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Length L-function for Network-Constrained Point Data 

Network-constrained points are referred to as points restricted to road networks, such as 

taxi pick-up and drop-off locations. A significant pattern of network-constrained points is 

referred to as an aggregation; e.g., the aggregation of pick-up points may indicate a high 

taxi demand in a particular area. Although the network K-function using the shortest-path 

network distance has been proposed to detect point aggregation, its statistical unit is still 

radius-based. R-neighborhood, in particular, has inconsistent network length owing to the 

complex configuration of road networks which cause unfair counts and identification 

errors in networks (e.g., the length of the r-neighborhood located at an intersection is 

longer than that on straight roads, which may include more points). In this study, we 

derived the length L-function for network-constrained points to identify the aggregation by 

designing a novel neighborhood as the statistical unit; the total length of this is consistent 

throughout the network. Compared to the network K-function, our method can detect a 

true-to-life aggregation scale, identify the aggregation with higher network density, as well 

as identify the aggregations that the network K-function cannot. We validated our method 

using taxi trips’ pick-up location data within Zhongguancun Area in Beijing, analyzing 

differences in maximal aggregation between workdays and weekends to understand taxi 

demand in the morning and evening peak. 

Keywords: Network-constrained point; point aggregation; shortest-path distance; Ripley’s 

L-function; spatial statistics 



1. Introduction 

Location-based phenomena in geography, economics, ecology, and epidemiology can be 

naturally abstracted into a point. Points can be classified into two types based on space—

one is a free point which can be located anywhere within the planar space, and the other is 

a constrained point which is located only in a restricted space. For example, pedestrian 

dwell points in an urban road network are constrained points. 

Among point patterns, aggregation was the most common and significant. Aggregation 

can be identified in planar if the average number of points within a circular neighborhood 

centered on a certain point is statistically greater than expected for a complete spatial 

random (CSR) distribution (Kiskowski, Hancock, & Kenworthy, 2009). That point is the 

aggregation center, and the aggregation scale is based on the radius of the neighborhood, 

which indicates the location and extent of the aggregation, respectively. In contrast to point 

clusters, which are collections of adjacent points, an aggregation represents the most 

intense gather in the research area. Detecting and quantifying point aggregations plays an 

important role in their application to road networks, e.g., detecting spatial aggregations of 

traffic crashes plays an essential role in the pursuit of improving transit safety and 

sustainability in urban road networks (Nie, Wang, Du, Ren, & Tian, 2015). Comparing 

aggregations of origin and destination points of taxis is informative for taxi route selections 

(Deng et al., 2019); analyzing aggregations of roadside populations with three Acacia 



species indicated that roadwork activities may have a stronger controlling influence on 

population dynamics than environmental determinants (Spooner, Lunt, Okabe, & Shiode, 

2004). Although identifying and quantifying aggregations is important for understanding 

point patterns in road networks, very few practical methods in the context of urban 

networks have been proposed. 

The spatial statistic-based method is most effective and precise to identify point 

aggregation, such as that used by Moran’s I (Moran, 1950), Getis-Ord G statistics (Getis & 

Ord, 1992; Ord & Getis, 1995), and Ripley’s K-function (Ripley, 1976, 1977). The main 

purpose of these methods is to create a new significant test for spatial homogeneity. If the 

null hypothesis is rejected, a global or local aggregation anomaly is detected. Among 

existing spatial statistic-based methods, Ripley’s K-function is among the most effective 

since it can detect point patterns at a series of scales. Aware of its powerful capability in 

detecting aggregation, scholars have extended Ripley’s K-function to the network space, 

making it adaptable for urban applications. Network K-functions and network cross K-

functions using shortest-path distance were proposed to analyze the point distribution in 

networks (Okabe & Yamada, 2001). Furthermore, studies have shown that planar K-

functions tend to overestimate the aggregated tendency based on vehicle crash distribution 

(Lu & Chen, 2007; Yamada & Thill, 2004, 2007). In these studies, network distances based 

on the shortest path distance, instead of the Euclidean distance, were used as the distance 

matrix, while linear segments instead of planar circles were utilized as statistical units, 



bringing the detection results closer to the actual situation. 

