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Abstract
The idea that perceptual and cognitive systems must incorporate knowledge about the structure of
the environment has become a central dogma of cognitive theory. In a Bayesian context, this idea
is often realized in terms of “tuning the prior”—widely assumed to mean adjusting prior
probabilities so that they match the frequencies of events in the world. This kind of “ecological”
tuning has often been held up as an ideal of inference, in fact defining an “ideal observer.” But
widespread as this viewpoint is, it directly contradicts Bayesian philosophy of probability, which
views probabilities as degrees of belief rather than relative frequencies, and explicitly denies that
they are objective characteristics of the world. Moreover, tuning the prior to observed
environmental frequencies is subject to overfitting, meaning in this context overtuning to the
environment, which leads (ironically) to poor performance in future encounters with the same
environment. Whenever there is uncertainty about the environment—which there almost always is
—an agent's prior should be biased away from ecological relative frequencies and toward simpler
and more entropic priors.
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1. The mind and the world
Among the founding dogmas of cognitive science is that in order for the mind to make sense
of world, it must incorporate constraints and regularities inherent in the environment. This
idea has been expressed in many forms, all sharing a common emphasis on how structure in
the environment informs the mind. One influential proposal is Shepard's (1994) notion of
internalization, in which the mind incorporates implicit knowledge about the environment.
Another is Marr's (1982) notion of constraints, thought of as regularities of the natural world
that allow the many potential interpretations of perceptual data to be pruned down to a single
unique solution. Barlow (1961, 1974, 1990, 1994) has long argued that neural coding should
reflect the statistical regularities and redundancies latent in the sensory signal. Also related
is Richards' “Principle of Natural Modes” (Richards, 1988; Richards & Bobick, 1988),
which relates perceptual inference to the regularities in the natural world. The common
thrust of all these proposals is that the inference procedures embodied by the mind work
well because they embody tacit knowledge about the world. If such knowledge is absent or
inaccurate—if the mind's assumptions are “mistuned” to its environment—its tricks will not
work or will work poorly.
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Several modern lines of reasoning have strengthened the argument, traditionally made by
nativists and rationalists, that inference cannot usefully proceed without biases that are in
some sense tuned to the world. One well-known line of reasoning stems from the “no free
lunch” theorems of Wolpert (1996) and Wolpert and Macready (1997). These theorems
imagine the space of possible worlds (problems) and the space of possible learning or search
algorithms probabilistically, and show that no algorithm is uniformly better than all others
over the entire ensemble of possible worlds. Even an apparently universally useful
procedure like gradient descent, for example, is no better than an apparently useless one like
random search in some possible worlds. It is actually easy to imagine such a world:
Consider a world with mostly random structure but in which optimal solutions are densely
scattered throughout the search space. In such a world, random search would occasionally
happen upon a good solution, while gradient descent would be practically useless. Of
course, such a random world bears little resemblance to (any reasonable model of) the actual
world, but that is precisely the point. To be more useful than average in our world,
algorithms must make nontrivial tacit assumptions about its structure. For example,
assuming that solution surfaces are usually continuous in the search space—not true in all
possible worlds, but often true in ours—makes gradient descent useful. But generic
assumptions about the properties of “realistic problems” do not generally favor any one class
of algorithms; instead more specific knowledge must be brought to bear (Sharpe, 1998).
That is, the brain must be tuned to the world. But what does this mean exactly?

