
Methods for Matching English Language
Addresses

Keshav Ramani
J.P. Morgan AI Research

London, UK
keshav.ramani@jpmchase.com

Daniel Borrajo1
J.P. Morgan AI Research

Madrid, Spain
daniel.borrajo@jpmchase.com

Abstract—Addresses occupy a niche location within
the landscape of textual data, due to the positional im-
portance carried by every word, and the geographical
scope it refers to. The task of matching addresses hap-
pens everyday and is present in various fields like mail
redirection, entity resolution, etc. Our work defines,
and formalizes a framework to generate matching
and mismatching pairs of addresses in the English
language, and use it to evaluate various methods
to automatically perform address matching. These
methods vary widely from distance based approaches
to deep learning models. By studying the Precision,
Recall and Accuracy metrics of these approaches, we
obtain an understanding of the best suited method for
this setting of the address matching task.

Index Terms—address-matching, deep learning,
natural language processing, embedding

I. INTRODUCTION

One of the most interesting types of naturally oc-
curring text are addresses. Fundamentally, these text
types denote the location of an entity by specifying
the hierarchy of which geographic entities they are
a part of. These entities can be countries, states,
cities, districts, roads, streets, buildings and more.
Universally there is no strict definition of what
fields must be included in a string for it to qualify as
an address, but it is typically a combination of some
or all of the aforementioned attributes. Different
countries, and states have their own conventions of
how addresses must be structured. However, it is
safe to say that they are generally a sequence of
words and numbers arranged in an increasing order
of geographical scope, starting from apartment,

1On leave from Universidad Carlos III de Madrid

floor and/or building information all the way to
which country they are present in.

In this paper we deal with the task of address
matching, whose compact formulation is: given
the representations of two addresses, return true if
the two representations refer to the same address.
This task can take a very simplified version when
addresses are represented as sets of components
(apartment, floor, building, street name, city, post
code, state, country, . . .). In these cases, some
simple rules can be defined to check whether they
refer to the same country, state, city and so on.
However, in many real world cases, the addresses
are just represented as a single string. Thus, the
task of matching addresses involves looking at two
strings and evaluating whether they refer to the
same geographic location (under a given a level of
granularity).

Addresses appear in a wide variety of documents.
Some potential applications of address matching are
in the field of mail routing, clustering of addresses
and matching a given list of addresses of interest
to a larger database. In the case of postal address
routing, address matching could be required to work
at the granularity of the person/property involved.
When it comes to clustering of addresses for pur-
poses like grouping of households, communities,
etc, the granularity could range anywhere between
building level to district levels.

Consider the following pairs of addresses:
Let us consider two addresses to be a match if

they are referring to the same building. By this
assumption, pair 1 has a very high chance of being a

ar
X

iv
:2

40
3.

12
09

2v
1

 [
cs

.I
R

]
 1

4
M

ar
 2

02
4

Pair # Address 1 Address 2

1 123 ABC Court 123 ABC Ct
2 123 ABC Court 23 ABC Court
3 123 ABC Court 123z ABC Court
4 123 ABC Court ABC Court

TABLE I: Some examples of the difficulty of ad-
dress matching.

match, given that in countries like the USA, ”Court”
is often abbreviated to ”Ct”. Pair 2 clearly isn’t a
match, given that they refer to different locations
within ABC Court. Pair 3 is interesting as one might
assume that the ’z’ at the end of 123 is an erroneous
character, or that ’123z ABC Court’ is physically
present within ’123 ABC Court’. Despite Pairs 2
and 3 having an edit distance of 1, we see that the
chances of them being treated as similar addresses
can greatly differ. Pair 4 is once again interesting,
as Address 1 could be present at Address 2.

We can see that the level of granularity and a
specific application might influence the labelling
process. However, irrespective of the nuanced ex-
amples and domain relevant subtleties, one can
clearly start seeing why this problem is difficult:

• Addresses are a unique subset of naturally
occurring text. Conventional methods of string
matching will not generally be effective here.

• There is a unique subconscious method hu-
mans employ to match addresses that has not
been imitated thoroughly by a computer yet.
While there is some literature that has studied
this question from a computational perspective
(further described in Section II), it is nowhere
as standardized or thoroughly investigated as
other sub-classes of natural language tasks
(literature, dialogue, news).

This paper investigates the question of whether
the process of address matching can be automated,
especially by exploiting recent advancements in the
field of Natural Language Processing. Our first con-
tribution is an address matching task generator that
allows us to automatically generate tasks of varying
difficulty (Section III). The second contribution is
the development of a suite of techniques to solve

the task (Section IV). Among them, we propose
a novel algorithm based on current deep learning
techniques. The third contribution is an experimen-
tal comparison and analysis of results among the
different techniques (Section V). We finalize the
paper with some conclusions (Section VI).

II. PRIOR WORK

Prior research works have approached this prob-
lem using multiple techniques with varying degrees
of sophistication. However, the progress of building
intelligent systems to solve this task differs across
languages. For example, address matching in Man-
darin Chinese has seen a considerable degree of
improvement when compared to English [1] [2].

As far as matching addresses in the English
language go, Santos et al. explored the idea of
matching toponyms using various methods [3].
Comprehensively, they analyze the effectiveness of
using various string distance metrics, straightfor-
ward machine learning approaches like SVMs [4]
[5], and even build a deep learning system for this
task. While this work does not exactly deal with ad-
dresses (toponyms are typically smaller strings that
are equivalent ways of addressing cities/islands),
it sufficiently motivates the study of the address
matching problem from a computational viewpoint.

The work of Comber et al. [2] however, fo-
cuses more directly with the problem of address
matching. They primarily use Conditional Random
Fields (CRF) to segment the addresses. They argue
that unlike previously used techniques like HMMs
which assume independence between new labels
and previously predicted labels, CRF are condi-
tional by nature and thus make use of previous
information. Once they have segmented the ad-
dresses, they proceed to match them using blocking
techniques. Another approach they pursue is to use
word2vec embeddings [6] to augment the represen-
tations generated by the CRF. While this work is
highly innovative, it is not possible for the blocking
module to provide feedback to the CRF so that it
may enrich the representations specifically for the
task of matching addresses.

