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Evaluation and Development of Sustainable Urban Land 
Use Plans Through Spatial Optimization 

Abstract 

Along with rapid global urbanization, cities are challenged by environmental risks and 

resource scarcity. Sustainable urban planning is central to address the dilemma of 

economic growth and ecosystem protection, where the use of land is critical. 

Sustainable land use patterns are spatially explicit in nature, which can be structured 

and addressed using spatial optimization integrating geographic information systems 

(GIS) and mathematical models. This research discusses prominent sustainability 

concerns in land-use planning and suggests a generalized multi-objective spatial 

optimization model to facilitate conventional planning. The model is structured to meet 

land use demand while satisfying the requirements of the physical environment, society 

and economy. Unlike existing work relying on raster data due to its simple data 

structure and ease of spatial relationship evaluation, this research develops an 

approach for identifying land use solutions based on vector data that better reflects the 

actual shape and spatial layout of land parcels as well as the ways land-use information 

is managed in practice. An evolutionary algorithm is developed to find the set of 

efficient (Pareto) solutions given the complexity of vector-based representations of 

space. The proposed approach is applied in an empirical study of Dafeng, China in order 

to support local urban growth and development. The results demonstrate that spatial 

optimization can be a powerful tool for deriving effective and efficient land use planning 

strategies. A comparison to results using a raster data approach supports the 

superiority of land use optimization using vector data as part of planning practice.   
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1 Introduction 

Urban landscape worldwide has undergone remarkable changes during the massive 

global urbanization over the last few decades. The urban area has increased by 58,000 

𝑘𝑚2 between 1970 and 2000 (Seto et al., 2011), with a projected expansion of 1.2 

million 𝑘𝑚2 by 2030 given current trends in population and urban growth (Seto et al., 

2012). The conversion to urban land from other land uses (e.g. farmland, woodland and 

pasture) has resulted in serious consequences like land degradation, reduced 

biodiversity, intensified soil erosion and fragmented habitat (Elmqvist et al., 2013). 

Also, rapid growth in urban populations has greatly increased the demand for services 

like housing and transport, leading to conflicting land uses. Sustainable urban planning 

is central to address the dilemma of urban growth and ecosystem protection, where the 

use of land is critical. Further, sustainable land-use planning has significant implications 

for quality of life, necessitating assessment and regulation of land uses in the context of 

society, economy, environment and ecosystem in order to mitigate land-use conflicts 

and promote long-term balanced development (Healey, 2006).   

From an operational perspective, sustainable land-use planning involves arrangement 

of various land uses over geographic space in order to meet the demand of diverse 

activities, often constrained by economic, social and environmental conditions (Aerts et 

al., 2005; Ligmann-Zielinska et al., 2008; Stewart & Janssen, 2014). Land-use planning 

problems are therefore spatial in nature and can be structured and addressed using 

spatial optimization integrating GIS and mathematical models (Church, 2002; Murray, 

2010, 2017). GIS not only facilitates the management, manipulation and analysis of 

land-use data, but also provides an environment for visualizing, exploring and 

evaluating alternative land-use scenarios. Further, various goals of planning practices, 
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such as minimizing development costs and maximizing ecological benefits as well as 

constraining conditions with respect to economy, society and the physical environment, 

can be expressed through optimization models based on linear, integer or mix-integer 

programming.  

With the advances in GIS and computing technologies, numerous spatial optimization 

approaches have been proposed for land-use planning over the last few decades (Yao et 

al., 2017). Spatial decision support systems (SDSS) have been developed for assisting 

interactive processes (Porta et al., 2013; Dai & Ratick, 2014; Santé et al., 2016a). Such 

methods and tools have been applied in a variety of contexts, ranging from reserve 

design (Önal et al., 2016) and forest management (Church et al., 2000) to general urban 

and regional planning (Caparros-Midwood et al., 2015). Various sustainable land use 

concerns have been considered for different applications, including compactness of 

selected regions, contiguity of equal land use, compatibility of different land uses, and 

environmental and ecological impacts, among others (Aerts et al., 2003; Ligmann‐

Zielinska et al., 2008; Stewart & Janssen, 2014; Önal et al., 2016).  

Most approaches and applications, however, have relied upon raster data structured 

using regular grid cells, largely due to its simplicity and ease of assessing spatial 

relationships among land parcels, such as proximity and adjacency. With the exception 

of Chandramouli et al., (2009), Cao & Ye (2013), Masoomi et al. (2013) and Stewart & 

Janssen (2014), little has been done utilizing vector data in land-use modeling 

processes, yet this reflects actual decision-making units. That means land use 

information is generally vector based, and managed using this data. Structuring and 

solving land use optimization problems using vector data, however, can be more 

challenging. For instance, evaluation of the spatial relationships (e.g. adjacency) 
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between parcels is often required for calculating measures of land-use patterns (e.g. 

compactness and contiguity), but this requires geometric assessment and derivation. In 

a raster structure, through row-column referencing, this is trivial as it is essentially part 

of the data structure. Similarly, attribute assessment in a raster representation, such as 

area, length of common boundary or perimeter of a parcel cluster, is generally a simple 

summation of cells. For vector data, however, this is complicated by spatial query and 

topological relationship evaluation. While the use of vector data in land use 

optimization can better reflect planning practice, it also requires more computational 

processing and evaluation involving polygon object geometries.  