This article raises this question in the context of Bayesian inference. Bayesian models,
which assume that the mind estimates the structure of the world via a rational probabilistic
procedure, have become increasingly influential in perceptual and cognitive theory (Chater
& Oaksford, 2008; Knill & Richards, 1996). Because Bayesian models represent
demonstrably optimal inference procedures, they make a particularly natural setting in
which to ask what it means for the brain to be tuned to the world. In fact, a fairly simple
conception of tuning has become a cliché of cognitive science: The brain is suitably tuned to
its environment when it adopts priors that are empirically correct—that is, that are in fact
true in the environment. Perhaps surprisingly, though, this seemingly simple idea is actually
contrary to a core epistemological tenet of Bayesian theory. This is a rather strange clash of
philosophical positions that is difficult to appreciate without delving into conflicting
historical views about the nature of probability. In the next section, I briefly review the
historical controversy, showing the modern common wisdom about probabilities—that their
true values can estimated by tabulating frequencies of events in the world—contradicts
Bayesian philosophy, and thus cannot provide a consistent basis for understanding how a
Bayesian observer can be tuned to its environment.

2. The Lord's prior
The conception of “tuning” that is tacitly adopted in many modern treatments is that the
optimal Bayesian observer is correctly tuned when its priors match those objectively in force
in the environment (the “Lord's prior”). In Bayesian probability theory, priors represent the
knowledge brought to bear on a decision problem by factors other than the data at hand, that
is, the state of beliefs “prior to” (really, separate from) any consideration of the evidence.
(Gauss's term was ante eventum cognitum: “before the cognitive act”; see D'Agostini, 2003.)
In the Lord's prior view, priors are said to match the world when each event class h, which
objectively occurs in the environment with probability p(h), is assigned a prior of p(h). A
simple extension replaces the discrete event h with the continuous parameter x, in which
case we would want the prior on x, p(x), to be equal to the objective probability density
function p(x). This condition defines what is referred to in the perception literature as an
ideal observer, that is, an agent that makes optimal decisions based on assumptions that are
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in fact true in the environment, and which thus whose decision that are optimal in that
environment.

This conception also underlies some of the enthusiam for natural image statistics in the
literature, in which Bayesian inference is endowed with priors drawn from statistical
summaries of the world, or proxies thereof such as databases of natural images. In a natural
image statistics framework, the best way to set a prior is canvass the world and ask what its
prior is. Indeed, in many treatments, setting priors empirically is held up as a desirable
aspiration, self-evidently superior to alternatives which are derided as arbitrary or
“subjective.” A recent example is Jones and Love (2011), who criticize Bayesian models on
a number of fronts but comment (p. 173) that “the prior can be a strong point of the model if
it is derived from empirical statistics of real environments” and later (p. 180) lament that
“[u]nfortunately, the majority of rational analyses do not include any measurements from
actual environments.”

Associated with this view is the idea that natural selection will put adaptive pressure on
agents to adopt the “true” prior—that over the course of generations, it will nudge innate
priors toward their true environmental values (Geisler & Diehl, 2002). Implicit in this idea is
an assumption that having true probabilistic beliefs is maximally beneficial to the organism.
This assumption has been criticized because the utility function may well favor something
other than truth (Hoffman, 2009; Mark, Marion, & Hoffman, 2010). But even if one
improves this view by coupling it with a suitable loss function (Maloney & Zhang, 2010),
the central dictum is that inference benefits by having priors that are “empirically correct.”

3. Frequentist versus epistemic views of probability
But this viewpoint, agreeable as it may seem to modern ears, is actually at odds with
traditional Bayesian philosophy of probability. The distinction revolves around competing
views of what “probability” means, generally involving the distinction between the
frequentist and subjectivist (or epistemic or Bayesian) conceptions of probability.
Frequentists (e.g., Fisher, 1925; Venn, 1888; von Mises, 1939) define probability strictly in
terms of some “infinitely repeated random experiment,” such as an infinite sequence of coin
tosses. The probability of h (e.g., “heads”) is defined as the ratio of number of trials on
which h occurs to the total number of trials in such a thought experiment. Most
psychologists are so accustomed to this way of looking at probability that we struggle to
think about it any other way. (The common use of the term “base rate” as a synonym for
“prior probability” reflects this attitude.) But the frequentist conception is extremely
limiting. For example, it automatically means that probabilities can only be assigned to
stochastic events that are, in principle, capable of being repeated many times with different
outcomes. For example, a frequentist cannot assign a probability to a scientific hypothesis,
say the existence of gravitons, because the proposition that gravitons exist is presumably
either true or false and cannot be assessed by repeated sampling (e.g., tabulating universes to
assess the fraction in which gravitons exist). Historically, frequentists have been willing to
accept this limitation, restricting probability calculations to properties of random samples
and other plainly stochastic events.