The shortcomings of the existing network K-functions have led to a few challenges. 

First, there is unfairness in measuring heterogeneity; the network itself is a clustered subset 

of the planar region and the radius-based r neighborhood−  of points in the network may 

have different shapes and sizes (see Figure 1). For example, if all points are randomly 

distributed, the point at the intersections is more likely to be identified as the aggregation, 

since the road network covered by the r neighborhood−   might be longer at the 

intersection (such as that shown on the right in Figure 1). The intersection will thus possess 

more points. Secondly, since it is challenging to obtain a consistent size for the 

r neighborhood−  in a network, the expectation value of network K-function under CSR, 

i.e., benchmarks of these models can only be stemmed from the Monte Carlo simulation 

(Yamada & Thill, 2007). This makes them incapable of accurately quantifying the scale of 

the aggregation, as well as wasting a lot of time in computing the benchmark under 

different road networks. This benchmark, however, is the bridge from the K-function to its 

advanced version, i.e., the L-function (Besag, 1977; Ehrlich et al., 2004; Kiskowski et al., 

2009), which can reveal the center and scale of an aggregation; its local version can identify 

aggregations based on corresponding scales. In addition, when there are multiple 

aggregations in a research area, the L-function can focus on the dominant one, i.e., the 

maximal aggregation, thus helping to isolate the main crux of finding the strongest 

aggregation (Kiskowski et al., 2009). 



 

Figure 1 r neighborhood−   in Network K-function. (a) and (b) have the same radius but different 

lengths in networks: (a) the length the r neighborhood−   is 2r  , and (b) the length of the 

r neighborhood−  is 6r . 

 

In this study, we first propose the h neighborhood−  , which is more suitable for 

networks because regardless of where the center point is located, its length remains the 

same, thus overcoming the weakness of existing definitions of neighborhood in the network 

K-function. In addition, we devised a method for counting points within the 

h neighborhood−  using the thk -Nearest Neighbor distance. Using this, we extended the 

improved network K-function to L-function after deriving the theoretical value of the K-

function under CSR, named the Length L-function. We verified our method using synthetic 

cases that simulate various types of aggregations in road networks to demonstrate the 

superiority of the Length L-function in identifying maximal aggregation as compared to 

the existing network K-function. We validated our method by detecting the aggregation of 

pick-up points of a taxi trip in Beijing to examine taxi demand in different time periods 

within the research area. 



2. Basic concepts 

Definition 1: Road network distance—This is the shortest path length in the network. 

Calculating the shortest path between two points on a road map may be modeled as a 

special case of the shortest path problem in undirected graphs, using Dijkstra’s algorithm 

(Dijkstra, 1959), wherein vertices correspond to intersections and edges correspond to road 

segments, each weighted by the length of the road segment. 

 

Definition 2: h-neighborhood —The total network length of a subset of network space 

centered on a certain point is h  (see Figure 2). It has two distinctive properties: first that 

the road network distance from each end point to the center point is the same, and second 

that the h neighborhood−  might have different shapes owing to the configuration of the 

network(s). 

 
Figure 2. The illustration of h neighborhood− . (a), (b), and (c) are the h neighborhood−  areas 

centered at different places in road networks: (a) straight roads, (b) forked roads, and (c) crossroads. 

 

The key step in the L-function process is to calculate the number of points within a 



h neighborhood−  centered on a certain point ip ; it is difficult to do so because the shape 

of h neighborhood−  varies with the location of ip  in different networks. Using the thk

-Nearest Neighbor distance of ip  (denoted as ,i kd ) it is much easier to count target points. 

For each ,i kd (from 1k =  to k n= , n  is the number of points in the research area), we 

calculate the length of the network that the r neighborhood−  ( ,i kr d= ) occupies, denoted 

as ,i kL . Once , 1i kL +  exceeds h , the number of points within the h neighborhood−  is 

k  (see Figure 3). 