Heuristics, such as greedy approaches, genetic algorithms (GA) (or more generally 

evolutionary algorithms, EA), simulated annealing and particle swarm algorithms, are 

often adopted in land use optimization (Yao et al., 2017). One reason for this is that 

spatial optimization usually involves spatial query and evaluation of spatial 

relationships that adds to computational complexity (Murray, 2010). Exact solution 

approaches are often limited in practice (Porta et al. 2013; Santé et al., 2016b). Further, 

land-use planning generally involves multiple, often conflicting, objectives, so one best 

solution likely does not exist. This means compromise outcomes are a reality, and 

Pareto-optimal solutions are necessary for multi-objective land use optimization 

problems. Many heuristics have been specifically designed for raster data structures, 

and are not necessarily amenable to vector data. Therefore, modified or new heuristics 

are needed for implementing land use optimization using vector data given the 

challenges mentioned above. 

The aim of this research is to develop an EA-based heuristic for generalized land use 

optimization models that account for sustainability concerns, applicable for vector land-
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use data, and identify efficient solutions for multi-objective problems. The next section 

reviews related work on sustainable land use optimization, focusing on approaches that 

account for patterns. Then, a generalized model and solution method are presented. 

These approaches are then applied in an empirical study of Dafeng, China, where a 

comparison with results based on raster data is detailed. The paper concludes with a 

discussion of the properties and wider applicability of the proposed modelling 

approach, the superiority of land use optimization using vector data over raster in 

practice, and areas for future research.    

2 Related Research 

Urban land-use planning is important for government to reconcile diverse and often 

competing interests, regulate activities and promote development. This usually involves 

assessing land potential and allocating various socioeconomic activities to land parcels 

(Berke & Godschalk, 2006). Given the challenges brought by worldwide urbanization, 

such as traffic congestion, air pollution, loss of farm land, food security and urban 

poverty, sustainable development has become the goal of urban land-use planning. A 

variety of strategies have been proposed to account for sustainability in practice, such 

as mixed land uses, compact communities, infill development, and decentralization 

(Leccese & McCormick, 2000). Godschalk (2004) developed a sustainability/livability 

prism to cope with conflicts in land-use planning. Berke & Godschalk (2006) discussed 

how to incorporate economy, environment, and equity (also known as three E’s of 

sustainability) into urban land-use planning. United Nations (2015) explicitly specified 

17 global sustainable development goals to be achieved by 2030, including poverty, 

social equity, economy, and sustainable cities. In this regard, land-use planning can be 
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considered as a way to effectively utilize land resources to achieve social, economic and 

environmental objectives in a sustainable manner.    

In the field of spatial optimization, the primary concerns in sustainable land-use 

planning are often the form and spatial arrangement of land parcels, as well as the 

spatial relationships between them. Thus, in addition to socioeconomic and 

environmental dimensions, spatial optimization approaches explicitly consider 

geographic configuration of land uses, often using compactness, contiguity and 

compatibility. 

Compactness is related to the configuration of a land use type, where land parcels that 

cluster to form a circular shape are desired. Compact land uses can be more energy 

efficient and compact urban form can promote social equality in access to public 

services (Watson, 2016). Many shape indices have been proposed and utilized as the 

indicators of compactness in land-use planning, such as these of perimeter, area and 

perimeter-to-area ratio (Janssen et al., 2008; Porta et al. 2013). Other methods 

encourage parcels to be assigned the same land use as their neighbors, thereby forming 

spatial clusters. Common strategies include maximizing the number of adjacent parcels 

of the same land use, maximizing the largest cluster and minimizing the number of total 

clusters for each land use (Aerts et al., 2003; Stewart et al., 2004; Stewart & Janssen 

2014).      

Contiguity refers to the connectiveness of land parcels. A land unit is considered 

contiguous if one can move from one point to another point without leaving the same 

land use. Compact and contiguous land is considered more sustainable for habitats 

(Önal et al., 2016). Many scholars have formulated contiguity through network flow 

approaches that abstract parcels as nodes on a network (Shirabe, 2009; Duque et al., 
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2011). Also, it has been found that encouraging compactness will implicitly promote 

contiguity, thus the former is usually employed as a surrogate for the latter (Aerts et al., 

2003). 

Compatibility reflects the coexistence of different land uses in an area without negative 

effects on each other. For example, residential and certain public infrastructure land 

uses are considered highly compatible as facilities like schools and parks can serve 

nearby neighborhoods. Compatibility is usually obtained through Delphi or analytic 

hierarchy process (AHP) techniques that are subsequently optimized (Ligmann-

Zielinska et al., 2008; Cao et al., 2011; Masoomi et al., 2013). 

Given the inherent complexity of identifying sustainable land use patterns as discussed 

above, a number of heuristics have been developed to solve land use optimization 

problems, such as GA (Chandramouli et al., 2009; Cao et al., 2011, 2012; Cao & Ye, 2013; 

Schwaab et al., 2017), simulated annealing (Caparros-Midwood et al., 2015; Santé et al., 

2016b), particle swarm (Masoomi et al., 2013) and ant colony algorithms (Mi et al., 

2015). For example, Aerts et al. (2005) applied both GA and simulated annealing to 

solve a goal-programming model for land-use allocation and found that the former had 

better performance in terms of both computational efficiency and quality of solutions. 