But Bayesians, beginning with Laplace (1812) and continuing with influential twentieth-
century theorists such as Jeffreys (1939/1961), Cox (1961), de Finetti (1970/1974), and
Jaynes (2003), wanted to use the theory to support inferences about the probability of the
(fixed, not random) state of the world based on the (random) data at hand, a paradigm
referred to historically as “inverse probability.” In the frequentist view, the state of the world
does not have a probability, because it has a fixed value and cannot be repeatedly sampled
with different outcomes. (It is not a “random variable”.) Hence, instead of thinking of p(h)
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as the relative frequency of h, Bayesians think of it as the degree of belief that h is true,
referred to as the subjectivist, epistemic, or Bayesian view.1 In the epistemic view, the
uncertainty expressed by a probability value relates only to the observer's state of knowledge
(not randomness in the world) and changes whenever this knowledge changes. Epistemic
probabilities are not limited to events that can be repeated, and thus can be extended to
propositions whose truth value is fixed but unknown, like the truth of scientific hypotheses.
A Bayesian would happily assign a probability to the proposition that gravitons exist (e.g.,
p(gravitons exist) = 0.6), reflecting a net opinion about this proposition given the ensemble
of knowledge and assumptions he or she finds applicable. To Bayesians, frequencies (counts
of outcomes) arise when the world is sampled, but they do not play a foundational role in
defining probability. Indeed, Bayesians have often derided the “infinitely repeated random
experiment” upon which frequentism rests as a meaningless thought experiment—
impossible to observe, even in principle, in reality.2

As a consequence of this divergence in premises, frequentists tend to view probabilities as
objective characteristics of the outside world, while Bayesians regard them as strictly mental
constructs. To frequentists, probabilities are real facts about the environment, about which
observers can be right or wrong. But to Bayesians, probabilities simply describe a state of
belief. To put it perhaps too coarsely: To frequentists, probabilities are facts, while to
Bayesians they are opinions.3

This point was put perhaps most strikingly by Bruno de Finetti, a key figure in the twentieth-
century renaissance of Bayesian inference, who began his Theory of probability with the
phrase “PROBABILITY DOES NOT EXIST,” a sentence he insisted be typeset in all
capital letters (see de Finetti, 2008). Why would a probability theorist make such a peculiar
remark? What De Finetti meant was simply that probability is not an objective characteristic
of the world, but rather a representation of our beliefs about it.4 Actual events, if we record
them and tabulate the proportion of the time they occur (e.g., the number of heads divided
by the number of tosses), are frequencies, not probabilities, and are only related to
probabilities in a more indirect way (which Bayesians then debate at great length). The