The work of Lin et al., [1] made two signif-
icant contributions (from which this work is also

inspired): an address matching corpus in Mandarin,
and a deep address matching algorithm. From a
given dataset of unique addresses, the authors were
able to apply string transformations to generate
candidate matching addresses. Mismatches were
also generated by simply choosing another address.
Thus, for each address a match and a mismatch ad-
dress were generated. Once this corpus was created,
the authors were able to train an ESIM model [7]
to predict whether a given pair of addresses were
a match or a mismatch. A few ways in which our
work differs from theirs is that their model mainly
relies on word2vec to provide embeddings, while
the deep learning model we use employs Glove
embeddings [8]. Secondly, their address dataset is
limited to one city in China, and therefore does
not encounter various roads/buildings of the same
name that span across multiple cities. Our dataset
is currently based on the structure of addresses
found in the USA. Thirdly, our work has a few
improvements to address generation, in that the
mismatches we generate can also be more nuanced -
by modifying the property/road numbers (discussed
further in the next section). Finally, we also study
the effect of adding character embeddings to the
ESIM model, within this problem setting.

III. DATASET GENERATION

Some of the techniques described in the next
section to solve the address matching task are based
on machine learning. Thus, we would first need a
dataset to train learning algorithms, as well as to
evaluate all address matching algorithms. Though
previous works have used datasets for similar tasks,
they have either been in a different language or they
are not available [9] [1]. Thus, we have generated
a dataset for this task, which is inspired by the
approach that Lin et al. followed in their work [1].

A prerequisite to generating the data is a clear
understanding of what exactly constitutes the task
of matching two addresses. At the finest granu-
larity, we may define that two addresses match
if they refer to the same exact residential/official
unit. This would mean that while two locations
share the same geographic physical location (say
latitude and longitude co-ordinates), they could be

two different apartments in the same building and
thus could be considered mismatching addresses.
Other applications might define matching addresses
to be a pair of addresses that refer to the same
physical structure, say a building. This is sensible
in applications where there is a common mailbox,
or institutions in the same physical location that
need to be grouped together. Within this paper, we
define matching addresses to be a pair of addresses
that refer to the same building. The main reason
to choose this definition is that we are primarily
interested on financial services applications, and
many of those applications share this definition.
Nevertheless, all algorithms presented in the next
section are agnostic to this definition, and we could
have used a definition at a lower or greater level of
granularity.

The process of generating the matching addresses
dataset is composed of four steps: base address gen-
eration, prefix generation, matching address gener-
ation, and mismatching address generation. These
three steps are described next.

A. Base Address Generation

In order to generate this dataset, we first gen-
erated 10,000 base addresses. A base address is
represented as a string, and follows the structure:

<Building, Street Name, City, State>

For each base address, the building number and
the street name were generated using the Faker
synthetic data generator1. The cities were randomly
drawn from the top 1000 cities by population in
the USA. This was extracted from a public dataset
provided by plotly2. Care was taken to preserve the
mapping between these cities and the relevant states
they were present in, as we did not want spurious
mappings to be taught to the model.

B. Prefix Generation

Given that our work focuses on matching ad-
dresses at the building level, a crucial piece of
information that is missing from the base addresses

1https://github.com/joke2k/faker
2https://github.com/plotly/datasets/blob/master/us-cities-top-

1k.csv

is the exact location of the entity being addressed
within the building. In order to make the dataset
generic for other definitions of address matching,
this information can be provided by various factors
like the floor/apartment/suite in which the entity is
present. In some cases, even names of people are
used directly. For a given address, the type of prefix
is chosen randomly between Floor, Apartment, and
Name. For floor and apartment prefixes, the word is
drawn from the relevant lists shown on Table II, and
a random number is assigned along with it. In the
case of names, we first draw a prefix from the list
mentioned in the same table, and a random name is
assigned along with it. The name is generated using
the Faker library.

Group Prefix List

Apartment APT, APARTMENT, SUITE, STE, UNIT
Floor FLOOR, LEVEL
Name ATTN, C/O

TABLE II: Word equivalences used for generating
addresses.

This process of prefix generation will be used
downstream to generate matching and mismatching
addresses.

C. Matching address generation

The target dataset that we aspire to generate is
comprised of matching and mismatching address.
The transformations involved in generating said
matches or mismatches must be capable of captur-
ing nuances observed in the real world. We shall
now describe the string transformations that are
used to generate a matching address from a given
address.

1) Word Substitution: Certain words in addresses
can be described in different ways. A model that
must capture similar addresses needs to be trained
in recognizing such pairs. Table III captures the
substitutions being considered in our formulation.
Thus, we define a substitution operation as the pro-
cess of replacing one word from a given group by
another word from the same group that is randomly
selected.

Group Words

1 APT, APARTMENT
2 SUITE, STE
3 ROAD, RD
4 STREET, ST
5 AVE, AVENUE

TABLE III: Word substitutions used to modify
addresses.

2) Word Deletion: One of the common errors
involved in handling addresses consists of dropping
words. Thus, we define the process of word deletion
as a word from an address being randomly dropped.
We do not drop words that could constitute the
name/street name/building number in an address.
Dropping these fields fundamentally would change
who/which building the address references.

3) Character Addition: Noisy characters some-
times tend to seep into addresses, and it would be
expected from the model to be robust to minor
spelling errors. Thus, we define a character addition
operation that includes a random ASCII character at
a random location within the street name. We do not
opt to add a random character in other locations of
the address, as it might refer to a different address.
123 ABC Ct is different from 123z ABC Ct.