Porta et al. (2013) and Santé et al. (2016b) sought to improve the efficiency of GA and 

simulated annealing using parallel computing, respectively.   

Among various heuristics, GA has proven effective and efficient for land use planning 

(Stewart et al., 2004; Aerts et al., 2005; Janssen et al., 2008; Chandramouli et al., 2009; 

Cao et al., 2011, 2012; Cao & Ye, 2013; Stewart & Janssen, 2014; Li & Parrott, 2016; 

Schwaab et al., 2017). It is a type of search method built on the theories of natural 

selection and genetics, seeking solutions of high quality (“fitness”) through an 
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evolutionary process where child solutions are generated from parent solutions 

through an iterative process including sequential operations – selection, crossover and 

mutation (Sastry et al., 2014). The applications of GA in land use optimization thus have 

focused on how to design specialized operators for spatial data and sustainable land use 

patterns. For example, in terms of crossover, Stewart et al. (2004) assigned two land 

uses to each 50% of the chosen cells within the two parent solutions. Porta et al. (2013) 

employed a two-point crossover operator that exchanges parent land uses. Regarding 

mutation, Stewart & Jansen (2014) swapped the land uses of two random subsets of 

proximate units from two parents. Schwaab et al. (2017) compared several crossover 

and mutation operators for land-use allocation problems and found that combining 

diverse mutation operators is helpful to identify representative Pareto-optimal 

solutions.        

Most applications using GA for solving land use optimization problems combine several 

objectives into one. Common strategies include weighted-sum (Demetriou et al., 2013; 

Porta et al., 2013) and goal programming (or reference point) (Stewart et al., 2004; 

Janssen et al., 2008; Chandramouli et al., 2009; Cao et al., 2012; Cao & Ye, 2013; Stewart 

& Janssen, 2014) approaches. However, the former cannot find all Pareto-optimal 

solutions in a non-convex solution space. The later has the potential for finding the full 

Pareto frontier, if properly designed and implemented, but there is no guarantee. In 

practice a group of diverse Pareto-optimal solutions are often preferred, and there has 

been increasing interest in EA like non-dominated sorting GA (NSGA) and elitist NSGA 

(NSGA-II) designed for multi-objective decision-making (Deb, 2014). They have been 

applied in various land use planning contexts (Cao et al., 2011; Schwaab et al., 2017). 

Further, previous work utilizing GA for vector-based land use optimization have either 
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employed non-spatial operators (Chandramouli et al., 2009; Cao & Ye, 2013) or adopted 

certain model simplifications so that procedures designed for raster data could be used 

(Stewart & Janssen, 2014). Therefore, this research attempts to develop an EA for land 

use optimization by extending NSGA-II (Deb et al., 2002) to explicitly account for spatial 

characteristics of vector data, incorporate sustainable land use patterns and explore the 

impacts of various parameter settings.  

3 Spatial Optimization Model  

Without loss of generality, a spatial optimization model for sustainable land-use 

planning would include two types of objectives, spatial and non-spatial, subject to basic 

limits for each land use. Consider the following notation: 

𝑖 = index of land parcels; 

𝑘, 𝑘′ = index of land use types;  

𝑁, 𝑁’ = total number of spatial and non-spatial objectives; 

𝑈𝑘, 𝐿𝑘= upper and lower bounds on total area for land use type 𝑘; 

𝑎𝑖 = area of parcel 𝑖; 

𝑥𝑖𝑘 = {1      if parcel 𝑖 is assigned land-use type 𝑘      
0      otherwise                                                          

 

 

A generalized model can be formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑁}                                              (1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝐹′ = {𝑓1
′, 𝑓2

′, … , 𝑓𝑁′
′ }                                              (2) 

Subject to             ∑ 𝑥𝑖𝑘𝑘 = 1                    ∀𝑖                                     (3) 

∑ ∑ 𝑎𝑖𝑥𝑖𝑘𝑘𝑖 ≤ 𝑈𝑘                 ∀𝑘                                  (4a) 



12 
 

∑ ∑ 𝑎𝑖𝑥𝑖𝑘𝑘𝑖 ≥ 𝐿𝑘                 ∀𝑘                                  (4b) 

𝑥𝑖𝑘 = {0,1}            ∀𝑖, 𝑘                                 (5) 

Objectives (1) and (2) include a set of functions to achieve spatial (e.g. compactness and 

contiguity) and non-spatial goals (e.g. various costs, economic benefits and ecological 

impacts), respectively. Thus, a typical spatial land use optimization problem includes at 

least one objective in each set 𝐹 and 𝐹’. Although minimization is adopted in (1) and (2), 

multiplication by -1 for any function 𝑓 or 𝑓’ indicates maximization. Constraints (3) 

require only one type of land use allocated to each parcel. Constraints (4a) and (4b) set 

the range of the desired acreage for each land use. Constraints (5) indicate that the 

values of the decision variables are binary (0 or 1).      

Figure 1 details the terminology for the heuristic solution approach employed based on 

GA. The GA usually start with a generation of population (a set of solutions or land-use 

plans), representing the parents. A child in the offspring generation is obtained from 

two parents by means of selection, crossover and mutation operations. The procedure 

usually stops when a certain number of generations are obtained, or other evaluation 

criteria are met.    