1The terminology is somewhat confusing because Bayesians are further divided into subjectivists, such as De Finetti, who thought of
probabilities as characteristics of individual believers (sometimes called personalism) and objectivists such as Jaynes, who assume that
all rational observers given identical data should converge on identical beliefs. Nevertheless, it is important to understand that all
historical Bayesians, subjectivists and objectivists alike, conceived of probabilities epistemically; they were all “subjectivists” in the
broader sense. For example, Jaynes, an influential objectivist, spent much of his treatise (Jaynes, 2003) criticizing, even mocking, the
frequentist view. Examples include (p. 916): “In our terminology, a probability is something that we assign, in order to represent a
state of knowledge, or that we calculate from previously assigned probabilities according to the rules of probability theory. A
frequency is a factual property of the real world that we measure or estimate” and continues (same page) “[P]robabilities change when
we change our state of knowledge; frequencies do not.” Later (p. 1001), he derides the confusion between frequencies and
probabilities, arguing forcefully against the idea that probabilities are physical characteristics of the outside world, concluding:
“[D]efining a probability as a frequency is not merely an excuse for ignoring the laws of physics; it is more serious than that. We want
to show that maintenance of a frequency interpretation to the exclusion of all others requires one to ignore virtually all the professional
knowledge that scientists have about real phenomena. If the aim is to draw inferences about real phenomena, this is hardly the way to
begin.”
2Naturally, this contentious literature contains a variety of views of probability beyond frequentist and epistemic. Some early authors
(e.g., Poisson; see Howie, 2004) use the word chance to refer to objective probabilities of events (sometimes called physical
probability, see Mellor, 2005), reserving probability for the epistemic sense. Mellor (2005) further distinguishes credence (how
strongly one believes a proposition) from epistemic probability (how strongly evidence supports it). A number of authors, notably
including Karl Popper (1959), have argued for a view of probability as propensity, meaning the objective (not epistemic) tendency for
an event to occur, defined in a way avoids the pitfalls of frequentism (see discussion). The historical debate concerning the
interpretation of probability reflects fascinating and deeply held disagreements about the nature of induction. See Wasserman (2003)
for clear statements of several opposing philosophies, and Howie (2004) for an in-depth history of the debate.
3To objectivist Bayesians, such as Jaynes, they are opinions that any rational observer would agree to when faced with the same data
—but they are still beliefs, not facts; see note 1.
4The full quotation (de Finetti, 1970/1974, p. x) is: “PROBABILITY DOES NOT EXIST. The abandonment of superstitious beliefs
about the existence of Phlogiston, the Cosmic Ether, Absolute Space and Time,…, or Fairies and Witches, was an essential step along
the road to scientific thinking. Probability, too, if regarded as something endowed with some kind of objective existence, is no less a
misleading misconception, an illusory attempt to exteriorize or materialize our true probabilistic beliefs.”
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mathematical rules of probability theory are about these beliefs and how they relate to each
other and to evidence, not about frequencies of events in the outside world. Ipso facto,
probabilities in general, and prior probabilities in particular, cannot be assessed by
tabulating events. As Jaynes (2003) put it (p. 916): “the phrase ‘estimating a probability ’ is
just as much a logical incongruity as ‘assigning a frequency ’ or ‘drawing a square circle.’”
Jeffreys (1939/1961), who first laid out the logic of modern Bayesianism, put it bluntly: “A
prior probability is not a statement about frequency of occurrence in the world or any
portion of it.”

4. What is the true value of a probability?
These sentiments are so at odds with the contemporary common wisdom in cognitive
science about probabilities—that they simply represent relative frequency of occurrence in
the world—that the modern reader struggles to understand what was meant. But the core of
the epistemic view is simply that probabilities are not objective characteristics of the outside
world that have definite values. Consider the simple example of baseball batting averages.
What is the probability a given baseball player will get a “hit” at his next at-bat? By baseball
convention, this probability is approximated by a tabulation of the player's past
performance: hits divided by at-bats. But now the player steps up to the plate. What is the
probability he will get a hit at this at-bat? The pitcher is left-handed, so we can improve our
estimate by limiting the calculation to previous encounters with left-handed pitchers. It is a
home game, so we can refine the estimate still further; a runner is on base; today is Sunday;
and so forth. Every additional factor further refines the estimate to a more comparable set of
circumstances but also reduces the quantity of relevant data upon which to base our
estimate. In the limit, every at-bat is unique, at which point the entire notion of generalizing
from past experience breaks down. But even if we had infinite data, and plenty of data for
each subcondition we might imagine, which of these subconditions is the right one—which
ones gives the “true” probability of a hit today?