 

Figure 3. Calculating the number of points within an h neighborhood−   using the thk  -Nearest 

Neighbor distance. (a) Nearest Neighbors and corresponding Nearest Neighbors distance of point ip , (b) 

r neighborhood−   when , 1i kr d −=  , (c) r neighborhood−   when ,i kr d=  , (d) 

r neighborhood−  when , 1i kr d += . Traverse the thk -Nearest Neighbor distance of point ip , namely 

,i kd   ( 1,...,k n=  ), when the total length of the r neighborhood−   with , 1i kr d +=   exceeds h  , the 

number of points within the h neighborhood−  (light blue area) is k . 

 

Definition 3: Point process intensity—This is the expected number of points per unit 

length of network, denoted by λ , and is usually estimated by ˆ / An Lλ = ; where n  is the 



number of points in the research area and AL  is the total length of the research network. 

Although it is difficult to precisely identify the boundary of the research area in the real 

world with a point process, the intensity parameter can be estimated using the second-order 

properties of points (Pei et al., 2015; Pei, Zhu, Zhou, Li, & Qin, 2007); this is calculated 

through ,1id . The 1st -Nearest Neighbor distance to each point is calculated as follows: 
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Definition 4: Complete spatial randomness point processes in networks—During 

completely spatial random generation, points occur independently and completely 

randomly within the research network. CSR points can be represented by a homogeneous 

spatial Poisson process (Dixon, 2001), which is a random counting measurement method 

(Shu et al., 2020). For a subset s  of the research network space, the number of points 

within s  , namely sN  , follow a Poisson distribution, which is calculated using the 

following equation: 
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where λ  is the point process intensity in Definition 3 and sL  is the size of s , i.e., the 

length that s  occupies in the network space. 

3. Length K-function and Length L-function in networks 

In this section, we describe the derivation of the length K-function using the 



h neighborhood− , as well as its theoretical value under CSR. Then, the length L-function 

is developed based on the length K-function, depicting and amplifying the deviation from 

the CSR distribution. The local length L-function is also illustrated for a refined 

understanding of aggregation. 

3.1 Length K-function 

Similar to Ripley’s K-function for point-pattern analysis in planar space, the length K-

function is defined as the expected number of additional points within the 

h neighborhood−   of an arbitrary point normalized by the point process intensity. The 

derived formula for ( )K h  is as follows: 
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where h  is the designated network distance, n  is the number of points in the research 

area, and λ  is the intensity of the point process. 

3.2 Length L-function and local Length L-function 

In point-pattern analysis, CSR describes a point process whereby point events occur 

within a given study area in a completely random distribution. CSR is often applied as a 

standard or benchmark against which datasets are tested. In this study, inferences about 



CSR points assist in deriving the length L-function from the length K-function. 

Using the aforementioned definition of the length K-function, the expected number of 

additional points within an h neighborhood−   is ( )K hλ  . Combining this with the 

properties of CSR points, we can conclude that ( )K h hλ λ= . Thus, the expectation for the 

length K function with a homogeneous Poisson point process is: 

( ( )) hE K h hλ
λ

= =   (5) 

By normalizing the length K-function with its expected value, we can obtain the length 

L-function—the expectation is zero at any scale (i.e., distance) for CSR points. In this way, 

we can amplify and analyze the deviation from the CSR point using the following equation: 
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The local length L-function for each point is defined as: 
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where h , λ , n , and ( )ij hσ  in Equations (5), (6), and (7) have the same meanings as 

in Equation (3). 

4. Experiment with synthetic data 

This section is aimed at testing the correctness and effectiveness of the length L-function. 

First, the theoretical length K-function and L-function under CSR, over a range of scales, 



were tested using Monte Carlo simulations. Following this, we generated synthetic point 

datasets with different aggregations to test the capabilities of identifying aggregations. At 

the same time, we describe the detailed steps involved in detecting and extracting the 

maximal aggregation. We also compared the identification results of the existing network 

K-function and the length L-function. 