<Figure 1 about here>  

The proposed solution procedure for this model, (1) - (5), is based on the NSGA-II of 

Deb et al. (2002) and is presented in Figure 2. Associated parameters are summarized 

in Table 1. The two distinct strategies adopted by NSGA-II are non-dominated sorting 

(Step 2b) and crowding sorting (Step 3), where the former encourages convergence to 

the Pareto frontier and the latter promotes diversity of solutions. The solution 

procedure starts with an initial population that includes 𝑁𝑃 individuals (solutions), from 
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which non-dominated solutions are copied into 𝐴 – the archive set containing all the 

non-dominated solutions throughout the entire solution process. For the first iteration, 

a random set of 𝑁𝑃 individuals from the combination of 𝑃 and 𝐴 are selected to create 

the next generation 𝑄 through crossover (Step 5) and mutation (Step 6). The feasibility 

of the individuals in 𝑄 is checked and modified to be feasible if necessary. Then, 𝐴 is 

updated by comparing the individuals in 𝑄 and existing solutions in 𝐴 with respect to 

their non-domination levels and crowding distances. For the second and subsequent 

iterations, 𝑃 is updated by non-dominated sorting (Step 2b) and crowding sorting (Step 

3) before being used to create the offspring generation through selection, crossover, 

mutation and feasibility amendment (Steps 4-7). The procedure terminates when it is 

run 𝑁_𝑖𝑡𝑒𝑟 times or the same archive set 𝐴 is obtained in 𝑁_𝑠𝑎𝑚𝑒𝐴 consecutive 

iterations. Unique to the implementation reported here, Steps 1, 5, 6, and 7 are 

explained as follows: 

<Figure 2 about here> 

<Table 1 about here> 

Step 1 Population initialization:  

1) For the first individual, a set (𝐺) of |𝑁𝑝𝑎𝑟 ∗ 𝑟0| (the largest integer smaller than 

Npar*r0) parcels are randomly selected (including the parcels with fixed land-

use), for which the current land uses are to be retained. Thus, each member in 

the complementary set 𝐺̅ is to be assigned a land use.  

2) For each member 𝑔 in G, use it as a seed to build a region by including the 

neighboring unallocated parcels and assign the same land use 𝑔𝑘 to them until 

the desired area range [𝐿𝑔𝑘, 𝑈𝑔𝑘] is achieved. The neighbors are defined by 
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adjacency so that the first-order neighbors of 𝑔 (directly adjacent to 𝑔) are check 

first, then second-order neighbors (adjacent to the first-order neighbors), etc.  

3) Repeat 2) until all the land uses involved in 𝐺 achieve their allowance. 

4) If every parcel in 𝐺̅ is allocated a land-use type, go to 8). Otherwise, continue 

with 5).  

5) If there are unassigned land uses, randomly select an unallocated parcel as a 

seed and give it an unassigned land use. Again, similar to 2), use that seed to 

build a region by assigning the same land use to the adjacent/proximate 

unallocated parcels until the desired allowance is achieved.     

6) If there are still unallocated parcels, for each of them, randomly assign a land use 

of their neighboring parcels.   

7) Repeat 4)-6) until every parcel in 𝐺̅ is assigned a land use.   

8) Repeat 1)-7) (𝑁𝑝 – 1) times to create the rest of the individuals.  

Step 5 Crossover: randomly select a parcel and use it as a seed to select a block of 

|𝑁𝑝𝑎𝑟 ∗ 𝑟𝑐| adjacent or proximate parcels. For the two parents selected for crossover, the 

land uses of the parcels within that same block are switched and the others remain 

unchanged.  

Step 6 Mutation: similar to Step 5, randomly select a block of |𝑁𝑝𝑎𝑟 ∗ 𝑟𝑚| adjacent or 

proximate parcels. Randomly exchange the land uses among them. In addition, in order 

to promote the diversity of the solutions, we use 𝑝𝑐 instead of 𝑝𝑚 to increase the 

probability of mutation for the individuals which have multiple copies in the population. 
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Step 7 Feasibility amendment: the purpose of this step is to modify infeasible solutions in 

Q to promote their feasibility according to constraints (4a) and (4b) through following 

procedure:  

1) For every infeasible individual in 𝑄, all land-use types are grouped into two 

categories: 𝐾 =  {𝑘1, 𝑘2, … , 𝑘𝑖} and 𝐾′ = {𝑘1
′ , 𝑘2

′ , … , 𝑘𝑗
′}, so that the land uses in 𝐾 

and 𝐾’ have a shortage and an excess of area, respectively. 

2) Randomly choose a land-use type 𝑘𝑖  from 𝐾 and a parcel with type 𝑘𝑖 .  

3) Check the neighbors of that parcel (again, first check the first-order neighbors 

and then the second-order neighbors, etc). If a neighboring parcel has type 𝑘𝑗
′ 

belonging to 𝐾′, change the land use of that neighbor to 𝑘𝑖 . Update the overall 

area of 𝑘𝑖  and 𝑘𝑗
′ accordingly.    

4) Repeat 3) until the area of 𝑘𝑖  meets the allowance. Remove 𝑘𝑖  from 𝐾. 

5) Repeat 2)-4) until 𝐾 is empty. 

The fixed-use parcels are kept unchanged during Steps 5-7. In addition, feasibility is also 

considered in Step 2b when determining the non-domination level for each solution. 