4) Character Deletion: Similar to how we would
expect the model to be robust to the effects of
character addition, we would expect it to be robust
to character removal as well. For this operation we
once again only consider the street names. Deleting
characters in other fields might lead to potentially
different addresses being matched together. 123
ABC Ct is different from 12 ABC Ct.

5) Permutation: In digital applications as well
as fields like post delivery, it is not uncommon
to find the first and second lines of addresses to
be swapped. This can be attributed to differing
conventions in various applications/countries.

In order to incorporate this effect, we implement
the permutation operation where we switch the or-
der of occurrence of certain fields within an address.
Specifically, if a given address has a floor prefix
(like FLOOR or LEVEL) followed by a number,
the permutation operation swaps its occurrence with
the building number and street name. FLOOR 3

123 ABC Ct gets transformed to 123 ABC Ct
FLOOR 3.

In addition to floor information, this operation
also has the same effect on apartment information,
or any other prefix. Thus if a given address has
an apartment prefix (APARTMENT, SUITE, UNIT)
followed by a number, the operation swaps it with
the building number and state name. APARTMENT
15 123 ABC Ct gets transformed to 123 ABC
Ct APARTMENT 15

D. Mismatch generating transformations

Having described the matching address genera-
tion transformations, we will now proceed to de-
scribe the various transformations used to generate
mismatching addresses. It is important to note that
these transformations are capable of capturing sub-
tle and crucial modifications that can elicit a mis-
matching address, as well as obvious mismatches.

1) Building Redirection: One of the nuances
of mismatches that were earlier alluded to in the
Introduction is that the model must be able to
understand the significance of a change in the
numerals in the address. Though the string edit
distance between 123 ABC Ct and 23 ABC Ct
is just 1, the model must understand that they refer
to two different addresses. Further, when assessed
through the impact of a pair of addresses being
considered a match or a mismatch, this type of a
difference is fundamentally different from a spelling
error. Thus, we define building redirection as an
operation that changes the building number in an
address by adding to or subtracting values from it.

2) Street Redirection: A coarser form of redirec-
tion consists of altering the street name present in an
address. For this operation, we use the Faker library
to replace an existing street name with a new street
name. A suitable example for this is 123 ABC Ct
could get converted to 123 XYZ St, where XYZ
St is a street name arbitrarily generated by the
Faker library.

3) City Redirection: The coarsest form of redi-
rection we consider is to alter the city name in
an address. A change in the city will result in
a potential change to the state mentioned in the
address as well. For this operation, we replace the

city and state by randomly sampling a city state pair
from the list of cities previously mentioned. This
follows from the fact that it is common to have two
matching street level addresses in two completely
different cities. A suitable example for this could
be 123 ABC Ct Edison NJ potentially getting
converted into 123 ABC Ct Atlanta GA

Generation of Matching/Mismatching Address
Pairs

Given the previous operations, we generate
matches and mismatches, as positive and negative
examples.

Match Generation: From a given base address,
we first obtain two different addresses by applying
the prefix generation function twice. At this point,
the addresses are still matching as they refer to
the same building, but have differing prefixes. We
further increase the linguistic differences between
these two addresses by applying one of the opera-
tions from III-C1, III-C2, III-C3, III-C4, and III-C5.
This choice is made randomly for each address
in the pair. All these operations do not alter the
building being addressed.

Figure 1 shows a couple of match generation
scenarios. It is important to note that the operations
are assumed to be chosen randomly. A1 and A2
refers to the two addresses generated by adding
prefixes to the corresponding base address.

Mismatch Generation: We start off similar to
match generation by generating two different ad-
dresses from a given base address by using different
prefixes. On one of these addresses, we now apply
an operation randomly chosen out of III-D1, III-D2,
III-D3 or randomly sampling another base address.
The geographic scope of these operations, as well as
sampling another base address, is between building
number level to state level impact. The output
of these operations, therefore, will fundamentally
produce a mismatch to the other address in the pair.

While this address generator was tailor made for
the task of matching addresses at a building level,
one may also re-purpose this to extend it to tasks
outlined in Section 1. For example, if we would
like to match addresses at the level of names, then
we will need the addresses to be more textually

Base Address: 123 ABC CT LIMA OH

Adding new prefixes:
A1: APT 3 123 ABC CT LIMA OH
A2: STE 17 123 ABC CT LIMA OH

Applying matching transformations:
A1 + III-C5: 123 ABC CT APT 3 LIMA OH
A2 + III-C2: STE 123 ABC CT LIMA OH

Base Address: 123 ABC CT LIMA OH

Adding new prefixes:
A1: ATTN JOE 123 ABC CT LIMA OH
A2: UNIT 12 123 ABC CT LIMA OH

Applying matching transformations:
A1 + III-C2: JOE 123 ABC CT LIMA OH
A2 + III-C1: UNI 12 123 ABC CT LIMA OH

Fig. 1: Examples of matching address generation
with randomly chosen transformations.

similar than our current use case. This would mean
that for matching addresses, we would still be
allowed to perform word substitutions for name
prefixes. However, character additions or deletions
become a mismatch generation operation at this
granularity. For a different use case, say district
level clustering, various replacements and substitu-
tions can be incorporated into the name and street
name fields. However, we will once again need to
corrupt the district names to generate mismatches.
The operations defined here are general and can be
easily be adapted for these use cases.

Figure 2 shows two examples of how mismatch-
ing addresses are being generated. The transforma-
tions used have been chosen randomly.