4.1 Monte Carlo tests of null models 

Under the null hypothesis of CSR, the expectation of ( )K h  is h , and the expectation 

of ( )L h  is zero. Monte Carlo simulations were used to test our hypothesis, wherein we 

used three types of datasets to simulate classical road network patterns: a grid pattern with 

500 CSR points, a radial pattern with 300 CSR points, and a hybrid pattern with 300 CSR 

points; each dataset has different point process intensities in the network space. For each 

road network pattern, 50 simulations were performed to obtain the average value. 

Figure 4 shows the results of the CSR points for each row corresponding to a network 

pattern. The dark blue line and dark purple lines with stars correspond to the theoretical 

( )K h  and ( )L h  curves; the light blue and light purple lines correspond to the simulated 

means of ( )K h  and ( )L h  curves with 50 runs. The blue and purple belts are the 95% 

confidence bands based on the Monte Carlo simulations. From these figures, we can 

conclude that both ( )K h  and ( )L h  curves fall between the 95% confidence intervals, 

and that the simulated means almost match the theoretical curves. The theoretical null 



models of ( )K h   and ( )L h   are thus correct and can be used as benchmarks for 

determining point aggregation patterns. 

 

Figure 4. Monte Carlo simulation of the length K-function and the length L-function with road networks in 

various patterns: (a) The grid pattern, (b) the radial pattern, and (c) the hybrid pattern. Each row shows the 

data sample of that pattern, its theoretical value and the simulated value with 50 runs of the length K-function 

and the length L-function. 



 

4.2 Detecting and extracting aggregation with Length L-functions 

We tested our method with simulated road networks in a hybrid pattern and designed 

four cases of synthetic data to verify the effectiveness of our methodology. Case 1 (see 

Figure 5a) consists of two parts: a linear aggregation with a length of 1.0 and 100 points, 

and 50 random points on the simulated road network. Case 2 (see Figure 5b) consists of 

two parts: a radial aggregation with a total length of 3.0 and 120 points, which has six 

equal-length, equal-density branches and 50 random points on the simulated road network. 

Case 3 (see Figure 5c) consists of three parts: the linear aggregation in Case 1, the radial 

aggregation in Case 2, and 50 random points on the simulated road network. Case 4 (see 

Figure 5d) consists of two parts: the linear aggregation in Case 1 and 300 random points 

on the simulated road network. In these cases, aggregation scales of the linear aggregation 

should be 1.0h =  or 0.5r =  when detected using the network K-function and the length 

L-function, respectively. The aggregation scale of the radial aggregation should be 3.0h =  

or 0.5r =   when detected using the network K-function and the length L-function, 

respectively. The scale detected using the network K-function corresponds to the radius of 

aggregation, and the scale detected using the length L-function corresponds to the total 

length of the road network occupied by the aggregation. Thus, although the values of r̂  

and ĥ  may be very different, they indicate the same aggregation scales. 



 

Figure 5. Synthetic data with aggregations. (a) Case 1 consists of a linear aggregation and 50 CSR points, 

(b) Case 2 consists of a radial aggregation and 50 CSR points, (c) Case 3 consists of the linear aggregation 

in Case 1, the radial aggregation in Case 2, and 50 CSR points (the point process intensity of the linear 

aggregation is higher for radial aggregation), and (d) Case 4 consists of the linear aggregation in Case 1 and 

300 CSR points. 

 

For each case, we detected the maximal aggregation scale with the network K-function 

and the length L-function, respectively; we then extracted the maximal aggregation with 

the local version of the corresponding functions. When using the network K-function, we 



regard the scale (denoted as r̂ ) when the degree of deviation, from the observed K value 

to the random simulated K value, is the highest as the maximal aggregation scale. If the 

deviation is not obvious, however, it is considered that there is no aggregation in this dataset 

(Yamada & Thill, 2007). 

The length L-function is an accumulative function, meaning that the effects at larger 

distances are confounded with those at smaller distances. Using the derivative of the L-

function, namely '( )L h , can better describe the aggregation scale (Kiskowski et al., 2009). 