That is, infeasible solutions are always dominated by feasible solutions. Two infeasible 

solutions, 𝑠1 and 𝑠2, are compared using the violation values defined as in (6):   

𝑉𝑠 = ∑ 𝑑𝑖𝑓𝑓𝑠,𝑘
𝑈𝑘−𝐿𝑘

𝑘      with    𝑑𝑖𝑓𝑓𝑠,𝑘 = {
𝐿𝑘 − 𝐴𝑟𝑒𝑎𝑠,𝑘   𝑖𝑓 𝐿𝑘 > 𝐴𝑟𝑒𝑎𝑠,𝑘
𝐴𝑟𝑒𝑎𝑠,𝑘 − 𝑈𝑘   𝑖𝑓 𝐴𝑟𝑒𝑎𝑠,𝑘 > 𝑈𝑘                   (6) 

where 𝐴𝑟𝑒𝑎𝑠,𝑘  is the total area of land use 𝑘 for solution 𝑠. Therefore, 𝑠1 is dominated by 

𝑠2 if 𝑉1 > 𝑉2. 

Steps 2b, 3, 4 and 8 are rather standard for NSGA-II implementation. Details regarding 

such steps can be found in Deb et al. (2002), among many others.  
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4 Empirical Study  

4.1 Study area and the planning context 

The study area is along the urban fringe of Dafeng, Jiangsu Province, China, covering 

part of Chuandong Farm and Caodianmiao Town (see Figure 3). The area consists of 

680 parcels with a total area 6.52 km2, and are grouped into six land-use categories 

according to national regulations: arable land, green land, construction land, water, 

transportation and other (undeveloped) land. During the last three decades, like many 

Chinese cities, Dafeng has experienced extensive changes in the physical forms and 

functions of land use caused by rapid urbanization, and there has been increasing 

demand in land for urban construction and transportation due to population and 

economic growth. The primary planning goal is to increase urban construction and 

transportation land by 3-12% and 4-6%, respectively, mainly through transforming 

undeveloped land which can be reduced by 50-90%. The area of all the other land uses 

can vary by ±10%. In total 160 parcels were selected for retaining current land uses, 

most of which are roads, rivers and key constructions. Sustainable urban development 

goals require certain patterns of spatial layout for different land uses, such as 

compactness and compatibility. In this context, spatial optimization approaches are 

developed and applied to assist decision-making for local urban land-use planning.  

<Figure 3 about here> 

4.2 Model settings 

To support application and analysis, the following additional notation is used: 

𝑘𝑖= current land-use type of parcel 𝑖; 
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𝑐𝑘𝑘′  = cost/km2 for conversion between land-use types 𝑘 and 𝑘′; 

𝐶𝑘𝑘′  = compatibility of land-use types 𝑘 and 𝑘′; 

Ω𝑖= {𝑗; 𝑗 is a neighbor of 𝑖 in space, that is, 𝑖 and 𝑗 are adjacent} 

Three objectives – two spatial and one non-spatial - are considered for the empirical 

study, which can be defined as follows: 

Compactness/Contiguity       Maximize    ∑ ∑ ∑ 𝑥𝑖𝑘𝑥𝑗𝑘𝑗∈Ω𝑖𝑖𝑘                                         (7) 

   Compatibility       Maximize    ∑ ∑ ∑ ∑ 𝐶𝑘𝑘′𝑥𝑖𝑘𝑥𝑗𝑘′𝑗∈𝛺𝑖𝑖𝑘′𝑘                                 (8) 

Cost        Minimize     ∑ ∑ 𝑐𝑘𝑖𝑘𝑎𝑖𝑥𝑖𝑘𝑘𝑖                                               (9) 

Considering the generalized model in section 3, the first two objectives, (7) and (8), 

belong to the spatial objective set 𝐹 in (1), and Objective (9) belongs to the non-spatial 

objective set 𝐹’ in (2). Objective (7) is to maximize the compactness by encouraging the 

same land use to be assigned to adjacent parcels, which would implicitly promote 

contiguity of the same land use (see Aerts et al., 2003). Objective (8) aims to maximize 

the overall compatibility of different land uses. Objective (9) attempts to minimize total 

costs. Two models are solved: Scenario I includes objectives (7) and (9), and Scenario II 

includes all the three objectives (7)-(9), both subject to constraints (3)-(5).  

The compatibility indicators are shown in Table 2. Four levels of compatibility were 

determined using the AHP method by consulting practitioners in the local land-use 

planning bureau, with higher values indicating better compatibility. The parameter 

values for the solution procedure are presented in Table 1, obtained by trial and error. 

It is well known that GA involves many parameters, among which are the probabilities 

of crossover and mutation. Deb (2014) indicated that a rule of thumb was to start with 
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𝑝𝑐 0.6 and 𝑝𝑚 0.05. Since crossover usually occurs with a high probability and mutation 

happens with a low probability, we systematically tested a set of 𝑝𝑐 and 𝑝𝑚 values for 

Scenario I while keeping other parameters fixed. The former was varied from 0.55 to 1.0 

and the latter was varied from 0.01 to 0.10. As it becomes difficult to visually compare 

the results from different tests when the model includes more than two objectives, we 

present one instance for Scenario II using the same parameters as those in Scenario I.   

<Table 2 about here> 

The models defined above were solved using the above detailed method, implemented 

using Python with spatial data/relationships processed and evaluated carried out using 

PySAL, an open-source Python library for spatial analysis (see Anselin & Rey, 2014). The 

commercial GIS software ArcGIS (version 10.6, by ESRI, Redlands, CA, USA) was 

employed for spatial data management, processing and visualization.   