E. Dataset Generation:

The previously mentioned 10,000 base addresses
are passed to the Match generators and Mismatch
generators. Each of these result in 10,000 pairs of
matching and mismatching addresses. These records
are then shuffled and 80% of the data is used to

Base Address: 123 ABC CT LIMA OH

Adding new prefixes:
A1: APT 3 123 ABC CT LIMA OH
A2: STE 17 123 ABC CT LIMA OH

Applying mismatching transformations:
A1 + III-D1: APT 3 124 ABC CT LIMA OH
A2 + III-D3: STE 17 123 ABC CT RENO NV

Base Address: 123 ABC CT LIMA OH

Adding new prefixes:
A1: ATTN JOE 123 ABC CT LIMA OH
A2: UNIT 12 123 ABC CT LIMA OH

Applying mismatching transformations:
A1 + III-D1: JOE 124 ABC CT LIMA OH
A2 + III-D2: UNIT 12 123 XYZ CT LIMA OH

Fig. 2: Examples of mismatching address genera-
tion with randomly chosen transformations.

construct the training set, 10% for the validation
and the remaining 10% for the test set.

IV. ADDRESS MATCHING ALGORITHMS

Having constructed a dataset of matching ad-
dresses tasks, we now proceed to describe the vari-
ous algorithms and models we used for this task of
address matching. Given that addresses differ from
generic natural language sentences in a small but
significant way, the candidate models to compare
against are vast. In our work, we have considered
various string distance based approaches, and a
modified version of the state of the art model for
addresses in Mandarin proposed by Lin et al. [1].
The following subsections will be diving deeper into
each of these approaches.

A. Baseline Algorithms

One of the most common approaches taken to
solve the problem of address matching is to treat
addresses as generic texts, create structured repre-
sentations, and apply some kind of similarity metric
to the structured representations. So, we can create

a suite of baseline algorithms by varying the struc-
tured representation and the similarity functions.

Upon receiving an input address in the form of a
string, the first step consists of creating a dictionary
with a single key Address that contains a list
with a single element with the original string as
value. The values of the dictionary are defined
as lists given that, as we shall see below, some
representation changes generate a list of values.

Structured representations are computed by
functions R : D → D. They take as input
an address in the form of a dictionary and
return as output a new dictionary representing
the address. The keys of the dictionary
are: Address, Person, Unit, Floor,
House, Area-District, POBox, Street,
StreetNumber, StreetName, PostCode,
City, County-State, and Country. The
Person key relates to the fact that some addresses
contain information on some person living on
that address, as in Attn. John Smith, 123
Main St..

We have implemented variations of standard rep-
resentations for addresses as the following:

• normalized: it replaces the Address
value (list of a single string) of the address
(dictionary) with a normalized version of the
address. It operates over the string by first
performing some string clean up operations.
For instance, it removes non-ASCII characters,
or provides homogeneous use of delimiters
(e.g. comma, period, . . .). Second, it deals
with the standard use of abbreviations and
equivalences on addresses. Typical examples
include word groups in Table III. We use a
list of 150 terms and their different utterances
to normalize the addresses. These terms are
divided depending on which field they refer
to: Unit (e.g. apartment, unit, suite, . . .),);
Floor (e.g. floor, level, basement, . . .),
As an example, an input address such as ---
3rd floor Howard Bldg, 123 W.
Main St. -- would be normalized into:
3 ⟨Floor⟩ Howard ⟨Building⟩, 123
⟨West⟩ Main ⟨Street⟩.

• tokens: it replaces the Address value (a list

of a single string s) with a list of tokens in
that string s. So, the above example would
generate the new value of the Address as a
list composed of: [3, ⟨Floor⟩, Howard,
⟨Building⟩, 123, ⟨West⟩, Main,
⟨Street⟩].

• n-grams: it replaces the Address value
with a list of n-grams corresponding to the
strings in the list. We have used 3-grams. So,
in case we apply n-grams to the normalized
address representation (3 ⟨Floor⟩ Howard
⟨Building⟩, 123 ⟨West⟩ Main
⟨Street⟩), we would obtain: [’3 ⟨’, ’
⟨F’, ’⟨Fl’, ’Flo’, ’loo’, ’oor’,
’or⟩’, ..., ’et⟩’].

• tf-idf: it replaces the Address value (list of
strings) with a list of TFIDF values of those
strings [10]. The strings can be n-grams or to-
kens computed by the previous representation
change functions.

• segmentation: it populates the address
dictionary with the above mentioned keys.
Their values are captured from the Address
string by using some regular expressions
that define the corresponding values. In the
case of cities, states and countries, we use
lists of those and then automatically create
a single regular expression that captures
them all. As an example, the previously
normalized address, 3 ⟨Floor⟩ Howard
⟨Building⟩, 123 ⟨West⟩ Main
⟨Street⟩, would generate the dictionary:
Floor = ’3’, Building = ’Howard
⟨Building⟩’, StreetNumber =
’123’, StreetName = ’⟨West⟩ Main
⟨Street⟩’.

Given that these functions take as input and
generate as output the same structure, they can be
chained. As an example, we can first normalize and
then generate n-grams. There are some constraints
to these chains. For instance, segmentation is ap-
plied first. Furthermore, once tf-idf has been used,
we cannot use the other representation changes.
And usually, it does not make much sense to use
both n-grams and tokens, so we only allow one of
them to apply. Finally, normalization usually only

makes sense to be applied at start.
With respect to the similarity functions, we

have implemented (or used their implementation on
scikit-learn 3) the following functions. They all take
as input two dictionaries that represent addresses
and return True if they match.

• simple: it returns true if the values (lists) of all
keys match. To check whether two lists match,
first they are both converted into sets. They
match if the sets are equal. If one of the lists
is empty, we assume both lists match.

• jacquard: it returns true if the values (lists) of
all keys match. To check whether two values
(lists) match, first they are both converted into
sets s1 and s2. They match if Equation1 holds.

1− s1 ∩ s2

s1 ∪ s2
< JT ∗min(|s1|, |s2|) (1)

where JT is the Jacquard threshold to accept
a match. Experimentally, we have found that a
value of 0.05 produces the best results.

• levenshtein: it returns true if the values (lists)
of all keys match. To check whether two values
(lists) of a key k match, it computes the
Levenshtein distance for each pair of strings in
those two lists. Then, it computes the average
of those distances for key k, µk. It then checks
if Equation 2 holds for µk.