The steps for estimating the maximal aggregation scale using the length L-function are as 

follows: first, denote the distance that maximizes ( )L h   as [ ]maxL   and denote the 

distance that minimizes '( )L h   as [ ]min'L  ; second, find the most obvious minimum 

[ ]min'L   that is greater than [ ]maxL   and denote it as [ ]'minmin L  ; and finally, obtain 

[ ]ˆ ' / 2minh min L=  (Shu et al., 2020). In addition, each minimum '( )L h  could indicate an 

aggregation at a certain scale. 

After obtaining the scale of the maximal aggregation, r̂   and ĥ  , we extracted 

aggregation with the detected scale and the point possessing the maximal local function 

value. Taking the local length L-function [see Equation (7)] as an example, the specific 

extraction steps are as follows: first, calculate the local L-function value of each point with 

the detected maximal aggregation scale ĥ  in the dataset, and then select the point with 

the maximum local L function value, which means that this point is the aggregation center. 

Finally, points within the h neighborhood−  of the aggregation center were merged as the 



results of extracting maximal aggregation. 

Figure 6 shows the results of synthetic data for each row corresponding to the case in 

Figure 5. Each row lists the observed network K-function and the 10-fold simulation of 

CSR points with the same quantity as research data; the extracted maximal aggregation 

with the network K-function, the length L-function and its derivative, and the extracted 

maximal aggregation with the length L-function. 

Figure 6(a) shows four results for Case 1. The aggregation scale is ˆ 1.0r = , as detected 

using the network K-function and ˆ 2.5 / 2 1.2h = = , as detected using the length L-function. 

For extracting maximal aggregation, the extraction precision was 91.74% and the recall 

was 100% when using the network K-function; the extraction precision was 95.24%, and 

the recall was 100% when using the length L-function. In this case, the length L-function 

has a better ability to detect aggregation scales and extract aggregations than that of the 

network K-function. 

Figure 6(b) shows four results for Case 2. The aggregation scale is ˆ 1.0r = , detected 

using the network K-function, while ˆ 5.4 / 2 2.70h = =   detected using the length L-

function (although the scale 4.6h =   is the first minimum larger than [ ]maxL  , it is not 

obvious enough to indicate an intense aggregation). For extracting maximal aggregation, 

the extraction precision was 90.23% and the recall was 100% when using the network K-

function; the extraction precision was 92.92%, and the recall was 87.5% when using the 

length L-function. In this case, the network K-function and the length L-function have 



similar identification abilities, but a more accurate result can be obtained using the length 

L-function. 

Figure 6(c) shows four results for Case 3. The aggregation scale is ˆ 1.0r = , as detected 

using the network K-function, and ˆ 4.6 / 2 2.3h = =  , as detected using the length L-

function. In this case, the designed network intensity of linear aggregation is 

100 100.0
1.0NetI = =  , which is larger than that of the radial aggregation, which is 

120 40.0
3.0NetI = =  . Thus, the ideal result of maximal aggregation identification is linear 

because we should focus on higher road network intensity for constrained points. The 

expected results were obtained using the length L-function with a precision of 93.46% and 

recall of 100%. However, when detecting with the network L-function and a scale of 

0.5r = , the corresponding r neighborhood−  may contain more points when centered on 

the radial aggregation than on the linear one. Thus, the network K-function regarded the 

radial one as the maximal aggregation and failed to identify the ideal aggregation. 

Figure 6(d) shows the four results of Case 4. The network K-function has no obvious 

maximal deviation, which means it fails to detect maximal aggregation while the length L-

function can be detected as ˆ 2.8 / 2 1.4h = = . For extracting aggregations, the extraction 

precision with the length L-function was 85.47% and the recall was 100%. In this case, the 

designed network intensity of linear aggregation is 100 100.0
1.0NetI = = , which is larger than 

that of all the points, i.e., 400 11.12
35.97AllNetI = = . Owing to the high intensity of points on 

the entire road network in this case, the r neighborhood−  around multi-fork intersections 



would contain more points than around the straight road, even though there may be an 

aggregation on the straight road. Such unfairness when counting in the network K-function 

interferes with the statistical process, and the real aggregation cannot be distinguished from 

large amounts of background CSR points. 