4.3 Results 

Both models for Scenarios I and II were run on a Mac computer with 16 GB memory and 

3.1 GHz Intel Core i7 processor. The tests for a range of parameter values in Scenario I 

took 20-40 sec and the running time for Scenario II is about 60 sec. The final Pareto-

optimal solutions for Scenarios I are summarized in Figure 4, with opposite values 

shown for Objectives (7) and (8) for the corresponding minimization problems. Figures 

4(a) and 4(b) depict the variations in the solution set for different crossover and 

mutation probabilities, respectively.  

<Figure 4 about here> 

It can be observed that the solutions are generally well spread in Figures 4(a) and 4(b) 

although the diversity of solutions vary across different crossover or mutation 
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probabilities. Both graphs in Figure 4 suggest that there is no obvious association 

between the values of 𝑝𝑐 or 𝑝𝑚 and the quality of obtained solutions. In other words, an 

increase of 𝑝𝑐 or 𝑝𝑚, when keeping all other parameters constant, does not necessarily 

guarantee a set of better Pareto-optimal solutions. For example, in Figure 4(b), most 

solutions are dominated by those with 𝑝𝑚 = 0.07. Interestingly, Figure 4(a) indicates 

that the Pareto-optimal solutions derived with the highest 𝑝𝑚 value 1.0 dominates most 

of those obtained with other 𝑝𝑚 values.      

Further, Figure 5 describes the set of non-dominated solutions across generations for 

Scenarios I and II, both with 𝑝𝑐 = 0.60 and 𝑝𝑚 = 0.05. It can be observed that the 

quality of non-dominated solutions increases with the progress of generation evolution, 

but the speed of improvement varies. Figure 5(a) suggests that the convergence of non-

dominated solutions for Scenario I became much quicker than before after 80 

generations. For Scenario II, the improvement of solutions was relatively slow until the 

120th generation, and the speed of convergence greatly increased since the 180th 

generation. 

<Figure 5 about here> 

Figure 6 shows the corresponding land-use plans and the parcels involved in the 

conversion for two solutions in Figure 4(a): one with the best compactness (𝑝𝑐 = 0.55) 

(Figure 6(a)) and the other with the least cost (𝑝𝑐 = 1.0) (Figure 6(b)). As can be seen, 

the compactness of arable and construction land in Figure 6 are improved compared to 

the original land-use layout in Figure 3. However, compared to Figure 6(b), the newly 

added arable land (on the top right) and construction land (on the top) makes the plan 

in Figure 6(a) has better compactness. Regarding the land conversion, the increase in 

construction and transportation land are mainly achieved by transforming arable and 
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undeveloped land. For example, the construction land is expanded mainly through 

transforming the surrounding arable land. There are also conversions between other 

types of land uses, such as arable land and water, and arable and green land.   

<Figure 6 about here> 

Figure 7 presents the land-use plan with the best compatibility objective value in Figure 

5(b). Again, the increase of construction and transportation land is primarily achieved 

by reducing the undeveloped and arable land. Compared to the plans in Figure 6, the 

land-use layout is very different from the original one in the sense that it involves a lot 

of changes to water and arable land. For example, lots of water area on the top right is 

converted to arable land.  The variety of land uses on the bottom left makes that region 

more fragmented than the original plan, where the same region mainly contains arable 

land and water.   

<Figure 7 about here> 

Finally, the area of different land uses for the plans in Figures 6 and 7 are summarized 

in Figure 8. Compared to the original area, arable, construction and transportation land 

are increased in all the three plans. In contrast, the amount of undeveloped land is 

decreased as expected. For green land, it is decreased in both plans in Figure 6 by 9.3% 

and 4.0% for Figures 6(a) and 6(b), respectively, while increased by 8.7% in the plan in 

Figure 7. Regarding the land for water resources, there is only a slight growth in the 

plan in Figure 6(a).  

<Figure 8 about here> 
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4.4 Comparison with results using raster data 

To provide a comparative assessment, the proposed approach was also applied for the 

study area represented using raster data. As about 0.9% of the land parcels have an area 

less than 100 𝑚2 and 10% with an area less than 400 𝑚2, a spatial resolution of 10 𝑚 * 

10 𝑚 was selected in order to generate a raster surface representing the current land 

use layout with sufficient accuracy and detail. In total, the study area consists of 65,211 

raster grid cells, with the land use in each cell determined by the type having the largest 

area within that cell, as shown in Figure 9. Accordingly, the land use quantity, 𝑈𝑘 and 𝐿𝑘 

in (4a) and (4b), was rounded to the nearest integer.            

<Figure 9 about here> 

Using the same parameters as those adopted by the instances summarized in Figures 6 

and 7, the land use plans generated from the raster representation (Figure 9) are 

presented in Figure 10. Figures 10(a) and 10(b) show two plans for Scenario I, most 

compact and least cost, respectively. Figure 10(c) depicts the plan with the best 

compatibility for Scenario II. The three plans in Figure 10 are very different from their 

vector counterparts in Figures 6 and 7. Obviously, the land use layouts in the former are 

more fragmented. Also, most of the area in the southeast of the study area is converted 

to construction and green space, with a mixture of scattered arable land and water. 