µk ≥ LTVmin ∗ML (2)

where LTVmin is a parameter that defines the
maximum allowed averaged distance percent-
age for values of keys, and ML is the mini-
mum length of all strings in the two values. If
the formula holds, then the values for key k
are considered to be far from each other and
the addresses are considered not to match. We
have experimentally obtained the value 0.2 to
have the best performance.
If all values of all keys match, we still make
a final check according to Equation 3.

µ ≥ LTAmax ∗MA (3)

3https://scikit-learn.org/stable/

where µ is the average distance across all keys,
LTAmax is a parameter that defines the maxi-
mum allowed averaged distance percentage for
all keys, and MA is the minimum length of the
original addresses. If the formula holds, then
the addresses are considered not to match. We
have experimentally obtained the value 0.2 to
have the best performance.

• Jaro-Winkler: instead of using the Leveshtein
distance, it uses the Jaro-Winkler distance.
The approach is the same as before. The
values for the corresponding parameters are:
LTVmin=0.5 and LTAmax=0.002.

• cosine: in the case of representations based
on tf-idf, the standard distance is the cosine
function that computes the cosine of the vec-
tors representing the addresses. Given that this
function returns values between 0 and 1, this
approach requires setting a parameter that is
the threshold that establishes which cosine
similarity value is the upper bound for defining
similarity. Empirically, we found that a value
of 0.75 provides good results.

Given these two functions (representation and
similarity), we can define many different valid
configurations. In order to characterize the differ-
ent alternatives, we define them based on several
features: normalization, segmentation, tokens, n-
grams, tf-idf and distance. All are boolean except
for the distance metric that will take as value
all the similarity/distance functions defined above.
Thus, a simple algorithm could be defined as:
{’normalization’: True, ’segmentation’: False, ’to-
kens’: False, ’n-grams’: False, ’tf-idf’: False, ’dis-
tance’: ’simple’}. The only representation change
would be normalizing the input, and the distance
function would be the simple one. Table IV presents
the variations we have used in our experiments. An
X means the corresponding feature is True, while
no value means it is False.

B. ESIM Based Model

The ESIM model, first proposed by Chen et
al. [7] is a sequential inference model that works
with word embeddings, Bi-LSTMs and an attention
mechanism. As shown in Figure 5, the input pro-

algorithm normalization segmentation tokens n-grams tf-idf distance

plain simple
normalized-plain X simple
tokens-jacquard X X jacquard
n-grams-jacquard X X jacquard
levenshtein X levenshtein
jaro-winkler X jaro-winkler
tfidf X X X cosine
segment X X simple
segment-levenshtein X X levenshtein
segment-jaro-winkler X X jaro-winkler
segment-tokens-jacquard X X X jacquard
segment-n-grams-jacquard X X X jacquard
segment-tfidf X X X X cosine

TABLE IV: Definition of algorithms used in the experiments. An X means the corresponding feature is
True, while no value means it is False.

vided to this model is a pair of strings, and the
output it learns is typically a boolean variable.

While the ESIM model typically works with
only word embeddings, we studied the effect of
adding character embeddings as well. This idea
has been previously explored in settings like con-
text response matching in dialgoue corpora [11].
The motivation behind extending this framework
to address matching is that in cases where char-
acter noise is present, character embeddings can
be used to address any errors in tokenization or
word level matching. As shown in Figure 5, for
each address inputs, the words and characters are
used to generate the embeddings w and c. These
two embeddings are concatenated as a combined
address representation which is used downstream
for other operations. These embeddings are passed
to an attention layer to learn the relative importance
between the characters and words of both addresses.

Thus, the soft alignment is obtained for each
input string. This alignment vector is then concate-
nated with the respective input’s combined embed-
dings, as well as the difference between them and
their element-wise products. The rationale behind
this step can be understood as trying to capture
different transformations of the input words and
characters. This concatenated vector for each input
is later passed one more time through a BiLSTM
layer, to capture sequential dependencies. Finally,
the output of the BiLSTM layer is passed through

𝑤𝑖𝑥𝑤𝑖5𝑤𝑖4𝑤𝑖3𝑤𝑖1 𝑤𝑖2 …

Glove

Bi-LSTM

…ഥ𝑤𝑖1 ഥ𝑤𝑖2 ഥ𝑤𝑖3 ഥ𝑤𝑖4 ഥ𝑤𝑖5 ഥ𝑤𝑖𝑥

Address i (words)

Fig. 3: Word vector computation. The words in
an address are passed through a glove embedding
layer and the outputs from thereon are passed to
a Bi-LSTM layer. As Chen et al. noted, Glove [8]
can be a good choice of word embeddings for the
ESIM model.

two types of pooling operations. The model con-
siders max and average pooling; and each of these
operations generate a vector. The four output em-
beddings (Average and Max pool for each input)
are then concatenated and passed through a fully
connected layer to finally result in a binary softmax
classification layer.

Lin et al. [1] show how the ESIM model [7]

Character Embedding

Bi-LSTM

…ҧ𝑐𝑖1 ҧ𝑐𝑖2 ҧ𝑐𝑖3 ҧ𝑐𝑖4 ҧ𝑐𝑖5 ҧ𝑐𝑖𝑛

𝑐𝑖𝑥𝑐𝑖5𝑐𝑖4𝑐𝑖3𝑐𝑖1 𝑐𝑖2 …

Address i (characters)

Fig. 4: Character vector computation. The com-
putation of character vectors is very similar to
that of word vectors, except pre-trained embeddings
aren’t used.

can be adapted for the task of address matching.
Chen et al. [7] have shown how this model can be
used for sequential inference and, given the fact that
addresses are essentially sequential bodies of text,
their usage in this setting is pertinent. Lin et al. [1]
were able to apply successfully this model in the
context of Chinese address matching and showed
that the model was effective.