Based on the above cases, it can be found that in both detecting scales and extracting 

maximal aggregations in the network, the length L-function performs better than the 

network K-function. Compared to the network K-function, the length L-function can 

amplify deviation between the observed and theoretical values, paying more attention to 

the aggregation with higher point process intensities in the network will achieve more 

equitable statistics. Thus, it could not only detect the point set with higher network intensity 

as the maximal aggregation, but can also identify the aggregation despite a number of 

background noise points, which the network K-function cannot achieve. This means that 

the length L-function is more suitable for detection of aggregation in road network spaces. 



 

Figure 6. Results of the network K-function and the length L-function. From left to right are the results of 

the network K-function (the scale when the difference between the observed network K value and the 

simulated theoretical K value is the largest, and is represented by grey dotted lines), the extraction results 

based on the local network K-function, the length L-function (the maximal value is represented by the blue 

dotted line) and its derivatives (extreme values are represented by grey dotted lines), and the extracted 

aggregation with the local length L-function. 



5. Case study using real-world data 

In previous studies on detecting traffic aggregation with either the K-function or the L-

function, data is invariably added up over a long period of time, making the point 

aggregation more obvious. For example, taxi GPS data are accumulated within one week 

as the experimental data so that aggregation can be detected (Shu et al., 2020). To 

understand real-time and short-term taxi demand, we detect the aggregation on the road 

network using the length L-function and distinguish the aggregation from the number of 

noise points. 

The case study used taxi GPS trajectory data on October 21st, 2014 (a workday) and 

October 25th, 2014 (a weekend) in Beijing. After matching the data to the road network, 

we extracted the pick-up locations of each trip and identified the maximal aggregation in 

the dataset during the morning (7:00–9:00) and evening (17:00–19:00) peaks to identify 

and understand the subtle changes of taxi demand hotspots in the study area. 



 

Figure 7. Experimental data and its corresponding results determined using the network K-function and the 

length L-function. From left to right are the experimental point distribution, the results of the network K-

function (there is no obvious difference between the observed network K value, represented with dark blue 

line with star, and the simulated K value of random points colored in light blue), the length L-function 

(colored in purple with the maximal value is represented by the blue dotted line) and its derivatives (minimum 

values are represented by grey dotted lines). 

 



The identification results are shown in Figure 7, and signal that the network K-function 

failed to detect aggregations since there is no obvious deviation from the observed K-

function and the simulated K-function (10 simulations of random points with the same 

number of points as the experimental data). The length L-function worked and detected the 

corresponding aggregation changes in this area. 

 

Figure 8. Extracted maximal aggregation. (a) Aggregation on weekdays and (b) aggregation on weekends, 

where maximal aggregation during the morning peak is orange and the maximal aggregation during the 

evening peak is blue. 

 

Maximal aggregation during the morning peak (see the orange points in Figure 8) 

gathers along residential areas on weekdays or on weekends; however, the aggregation 

center changed significantly here. It is close to the Renming University subway station and 

the eastern neighborhood composed of Shuangan Youth Apartment and Shuangyushu Xili, 

with an aggregation scale of ˆ 350 h m=  ; on the weekend, the maximal aggregation is 



located near the Beijing Institute of Technology and western neighborhood consisting of 

Sanyimiao community, to the extent of ˆ 275 h m= . Whether on weekdays or on weekends, 

the morning peak’s maximal aggregations are close to the residential community because 

residents invariably choose to take a taxi to go out in the morning. It is worth noting that 

the maximal aggregation is closer to subway station exits on weekdays, because workers 

usually use a combination of subways and taxis to commute for an optimized transportation 

experience (Kim, 2018). After a subway trip, residents often choose to take a taxi to go to 

work. Over the weekend, the detected aggregation is near a residential area in the west, 

which is not as large as that in the east, but is close to the Beijing Institute of Technology. 

This indicates that, compared to ordinary residential areas, residents near the university 

(probably a younger demographic), will travel more in the morning on weekends. 