A moment's thought suggests that there is no objectively correct answer to this question. It
depends on what factors are considered causally relevant, which depends on the observer's
model of the situation, as causal influences cannot be definitively determined on the basis of
experience alone. More notationally careful Bayesians (e.g., Jaynes, 2003, or Sivia, 2006)
often acknowledge this point by notating the prior on h as p(h|a), rather than simply p(h),
with a representing the ensemble of background knowledge or assumptions believed by the
agent to be relevant to the prior probability of h. (The prior is not “unconditional” as it is
often described in informal treatments.) What you think about the prior on h depends on
your model. And as in any inductive situation, there is no deductively certain model, but
only a (perhaps infinite) collection of models that are inductively persuasive to various
degrees—each of which potentially assigns a different probability to h. There is no right
answer, only a range of plausible answers.

The baseball problem is a variant of a problem discussed by the early frequentist John Venn
(1888) (glossed by Howie, 2004 as the “tubercular authoress from Scotland” problem). As a
frequentist, Venn's solution was to insist that probabilities were only definable with respect
to large ensembles of “similar” cases, never individual events—a restriction that severely
limits the scope of probability theory, and which Bayesians do not accept. For example, to
meet Venn's criteria for determining the probability of hitting safely, the batter would have
to be tested over a long sequence of trials under identical conditions, much as Fisher (an
even more dogmatic frequentist) was to propose several decades later as a method of
carrying out experiments. But such a procedure would plainly preclude determining the
probability of a hit from tabulations of past performance in actual baseball games.
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But the normal way of computing baseball averages is perfectly coherent in the epistemic
view. Previous performance (such as the proportion of hits in previous at-bats) is simply
evidence influencing the observer's degree of belief that the batter will hit safely in his next
at-bat—not, as in the frequentist view, an estimate of the “true” probability of a hit, which
they would regard as meaningless. The Bayesian observer is free to take more factors into
account, or fewer, depending on the chosen model of the situation, which determines which
factors are believed relevant. In this view, the adopted probability of a hit, whether the
batting average or some more refined estimate, is simply an estimate and not the “truth.”
Probabilities are not true or false but simply characteristics of models (not of reality). It is
perfectly reasonable to regard a coin as having heads probability 0.5, but what this really
means is that our model of the coin is as a p = .5 Bernoulli process, and we believe, but
cannot be sure, that our model is right. There is no ground truth. Probabilities do not have
“true” values in the environment, and the Lord's prior does not exist.

It is important to understand that the epistemic view of probability is essential to the
Bayesian program, and it cannot be lightly set aside without making inverse probability
effectively impossible. Only if probabilities relate to degrees of belief can they be associated
with nonrepeatable hypotheses, like “gravitons exist,” or “an earthquake will strike Los
Angeles in the next decade,” or even “it will rain tomorrow.” The issue is especially acute in
cognitive science, where many of the hypotheses to which we wish to assign probabilities
are themselves intrinsically subjective, like “the best parse of this sentence is …” or “the
best perceptual grouping of this image is ….” These events obviously cannot be objectively
tabulated, as the underlying condition cannot itself be objectively confirmed. One can of
course substitute various approximations and proxies, such as tabulations of subjective
evaluations of them (e.g., Elder & Goldberg, 2002; Geisler, Perry, Super, & Gallogly, 2001),
though this necessarily introduces an element of circularity (because a supposedly objective
estimation procedure is being grounded in a tabulation of subjective conclusions). Such
estimates are extremely interesting and informative but cannot be thought of as probability
ground truth—not simply because they are approximations, but because in the Bayesian
approach, frequency tabulations, no matter how extensive and objective, do not determine
probability in the first place.

As mentioned above (footnote 2), some (e.g., Popper, 1959) have argued for a view of
probability as propensity, meaning an objective tendency for an event to occur in a particular
way (see Mellor, 2005). This interpretation aims to establish an objective status for
probabilities, based on the physical properties of the situation, without the need for infinite
repeatability inherent in the frequentist view. Bayesians generally reject any view in which
probabilities are not states of belief and point to numerous demonstrations that probabilities
can change when only knowledge has changed without a change in physical state (see
Jaynes, 1973 for numerous examples). But for purposes of the current paper, the main point
is that propensities, like epistemic probabilities, are not defined by relative frequencies of
events, meaning that tabulations of events in the real world do not play an especially central
role in defining them.