We adapted this model for the usage of English
language addresses as well, with some modifica-
tions. Instead of making the model directly con-
sume the words in the addresses, we used pre-
trained Glove embeddings [8] to supply the model
with inputs as shown in Figure 3. The pre-trained
Glove model we use generates 300 dimensional
embeddings for every word in its vocabulary. These
embeddings have been built based on co-occurence
statistics of the tokens. The intuition here was
that semantically sensible embeddings that capture
the understanding of the similarity between typical
words used in addresses (as the likes of those
mentioned in Table I) could make it easier for
the model to understand similar addresses. Further,
while the initial formulation of ESIM only used
word vectors, we also studied the effect of adding
character embeddings to the original ESIM model

(see Figure 4). There is one crucial difference
to note here: while the character embeddings are
initialized randomly using the Lecun Uniform ini-
tializer [12] and can be trained through the training
process, the word embeddings are initialized with
Glove and frozen through the training process. This
is done to learn the character embeddings from
scratch, and at the same time preserve the pretrained
word embeddings.

Thus, the learning problem is formulated as fol-
lows. Let x1 and x2 be two addresses. We are tasked
with learning the function.

F (< x1, x2 >) = y (4)

where y = 1 if x1 and x2 are a match and y = 0
otherwise.

V. EXPERIMENTS AND RESULTS

The above proposed models were evaluated along
three measures: Precision, Recall and Accuracy.
Most of these models do not require to be trained
and can be directly employed on a set of addresses.
The deep learning based ESIM model however
requires to be trained and validated. Therefore,
the previously mentioned training and development
data was used to train the ESIM model (with and
without the character embeddings) and the test data
was used in the evaluation of all approaches.

It might be worthwhile to discuss the training
process of the ESIM + Char Embedding model. The
training parameters for the model are provided in
Table V. Originally, the authors had used the Adam
optimizer for the ESIM model [7], and therefore
we decided to use the same one. The training was
conducted on an AWS g4dn.12xlarge machine, and
early stopping was employed to make sure the
model does not train excessively in scenarios where
they do not tend to converge. We studied the train-
ing process for various learning rates, namely 10−2,
10−3, and 10−4. For the sake of brevity, we are not
discussing the hyper-paramter tuning performed on
the original ESIM model, but it should be noted
that the same process was applied to that model as
well.

Table VI shows the curves for important mea-
sures like Accuracy, Precision, Recall and Loss

Char Embedding
Address 1 (words) Address 1 (characters) Address 2 (words) Address 2 (characters)

𝑒𝑛𝑛 = ത𝑎𝑛
𝑇 ത𝑏𝑛

𝑎𝑖 =

𝑗=1

𝑛

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗)ഥ𝑏𝑗෩𝑏𝑗 =

𝑖=1

𝑛

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) ഥ𝑎𝑖

𝑚𝑎 = ത𝑎; 𝑎; ഥ𝑎𝑖 − 𝑎𝑖; ഥ𝑎𝑖⊙𝑎𝑖 𝑚𝑏 = ത𝑏; ෨𝑏; ഥ𝑏𝑖 − ෩𝑏𝑖; ഥ𝑏𝑖⊙෩𝑏𝑖

F F
Bi-LSTM Bi-LSTM

Avg Pooling Max Pooling Avg Pooling Max Pooling

𝑣 = 𝑣𝑎,𝑎𝑣𝑔; 𝑣𝑎,𝑚𝑎𝑥; 𝑣𝑏,𝑎𝑣𝑔; 𝑣𝑏,𝑚𝑎𝑥

𝑣𝑎𝑖 𝑣𝑏𝑗

𝑦 = 𝐺(𝑣)

𝑎𝑛 = 𝑤1𝑥; 𝑐1𝑦 𝑏𝑛 = 𝑤2𝑥; 𝑐2𝑦

Word Vectors 𝑤1𝑥 Character Vectors 𝑐1𝑦 Word Vectors 𝑤2𝑥 Character Vectors 𝑐2𝑦

Fig. 5: The modified ESIM architecture. The original version of ESIM formulated by Chen et al., [7]
did not contain the Character vectors and only worked with word vectors and embeddings. Dong et al [11]
later studied the impact of adding character emebeddings, as shown in this figure in the context of next
utterance selection in dialogues. We analyze the effectiveness of the ESIM model with and without the
character embeddings for the task of address matching. The computations of word vectors and character
vectors are shown in Figure 3 and Figure 4.

Parameter Value

Optimizer Adam
Learning Rate 1e-4
Loss Binary Crossentropy
Patience (ES) 4
Max. Epochs 50
Batch Size 8

TABLE V: Training Parameters for the ESIM +
Character Embedding model

while the model is being trained across these dif-
ferent learning rates. These measures are shown for
both training and validation sets. For a learning rate
of 10−2, the loss curve suggests that the model has
not even converged, and this is largely attributed to

the fact that a consistent decrease in training loss is
not observed. For a learning rate of 10−3 there is
sufficient evidence to suggest model convergence,
from the loss curves. However, further analysis
of the precision, recall and accuracy curves does
not suggest a consistent value and therefore, this
learning rate still does not seem to be suitable. This
is especially the case with the accuracy and recall
values as they fluctuate greatly for both test and
validation data and do not converge. A learning rate
of 10−4, however, provides the best performance for
the model in terms of the loss curves and evaluation
metrics. The model seems to have converged from
the loss curves, and the accuracy, precision and
recall measures are consistent. Hence, we train the
model with a learning rate of 10−4. From table VI,
the point of overfitting for this learning rate can be

observed clearly, demarcated by the red line.
Table VII shows the results that were obtained

for all the models. The models can be grouped into
three broad categories - high precision, high recall
and overall performance.