For the aggregation during the evening peak (see the blue points in Figure 8), a center 

was observed at the Haidian-Huangzhuang subway station on workdays, while its center 

moved slightly north, which is closer to the several shopping centers on weekends. The 

aggregation scale is ˆ 1100 h m=  on weekdays and ˆ 825 h m=  on weekends, which has 

almost no change. The reasons that the maximal aggregation during the evening peak is 

centered at the Haidian-Huangzhuang subway station on weekdays are: (1) The subway 

station is surrounded by middle schools, office buildings, and hospitals (see Figure 8), 

which are all busy on weekdays, but few people visit them on weekends; thus, there is a 

higher taxi demand on weekdays than on weekends; (2) As mentioned before, there are 



many subway exits and office workers prefer to take a taxi here to go home after a subway 

trip for faster and more convenient commuting. The aggregation center moves slightly 

northward on weekends because there are several popular shopping malls in the north, such 

as Carrefour, the Lingzhan shopping mall, and the Electronics shopping center. Residents 

frequent shopping malls and other entertainment places more than on weekdays (Su, 

Spierings, Dijst, & Tong, 2020), thus, the demand for taxis near shopping malls and 

entertainment spaces increases on weekends, while the demand near subway exits’ serving 

commuting workers will decrease. 

The results of the length L-function indicate that, for taxi pick-up points in this 

research area, the maximal aggregation in the morning peak will occur near residential 

areas while the maximal aggregation in the evening peak will occur in commercial areas; 

aggregations on weekdays and weekends will change slightly because of the characteristics 

of the functional area. Overall, the length L-function can help us find subtle changes of 

aggregation in networks within a short period of time, even when large numbers of 

background points exist on roads; this could not be achieved by using the pre-existing road 

network K function. This helps us analyze the travel behavior of residents on a small scale. 

6. Conclusion 

To precisely identify the point maximal aggregation in various networks, we derived the 

L-function in the 1-D network space, called the Length L-function. This study both alters 



the distance matrix (from Euclidean distances to network distances in the existing Planar 

L-function) and presents a novel calculation unit called the h neighborhood−  in order to 

improve the existing network K-function. Wherever the center point is, e.g., at a multi-

intersection or on a straight road, the network space size of the h neighborhood−   is 

always h , thus overcoming the unfair statistics in the network K-function. This tackles 

the problem that the expectation value of the network K-function cannot be deduced, thus 

helping to obtain the L-function. 

The length L-function detects aggregation over a range of scales and determines the 

maximal aggregation in the dataset, which indicates the most intense gathering of points in 

a given network. Unlike the existing network K-function, it focuses on detecting point 

aggregations with higher density in road networks; aggregations can be detected even when 

there are large numbers of noise points in the network, which fits the demand for practical 

applications in cities. 

The case study assessing the Beijing taxi’s pick-up point data shows the applicability 

of our method. Our experimental results were compared to those of the network K-function, 

indicating that the network K-function cannot be identified when the aggregation is not 

obvious, or if there are many noise points; our length L-function succeeds regardless of 

these constraints. Overall, since the length L-function pays more attention to the road 

network density of the point set, it is more suitable for aggregation detection in the road 

network space, and is thus more adaptable for research on urban environments. 



Future research in this area could include several aspects. First, a study could extend 

other spatial statistical methods designed for planar space to network space with the aid of 

the h neighborhood− . Second, a future study could focus on both the point aggregation in 

road networks and on studying point aggregation patterns in other types of networks, e.g., 

flight networks and social networks. 
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Table 1 The parameters of aggregation in four cases 

 Radial aggregation Linear aggregation CSR points 

Case r h Number NI r h Number NI Numbers 

1 / / / / 0.5 1.0 100 100.00 50 

2 0.5 3.0 120 40.00 / / / / 50 

3 0.5 3.0 120 40.00 0.5 1.0 100 100.00 50 

4 / / / / 0.5 1.0 100 100.00 300 

* NI refers to the point process intensity in network space. 
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