Three plans in Figure 10 are very similar visually, but there are some important 

differences. For instance, a road in the northwest is converted to arable land in Figure 

10(a) but part of it remains in Figures 10(b) and 10(c). The plan for Scenario II (Figure 

10(c)) has more green and construction land in the southeast than the other two plans 

for Scenario I (Figures 10(a) and 10(b)).     
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<Figure 10 about here> 

Figure 11 further describes the allocation of each land use in the three plans in Figure 

10, compared to the original plan in Figure 9. Similar to the results in Figure 8, arable, 

construction and transportation land is increased, largely by reducing the other 

(undeveloped) land. However, the amount of converted land is different. For example, 

the three plans generated with raster data all have less arable land (< 3.5 𝑘𝑚2) and 

more undeveloped land (over 45% retained) compared to the corresponding plans 

using vector data. In addition, some land has a loss in a vector-generated plan but a gain 

in the corresponding raster-generated plan. For instance, green space in both plans in 

Figure 6 is reduced but is increased in Figures 10(a) and 10(b). Compared to the 

decrease of 4.0% in Figure 6(b), water in the plan represented in Figure 10(b) increase 

6.4%.    

<Figure 11 about here> 

5 Discussion and Conclusions 

Spatial optimization has been widely applied to support land-use planning. Most 

studies, however, have utilized raster data due to the simple data structure and the ease 

of spatial relationship assessment. This research proposed an evolutionary algorithm 

for a generalized spatial land use optimization problem using vector data that better 

reflects how data are stored and organized in cadastral management and land-use 

planning. The empirical study demonstrated the effectiveness of the proposed approach 

in finding good quality and diverse land-use plans, with a focus on the sustainability 

concerns. The comparison with the results from raster data also suggests that vector-
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based land use optimization is more feasible and more desirable in the practice of land-

use planning.  

Although the generalized model defined by (1) - (5) can be applied to both raster and 

vector land-use data, implementation procedures can be very different. One challenge in 

using vector data for spatial land use optimization is constraints on each land use. It is 

straightforward for raster data since it consists of same-size grid cells, making the area 

calculation equivalent to counting the number of total cells of same land use. Stewart & 

Janssen (2014) adopted this approach for vector data by transforming constraints 4(a) 

and 4(b) to a parcel quantity constraint (i.e. the number of parcels to be allocated for 

each land-use type), but this is only applicable for cases where all parcels have similar 

sizes. Further, for raster data, Steps 5 and 6 might bring no area changes to each land 

use if the number of parcels of each type remains the same even though their spatial 

layout might be altered. However, in the case of vector representation, Steps 5 and 6 

might lead to very different area allocations for each land use due to the diverse size of 

parcels, as shown in the empirical study in this research. Thus, it is more complex to 

assess and meet the land-use quantity constraints if using vector data, so the feasibility 

amendment in Step 7 is crucial. 

In addition to simplification in implementation, several disadvantages of using raster 

data in land use optimization were observed when comparing results using vector data. 

First, compared to the original dataset, the amount of raster cells is almost 96 times that 

of land parcels, which can greatly increase the demand for data storage and computing. 

Also, a trade-off between the dataset size and the details of represented land use layout 

is often necessary when selecting the spatial resolution for raster data. For example, the 

proportion of transportation land will decrease from 1.9% to 0.6% if the cell size is 
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increased from 10 m * 10 m to 30 m * 30 m, which will inevitably introduce errors or 

uncertainty in the obtained land use plans. Again, as partitioning a land parcel into a set 

of raster cells provides more flexibility of land use conversion, the obtained land use 

plans tend to be more fragmented, as shown in Figure 10, which is often undesirable in 

practice. Therefore, land use optimization using vector data can provide higher quality 

land use plans that better reflect the reality and needs of land-use planning. 

The proposed approach has wide applicability as the major steps in Figure 2 are not 

problem specific or subject to any particular objectives and constraints. The only 

requirement for crossover and mutation operations is to select a contiguous block of 

parcels, which attempts to avoid fragmented land-use layout. For substantive 

applications, the generalized model in (1)-(5) can be modified by incorporating other 

objectives and constraints. Accordingly, the violation value in (6) needs to be adjusted 

by considering other constraints.  

Evolutionary algorithms like GA do have some limitations. One shortcoming is that they 

usually involve many parameters (e.g. population size, crossover and mutation 

probability), where numerical tests are often required to find a good set of parameter 

values that can generate solutions of desired quality for specific problems. In this 

research, a set of common options for crossover and mutation probabilities were 

examined, indicating that increasing those probabilities did not necessarily result in an 

improvement or degradation of the solution quality (see Figure 4). Another limitation is 

that evolutionary multi-objective optimization approaches like NSGA-II are often 

difficult to apply to large-dimensional problems containing more than three objectives. 

This is mainly due to high computational costs required to preserve solution diversity, 

difficulty in visualization of large-dimensional solutions, and limited search capacity for 
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new solutions because a solution would more easily become non-dominated (Deb, 

2014). It also should be noted that multi-objective land use optimization is only part of 

the overall decision-making process, requiring as well other quantitative/qualitative 

considerations to select the final preferred plan. 