5. The contemporary zeitgeist
With the ideological dichotomy between frequentist and epistemic probabilities in mind, it is
evident that contemporary attitudes reflect an historically anomalous combination of
assumptions from competing camps. On one hand, an increasingly large fraction of the field
adheres to a Bayesian model of inference. On the other hand, many researchers evince what
can only be described as a frequentist attitude toward the setting of prior probabilities: that
they are most properly set by direct objective measurement of relative frequencies in the
world. Purves (2010, p. 227), in explaining Bayesian inference for purposes of perception,
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defines the prior as “the frequency of occurrence in the world of surface reflectance values,
illuminants, distances, object sizes, and so on.” Jones and Love (2011), while criticizing
Bayes, likewise assume that priors ought to be based on “measurements from actual
environments.” This viewpoint echoes that of the devout frequentist Egon Pearson (the son
of the eminent statistician Karl Pearson, and co-inventor of the Neyman–Pearson school of
frequentist statistics), who remarked in 1929: “prior distributions should not be used, except
in cases where they were based on real knowledge” (Lehmann, 2011)—by which he meant
to dismiss Bayesian inference, not to define it. The idea that Bayesian priors can only
properly set by measurement of recurring stochastic properties of the world was, after all, a
central reason why frequentists such as Fisher and E. Pearson wholly rejected Bayesian
inverse probability—recognizing that by that standard most priors cannot be meaningfully
set at all (because the conditions are unrepeatable). That is, the notion of grounding priors in
empirical base rates—essentially a contradiction in terms, and rejected (for different
reasons) by both sides—has now become a cliché of the field.

And perhaps most important, the dissonance between the epistemic view of probability
historically adopted by Bayesians and the widespread emphasis on naturalistic (frequentist)
setting of priors does not seem to be widely recognized. As contemporary perceptual theorist
Qasim Zaidi5 has quipped, many contemporary perceptual theorists could be described as
“frequentist Bayesians.”

As suggested above, such attitudes are especially common among “consumers” of Bayesian
theory, who may be less steeped in its intellectual history. “Producers” of Bayesian
cognitive theory are far more likely to consistently adopt an epistemic view, invoking the
phrase “degree of belief” in defining probability and contrasting it with the frequentist view
(e.g., Oaksford & Chater, 2009). Work in the hierarchical Bayesian paradigm (e.g., see
Goodman, Ullman, & Tenenbaum, 2011; Salakhutdinov, Tenenbaum, & Torralba, 2010)
shows how priors can be set “subjectively” but in a way that still respects prior knowledge
(see discussion below). Similarly my own work on the structure of visual contours invokes a
simple subjective prior, the von Mises prior on turning angle, which is informed by but not
defined by the empirical structure of natural contours (Feldman, 1995, 1997, 2001; Feldman
& Singh, 2005). All these approaches, broadly speaking, fall into the mainstream Bayesian
tradition of using priors to represent the observer's prior beliefs, and not supposedly
objective characteristics of the environment.

But does not one want, if possible, to base one's prior as faithfully as possible on data from
past experience? As is often emphasized in Bayesian theory, prior probabilities do not have
to derive solely from prior observations; they can and should reflect all prior knowledge,
including knowledge not easily expressed in terms of frequencies—for example, symmetries
of the problem (Jaynes, 1973) or a preference for simple hypotheses (Jeffreys, 1939/1961).
This is the reasoning behind the well-known maximum-entropy principle (Jaynes, 1982),
which says that one should choose the prior that maximizes the Shannon entropy consistent
with all the knowledge one has. The max-ent prior imposes the minimum amount of
additional structure or information over what is actually known, and thus “most honestly” or
most generically encodes that knowledge. For example, if one knows that a parameter has
mean μ and variance σ2, the maximum-entropy prior is a Gaussian N(μ, σ2), and in practice
such a prior often works better than a prior cobbled more “faithfully” from environmental
tabulations.