It can be seen that most approaches that in-
volve looking at a distance metric in a non seg-
mented fashion like plain, normalized-plain, tokens-
jacquard and levenshtein have a relatively higher
precision and suffer in terms of recall. This can be
explained by the strict definition of matches that
such approaches impose. These models might not
be able to capture the variety of noise that has
been injected into matches and since they are low
on expressivity. The tfidf approach behaves in the
aforementioned way too. This can be attributed to
the strictness of the match imposed by the character
level 3-grams.

In terms of the high recall models, n-grams-
jacquard has a perfect recall, but a poor precision.
This signifies that this approach cannot tackle nu-
ances in mismatches and tends to classify more
records as matches than not.

Segmentation seems to have a positive effect
overall, as it helps some distance based ap-
proaches achieve the best of both worlds. segment-
tokens-jacquard improves the recall when compared
to tokens-jacquard; segment-n-grams-jacquard bal-
ances out the precision and recall when compared to
n-grams-jacquard; segmented-levenshtein improves
the precision and recall from levenshtein and finally
segment-tf-idf improves the recall of tf-idf. One
can clearly see how segmentation is improving the
results, and it can be related to this approach’s
capability of treating matches and mismatches at
a field level independently.

The ESIM + Character embeddings model how-
ever seems to have the best overall performance.
It has the highest value for accuracy, and this
can be alluded to the capacity of the model to
understand various notions of similarity. While the
accuracy numbers are great for this model, its only
shortcoming is that it requires significantly higher
time to train. Another caveat is that this model is
strictly based off the training data. Hence, if we are
to match addresses of a different granularity, this

model will be brittle. It must also be noted that the
original ESIM model marginally falls short of the
ESIM + character embeddings model (in terms of
accuracy and precision). This can be attributed to
the character embeddings providing the necessary
infrastructure needed to deal with character noise,
that the word level embeddings alone will not be
able to handle.

Since the ESIM + Char model marginally out-
performs the ESIM model, it would be safe to say
that this model has the best overall performance out
of all the models we have considered. However, we
need to understand the generalization capability of
this model to real world addresses (as the dataset it
was tested on was synthetically generated). In order
to understand this, we built a manually annotated
dataset of addresses from the Companies House
dataset4. 100 pairs of addresses were built from
this dataset and labels for matching addresses at the
building level granularity were assigned. Out of the
100 pairs, there were three that were matching and
the rest 97 were mismatches. On this dataset, the
ESIM + Char embedding model was able to achieve
an accuracy of 71.8% (20.64), precision of 15.30%
(11.64) and recall of 80% (26.66). This performance
suggests that the deep learning model is able to
perform well as a high recall classifier in domains
that it was not trained on. However, reduction of the
standard deviation of the metrics (model stability)
in out of sample data is potential future work.

While the deep learning based models have
demonstrated great competitiveness in terms of Ac-
curacy, Precision, and Recall, one shortcoming is
the amount of time taken for training. However, it
is also important to note that this is only the case
when we train the model. During test time however,
they take less than 2 seconds to produce the results
- which is comparable to most approaches. These
values are expected to be greater when they are
trained on systems that do no have a GPU.

VI. CONCLUSIONS

The main contributions of our work are as fol-
lows:

4http://download.companieshouse.gov.uk/en output.html

Metric/lr 10−2 10−3 10−4 10−5

Loss

Accuracy

Precision

Recall

TABLE VI: The performance of the ESIM + Char embedding model across three different learning rates
when evaluated against Loss, Accuracy, Precision and Recall. The orange line represents the performance
of the model on the training data and the blue line represents the performance of the model on the
validation data. In the case of the loss curve for learning rate of 10−4, the point of overfitting can be
observed clearly (red line).

• A framework to generate a robust dataset of
matching and mismatching English language
addresses. These were based on a set of opera-
tions that we observed from real life addresses.

• An adaption of a deep learning architecture
from the domain of response generation in
dialogues, to the address matching problem.

• A comparative study of various approaches to
perform the task of address matching.

The data generation process was able to capture
various nuances and subtleties present in working
with addresses. These transformations sufficiently
demonstrate how different and unique addresses are,
within the world of textual data.

Empirically, we were able to arrive at the con-

clusion that on the generated dataset, the ESIM +
Character Embeddings model was able to achieve
the overall best performance in terms of Precision,
Recall and Accuracy. This can be attributed to
the model’s capacity of capturing the variations
that occur in the matches and mismatches. Though
other approaches do not match the overall per-
formance of this model, they compare reasonably
well (especially the segment-n-grams-jacquard and
segment-levenshtein methods) and are comparably
faster. For the past few years there have been
stunning advancements in the field of Natural Lan-
guage Processing. Specifically, with the advent of
BERT [13] the landscape of deep learning in NLP
has changed dramatically. Since attention is an inte-

Model Precision Recall Accuracy Time (s)

plain 0.98 0.24 0.62 0.46
segment 0.94 0.69 0.82 125.64
normalized-plain 0.98 0.24 0.62 0.47
tokens-jacquard 0.96 0.16 0.58 0.10
segment-tokens-jacquard 0.96 0.57 0.77 104.17
n-grams-jacquard 0.53 1.00 0.55 0.30
segment-n-grams-jacquard 0.88 0.87 0.88 104.35
levenshtein 0.70 0.22 0.56 3.31
segment-levenshtein 0.96 0.78 0.87 104.51
jaro-winkler 0.66 0.58 0.64 0.30
segment-jaro-winkler 0.78 0.94 0.84 107.11
tfidf 0.60 0.39 0.57 40.41
segment-tf-idf 0.59 0.96 0.65 136.12

ESIM - Train 0.99(0.01) 0.99(0.00) 0.99(0.00) 533.11(39.30)
ESIM - Test 0.93(0.02) 0.95(0.02) 0.94(0.01) 0.74(0.04)
ESIM + Char - Train 0.99(0.00) 0.99(0.00) 0.99(0.00) 827.85(65.60)
ESIM + Char - Test 0.95(0.01) 0.94(0.00) 0.95(0.00) 1.05(0.02)

TABLE VII: Test 4. Performance of different models. Since the ESIM based models depend upon the
random initialization of the layers we, re these evaluations for 5 different random seeds. The mean and
standard deviation for each metric has been reported.

gral part of BERT, we believe that the architecture
is well suited for the task of address matching.
Therefore, one potential future direction will be
to assess the effectiveness of models like BERT
with an increase/decrease in the level of granularity.
Further, instead of Glove being used as the word
embeddings, BERT can also be plugged in and
adapted to this framework. Making these embed-
dings trainable would also yield address relevant
BERT embeddings/Glove embeddings.