There are several areas worth further investigation. First, the impact of the parameter 

values other than crossover and mutation probabilities, such as the population size and 

the proportion of parcels retaining original land uses, on the quality of solutions needs 

further exploration. Second, the crossover and mutation operators can be adapted to 

account for particular spatial objectives/constraints. For example, in Step 5 mutation, 

instead of random exchange, the land uses within the selected block can be reallocated 

based on their compatibility with adjacent land uses, or the dominant land use can be 

assigned to the whole block to promote compactness/contiguity. Third, when amending 

infeasible solutions, rather than choosing a single parcel, multiple parcels with a land 

use having insufficient area can be selected and then their neighbors are checked and 

modified in a region-growing manner. Forth, the measure of compactness/contiguity 

adopted in Objective (7) was originally designed for raster data, which might not work 

in some cases when using vector-based data as two adjacent parcels may only share a 

small proportion of boundary or may be very different in size. Therefore, other 

compactness and contiguity measures may be useful. Finally, land parcels might be 

divided into two or more smaller parcels in practice, which is a challenge for vector-

based land use optimization.  

Land-use planning has long been an active application area of spatial optimization. 

Given the ongoing global urbanization and consequent transformations in urban spatial 

and social structures, sustainable urban land-use plans are essential to achieve long-
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term balanced urban development. Spatial land use optimization explicitly considering 

sustainability concerns can be a valuable tool to generate a variety of land-use plans to 

be further evaluated by decision-makers with other ancillary information. 
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Figure 1 Meanings of EA terms in the context of optimization models and land-use 
planning 

Figure 2 A solving procedure based on the NSGA-II 

Figure 3 Study area and spatial layout of current land uses 

Figure 4 Pareto-optimal solutions for Scenario I: (a) 𝑝𝑐 ∈ [0.55, 1.0]; (b) 𝑝𝑚 ∈
[0.01, 0.10]  

Figure 5 Non-dominated solutions across generations with 𝑝𝑐 = 0.60 and 𝑝𝑚 = 0.05: (a) 
Scenario I; (b) Scenario II (Gen 10 = the 10th generation, Pop = population) 

Figure 6 Two land-use plans corresponding to two non-dominant solutions in Figure 
4(a): (a) the solution with best compactness (𝑝𝑐=0.55); (b) the solution with least cost 
(𝑝𝑐=1.0) 

Figure 7 The land-use plan for the Pareto-optimal solution with the best compatibility in 
Figure 5(b) 

Figure 8 Area of different land uses for the plans in Figures 6 and 7 

Figure 9 Raster representation of the study area 

Figure 10 Land use plans generated by using raster representation: (a) the solution in 
Scenario I with best compactness; (b) the solution in Scenario I with least cost; (c) the 
solution in Scenario II with best compatibility  

Figure 11 Area of different land uses for the plans in Figure 10 
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Table 1 Parameters for the solving procedure 

Table 2 Compatibility between different land uses 
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Figure 1 Meanings of EA terms in the context of optimization models and land-use 
planning 
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Figure 2 A solving procedure based on the NSGA-II 
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Figure 3 Study area and spatial layout of current land uses 

 



35 
 

Figure 4 Pareto-optimal solutions for Scenario I: (a) 𝑝𝑐 ∈ [0.55, 1.0]; (b) 𝑝𝑚 ∈
[0.01, 0.10]  
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Figure 5 Non-dominated solutions across generations with 𝑝𝑐 = 0.60 and 𝑝𝑚 = 0.05: (a) 
Scenario I; (b) Scenario II (Gen 10 = the 10th generation, Pop = population) 
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Figure 6 Two land-use plans corresponding to two non-dominant solutions in Figure 4(a): (a) the solution with best compactness (𝑝𝑐 =
0.55); (b) the solution with least cost (𝑝𝑐 = 1.0) 
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Figure 7 The land-use plan for the Pareto-optimal solution with the best compatibility in 
Figure 5(b) 
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Figure 8 Area of different land uses for the plans in Figures 6 and 7 
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Figure 9 Raster representation of the study area 
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Figure 10 Land use plans generated by using raster representation: (a) the solution in 
Scenario I with best compactness; (b) the solution in Scenario I with least cost; (c) the 
solution in Scenario II with best compatibility 
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Figure 11 Area of different land uses for the plans in Figure 10  
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Table 1 Parameters for the solving procedure 

Steps in 
Figure 2 Parameter Note 

Value 

Scenario I Scenario II 

Step 1 NP Population size. 100 100 

 NA The size of the archive set A. 100 100 

 NS The size of each solution (i.e. the total 
number of parcels in a land-use plan). 680 680 

 r0 Proportion of parcels keeping current use in 
each solution within the initial population. 0.30 0.30 

Step 5 pc Probability of crossover. [0.55, 1.00] with a stepsize 0.05 0.60 

 rc Proportion of parcels in a solution to be 
involved in crossover. 0.60 0.60 

Step 6 pm Probability of mutation. [0.01, 0.10] with a stepsize 0.01 0.05 

 rm Proportion of parcels in a solution to be 
involved in mutation. 0.05 0.05 

Step 9 N_iter Number of iterations the algorithm runs. 200 200 

 N_sameA Number of consecutive iterations that 
generate the same archive sets. 10 10 
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Table 2 Compatibility between different land uses 

 Type I Type II Type III Type IV Type V Type VI 

Type I HH HC MC HC MC LC 

Type II  HH HC MC HC MC 

Type III   HH LC HC MC 

Type IV    HH MC LC 

Type V     HH LC 

Type VI      HH 

* HH = 1, HC = 0.5, MC = 0.3, LC = 0.1 

 