But again, if one has detailed information about frequencies in the world, should not one use
it? First, of course, Bayesian theory already has a perfectly “epistemic” way of incorporating

5Personal communication, 2007.
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past observations into the prior: conventional Bayesian updating, in which the posterior
derived from past data becomes the prior with respect to future data. The question is not
whether observations of the environment are relevant: They are, on either account. The
question is whether they are constitutive of the prior (the “frequentist Bayesian” view) or
simply evidence about what it should be (the Bayesian). But still, the difference in attitude
leads to a difference in procedures. For example, observation may tell us that the frequency
does not appear to be perfectly Gaussian. Would we not do better to use the observed
frequency distribution as our prior? Counter-intuitively, the answer in practice is often no.
Jaynes (2003) directly addresses the question of why Gaussian priors so often out-perform
more detailed priors based on frequency tabulations. (He refers to this as the “ubiquitous
success” of Gaussian priors, p. 710, and the “near-irrelevance of sampling frequency
distributions,” p. 712.) Often, the answer is that the “details” are just noise rather than
reliable properties of the environment. So whether one wants to be influenced by these
details in setting one's prior depends on how much one believes them. Setting priors entirely
empirically, as often done in natural image statistics, means choosing to be influenced
exclusively by past experience and nothing else. This argument will be developed below.

6. What else, if not the “truth?”
To summarize the argument so far: Frequentists think of events in the world as having
definite objective probabilities. Many contemporary researchers, adopting Bayesian
techniques but frequentist attitudes, consider the observer ideally tuned when it adopts as its
prior the empirically “true” prior—a concept that does not, in fact, play any role in Bayesian
theory. From a Bayesian point of view, priors are simply beliefs, informed by the observer's
model and assumptions along with previously observed data, and are not, in principle,
subject to empirical validation.

Of course, while in Bayesian theory priors cannot literally be true or false, they certainly can
influence the decisions the observer makes and thus the outcomes it enjoys. So what prior
should the observer adopt? One of the benefits of viewing probabilities epistemically is that
it frees us from assuming that the answer to this question is automatically “the true one.”
Instead, we are at liberty to consider the choice of prior in a more openended way. From an
epistemic viewpoint, there may well be choices of prior that work better than the one that
matches environmental relative frequencies. In the epistemic tradition, the observer is free to
adopt whatever prior he or she wants for whatever reasons he or she wants—not just as the
result of tabulation or measurement—and so we can ask which choice actually works best.

Thus, it is quite conceivable that an observer under adaptive pressure to be “tuned” to the
environment would do well not to adopt what we normally think of as the “true” prior. In a
very concrete sense, posterior beliefs may be optimized with another prior. This may sound
extremely counterintuitive, because it suggests the existence of a class of observers superior
to ideal observers. But the mathematical argument is extremely straightforward, and indeed
all its main elements are familiar from the Bayesian literature. In what follows I develop this
argument, showing that the choice of prior should be influenced by more than just the fit
between the prior and the world.

7. Quantifying the match between the head and the world
From here on we denote by p(h) the “true” prior of h in the world, bearing in mind as
discussed above that this really means that p(h) is the prior on h in the model of the world
that we are working with. Expectations taken relative to this prior should be thought of as
reflecting not ground truth but a particular hypothetical model that we wish evaluate. Given
that, we would like to quantify the discrepancy between p (the world) and a given prior q
adopted by a particular observer (the head). A conventional quantification of this match,
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adopted nearly universally in information-theoretic statistics (see Burnham & Anderson,
2002), is the Kullback-Leibler distance or divergence D(p║q), defined as

(1)

which can be thought of as the expectation (under p, ranging over hypotheses hi) of the log
of the ratio between p and q. The divergence6 is useful measure of the discrepancy between
two priors because it quantifies the inefficiency of assuming q when p is in fact true. That is,
it measures the number of extra bits required to encode the world via the observers' model q
compared to the Shannon optimal code under p (Cover & Thomas, 1991).