Potential areas of improvement include, but are
not limited to, improving realism in the data gener-
ation process, and altering the setting to study more
fine/coarse grained address matching, etc. While the
ESIM model has shown its capabilities of being a
strong foundation for the task of address matching,
one could also probe into performing a more de-
tailed hyperparameter tuning of the ESIM model
or alter the architecture to improve the evaluation
metrics. As suggested in the previous section, im-
provement of model stability in a different domain
of addresses to where the model was trained is also
a great avenue for future work to explore.

VII. ACKNOWLEDGEMENTS

We would like to acknowledge and thank the
inputs of Mark Hunt and Omar Cresdee which
helped us enrich our work.

This paper was prepared for informational
purposes by the Artificial Intelligence Research
group of JPMorgan Chase & Co and its affiliates
(“J.P. Morgan”), and is not a product of
the Research Department of J.P. Morgan.J.P.
Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the
information contained herein.This document is
not intended as investment research or investment
advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial
instrument, financial product or service, or to
be used in any way for evaluating the merits
of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such
jurisdiction or to such person would be unlawful.

© 2022 JPMorgan Chase & Co. All rights
reserved

REFERENCES

[1] Yue Lin, Mengjun Kang, Yuyang Wu,
Qingyun Du, and Tao Liu. “A deep learning
architecture for semantic address matching”.
In: International Journal of Geographical
Information Science 34 (Feb. 2020), pp. 559–
576. DOI: 10.1080/13658816.2019.1681431.

[2] Sam Comber and Daniel Arribas-Bel. “Ma-
chine learning innovations in address match-
ing: A practical comparison of word2vec and
CRFs”. In: Transactions in GIS 23.2 (2019),
pp. 334–348.

[3] Rui Santos, Patricia Murrieta-Flores, Pável
Calado, and Bruno Martins. “Toponym
matching through deep neural networks”. In:
International Journal of Geographical Infor-
mation Science 32.2 (2018), pp. 324–348.
DOI: 10 . 1080 / 13658816 . 2017 . 1390119.
eprint: https : / /doi .org /10 .1080/13658816 .
2017.1390119. URL: https://doi.org/10.1080/
13658816.2017.1390119.

[4] Bernhard E Boser, Isabelle M Guyon, and
Vladimir N Vapnik. “A training algorithm for
optimal margin classifiers”. In: Proceedings
of the fifth annual workshop on Computa-
tional learning theory. 1992, pp. 144–152.

[5] Nello Cristianini, John Shawe-Taylor, et al.
An introduction to support vector machines
and other kernel-based learning methods.
Cambridge university press, 2000.

[6] Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [cs.CL].

[7] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling,
Si Wei, Hui Jiang, and Diana Inkpen. “En-
hanced LSTM for Natural Language Infer-
ence”. In: Proceedings of the 55th Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers)
(2017). DOI: 10.18653/v1/p17- 1152. URL:
http://dx.doi.org/10.18653/v1/P17-1152.

[8] Jeffrey Pennington, Richard Socher, and
Christopher D Manning. “Glove: Global vec-
tors for word representation”. In: Proceed-
ings of the 2014 conference on empiri-

cal methods in natural language processing
(EMNLP). 2014, pp. 1532–1543.

[9] Jian Chen, Jianpeng Chen, Xiangrong She,
Jian Mao, and Gang Chen. “Deep Con-
trast Learning Approach for Address Seman-
tic Matching”. In: Applied Sciences 11.16
(2021), p. 7608.

[10] G. Salton. Introduction to Modern Informa-
tion Retrieval. McGraw Hill, 1983.

[11] Jianxiong Dong and Jim Huang. “Enhance
word representation for out-of-vocabulary
on Ubuntu dialogue corpus”. In: CoRR
abs/1802.02614 (2018). arXiv: 1802.02614.
URL: http://arxiv.org/abs/1802.02614.

[12] Günter Klambauer, Thomas Unterthiner, An-
dreas Mayr, and Sepp Hochreiter. “Self-
Normalizing Neural Networks”. In: (2017).
DOI: 10 . 48550 / ARXIV. 1706 . 02515. URL:
https://arxiv.org/abs/1706.02515.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. “Bert: Pre-training
of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

https://doi.org/10.1080/13658816.2019.1681431
https://doi.org/10.1080/13658816.2017.1390119
https://doi.org/10.1080/13658816.2017.1390119
https://doi.org/10.1080/13658816.2017.1390119
https://doi.org/10.1080/13658816.2017.1390119
https://doi.org/10.1080/13658816.2017.1390119
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/p17-1152
http://dx.doi.org/10.18653/v1/P17-1152
https://arxiv.org/abs/1802.02614
http://arxiv.org/abs/1802.02614
https://doi.org/10.48550/ARXIV.1706.02515
https://arxiv.org/abs/1706.02515

	Introduction
	Prior Work
	Dataset Generation
	Base Address Generation
	Prefix Generation
	Matching address generation
	Word Substitution
	Word Deletion
	Character Addition
	Character Deletion
	Permutation

	Mismatch generating transformations
	Building Redirection
	Street Redirection
	City Redirection

	Dataset Generation:

	Address Matching Algorithms
	Baseline Algorithms
	ESIM Based Model

	Experiments and Results
	Conclusions
	Acknowledgements

