mismatched trajectories would misrepresent the actual human walking activities at street 

level, which could further bring noise into the statistical analyses. In addition, walking 

preferences between local residents and tourists could be different. Future studies should also 

consider the difference between tourists and local residents. 

There are many other streetscape features that could influence human walking activities. 

In this study, we only considered the visibility of the street greenery and the enclosure of street 

canyons using the Walk Score as the confounding variable. Future studies should consider more 

variables in the analysis of the connection between the streetscape characteristics and human 

walking activities.   

6 CONCLUSION 

This study investigated the actual human activities using large-scale passively collected human 

trajectory data and studied the connection between streetscape characteristics and human 

walking activities. Streetscape characteristics have different associations with human walking 

activities in different land use types. The enclosure of street canyons is an important factor 

associated with human walking activities at street level. The amount of vegetation has different 

associations with walking activities among different land use types. This study provides a 

meaningful reference for urban planners and designers seeking to create more walkable streets 

and healthier cities. This study also demonstrates the usefulness of passive, pervasive mobile 

devices and publicly accessible street-level images in evaluating urban space and investigating 

the interplay between the urban built environment and human activities. 

Future studies should also investigate the connection between streetscape characteristics 

and human walking activities in different cities of different climate zones. The different roles of 

enclosure by buildings and trees should also be investigated in the future, considering the fact 

that enclosure by trees could play an important role in influencing human thermal comfort by 

providing shade during hot summers.  
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FIGURE 1 The location of the study area and the created sample sites  
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FIGURE 2 Map matching of human trajectories to streets: the purple lines represent the raw 

trajectories of anonymous individuals, and the green lines represent the matched trajectories 

based on OpenStreetMap 
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FIGURE 3 Estimating the enclosure of street canyons: (a) profile view of streetscape at one 

site; (b) hemispherical image generated from GSV panorama; (c) synthetic open sky image from 

the building height model; (d) classification result of the generated hemispherical image. (Red 

represents the building, cyan represents the sky, and green represents the vegetation) 
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FIGURE 4 The spatial distributions of the trip number at street level and site level in Boston 
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FIGURE 5 The spatial distributions of independent variables: (a) the Walk Score; (b) the GVI; 

(c) the enclosure of streetscapes enclosed by buildings; (d) the enclosure of streetscapes enclosed 

by street tree canopies 
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TABLE  1 Aggregated land use types in Boston and the description of each land use type 

Land use types Descriptions 

Residential land High-density residential land, medium-

density residential land, multifamily 

residential land. 

Commercial land Malls, shopping centers and larger strip 

commercial areas, plus neighborhood stores 

and medical offices (not hospitals). 

Recreational land Lands comprising open land, institutional 

facilities, wetlands, marina, pasture, public 

open green spaces, and cropland. 

Industrial land  Light and heavy industry, including 

buildings, equipment, and parking areas; 

transportation land; mining. 

 

 

TABLE  2 Correlations between trip number and independent variables 

Correlation analysis Pearson’s correlation Sig. (2-tailed) N 

Walk Score 0.27** 0.000 10,846 

Population  −0.04** 0.000  

GVI −0.19** 0.000  

Enclosure of streetscape 0.09** 0.000  

Street enclosure by 

buildings 

0.49** 0.000  

Street enclosure by trees −0.13** 0.000  

**Correlation significant at the 0.01 level (2-tailed). 

 

 

TABLE  3 OLS regression models in different land use types 
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Land use Variables Coefficients z Values     

Residential 

land  

(N=6,813) 

Walk Score 0.04** 23.95  

Population −0.17×10−3 −12.57 **   

 GVI −0.6×10 −2.22 −2  Adj. R square: 0.30 

 Enclosure by buildings 7.26** 22.93 F statistic: 596.36 

 Enclosure by trees 0.22 1.91 Moran’s I of 

residuals: 0.30**  

     

Commercial 

land  

(N=1,251) 

Walk Score 0.05** 11.58  

Population −0.16×10−3 −5.17 **   

 GVI −1.20×10 −1.81 −2  Adj. R square: 0.50 

 Enclosure by buildings 6.82** 21.98 F statistic: 250.0 

 Enclosure by trees 0.27 0.77 Moran’s I of 

residuals: 0.32**  

     

Recreational 

land  

(N=1,860) 

Walk Score 0.03** 11.28  

Population −0.22×10−3 −10.59 **   

 GVI 0.78×10 1.64 −2 Adj. R square: 0.23 

 Enclosure by buildings 5.72** 11.98 F statistic: 114.35 

 Enclosure by trees −0.67** −3.07 Moran’s I of 

residuals: 0.41**  

     

Industrial 

land  

(N=922) 

Walk Score 0.04** 11.27  

Population −0.3×10−3 −10.22 **   

 GVI −2.67×10−2 −3.84 **  Adj. R square: 0.29 

 Enclosure by buildings 4.73** 8.73 F statistic: 74.85 

 Enclosure by trees 0.30 0.80 Moran’s I of 

residuals: 0.32**  
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** Significant at the 0.01 level (2-tailed). 

 

TABLE  4 Spatial error regression (SARerr

Land use types 

) models in different land use types 

Variables Models with and without confounding 

variable 

Coefficients (z values) Coefficients (z 

values) 

Residential land Walk Score 0.04** 
— (20.01) 

(N=6,813) Population −0.08×10−3**  −0.08×10(−5.65) −3

 

** ( −5.05) 

GVI −1.50×10−2 −1.94×10**  (−6.44) −2

 

** ( −8.17) 

Enclosure by 

buildings 

−1.17** (−3.77) −0.33 (−1.03) 

 Enclosure by trees 0.02 (0.26) −0.07 (−0.79) 

 Spatial error term 0.97** (154.8) 0.98** 

Adj. R square  

(171.0) 

0.60  0.58 

Akaike information 

criterion  

23,182.5  23,569.2 

    

Commercial land Walk Score 0.03** (4.47) — 

(N=1,251) Population 0.02×10−3 0.02×10 (0.60) −3

 

 (0.63) 

GVI −1.35×10−2 −1.63×10**  (−2.80) −2

 

** ( −3.42) 

Enclosure by 

buildings 

0.41 (1.16) 0.49 (1.38) 

 Enclosure by trees 0.14 (0.55) 0.13 (0.51) 

 Spatial error term 0.90** (56.29) 0.91** (62.33) 

Adj. R square 0.75  0.75 

Akaike information 

criterion  

4,070.2  4,087.4 

    

Recreational land Walk Score 0.02** (5.01) — 

(N=1,860) Population −0.11×10−3 −0.10×10**  (−5.69) −3**  (−4.89) 
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 GVI 0.06×10−2 0.18×10 (0.16) −2

 

 (0.50) 

Enclosure by 

buildings 

0.23 (0.55) 0.31 (0.75) 

 Enclosure by trees −0.24 (−1.46) −0.25 (−1.50) 

 Spatial error term 0.89** (58.10) 0.90** (63.22) 

Adj. R square  0.61  0.61 

Akaike information 

criterion  

6,292.5  6,313.0 

    

Industrial land  Walk Score 0.02** (7.56) — 

(N=922) Population −0.08×10−3 −0.05×10**  (−3.42) −3

 

 (−1.56) 

GVI −0.38×10−2 −0.03×10 (−0.70) −2

 

 (−0.06) 

Enclosure by 

buildings 

1.91** (4.33) 2.45** (5.34) 

 Enclosure by trees 0.27 (1.00) 0.40 (1.43) 

 Spatial error term 0.90** (45.89) 0.90** 

Adj. R square 

(45.89) 

0.61  0.56 

Akaike information 

criterion  

3,134.3  3,222.6 

**Significant at the 0.01 level (2-tailed).  
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