I conducted a simple Monte Carlo simulation designed to measure the performance of
observers with various priors q in a world actually governed by p. In this situation, an
observer that assumes prior q equal to the true prior p is an “ideal observer” and has
maximum probability of classifying observations correctly. The aim of the simulation is to
see how performance varies as q is varied over the space of possible priors. The simulation
assumes a simple classification task with data x ∈ R2 generated by one of two sources A and
B, each of which is circular Gaussian density with distinct means μA, μB ∈ R2, and common
variance σ2. All these parameters are known to the observers except the priors. Classes A
and B occur in fact with probability p(A) and p(B) = 1 − p(A), respectively. Tested priors q
run the full range of possible priors in step sizes of 0.2, with each prior evaluated 10,000
times and the results averaged.

Fig. 1A shows performance (classification proportion correct) as a function of the
divergence D(p ║ q) ranging over choices of q. As one would expect, performance
decreases linearly with divergence from the true prior: The ideal observer (D(p ║ q)=0) is
best, and others degrade as their assumptions increasingly diverge from that of the ideal. In
the evolutionary simulacrum imagined by Geisler and Diehl (2002), adaptive pressure would
urge organisms up this slope, minimizing divergence from the environment.

However, there is another factor affecting performance, shown in Fig. 1B: the influence of
the entropy H(q) of the chosen prior. Entropy of a probability distribution p, defined by
Shannon's formula

(2)

can be thought of as a measure of the symmetry of the probabilities and is maximized when
they are all equal. The plot in Fig. 1B shows that—collapsing over divergence—more
entropic priors actually perform better. This is true for all three tested true priors, that is,
regardless of their entropy. This effect is thus independent of the degree to which the prior is
tuned to the environment; assuming equal degree of tuning (i.e., divergence), the more
entropic the prior, the more accurate the resulting classifications. The conventional intuition
is that the “true” ecological prior provides ideal performance, but this simulation shows that
this is not all there is to it. Regardless of the degree of tuning—and even for ideally tuned
(zero divergence) observers—more entropic priors are better.

6The divergence is not necessarily symmetric (in general D(p ║ q)≠D(q ║ p)), and often the average ([D(p ║ q) + D(q ║ p)]/2 is
used as a symmetric measure of distance between distributions. But note that here (and in similar contexts in the information-theoretic
literature), it is the form given in Eq. 1 that we want, because it takes expectations relative to the “truth” (model of the world) p, which
is what we are interested in.

Feldman Page 9

Top Cogn Sci. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2 shows a slightly more complex simulation with four classes instead of two. (This
makes the prior space three-dimensional instead of one-dimensional, cubing the number of
priors tested, so in this version only 5,000 trials were run per prior.) The influence of
divergence is as before, and the effect of entropy is more clear than before. Note that the
larger number of classes is inherently more confusable, meaning that absolute ideal
performance is worse than before (Bayes error is greater). But again ranging over the space
of priors, more entropic priors lead to objectively superior performance.

8. Bias and variance
This suggests that tuning an organism to its environment involves somewhat more than
collecting statistics from the environment, interpreting them as the true priors, and endowing
the organism with them. Historical Bayesians raised a philosophical objection to this idea,
and the above analysis provides a more tangible one. Mere tuning does not, in fact, optimize
performance.

Another way of looking at this is in terms of the degree to which we “believe” the data that
the environment has provided us in the past. If we have a small amount of data, the data are
likely to include a fair amount of noise along with the signal. Even with the large data sets
often used in the natural image statistics literature, the wobbles and wiggles of an
empirically tabulated database are plainly visible in the plots. Do we think that each of these
wobbles and wiggles represents a genuine and robust elevation or depression in the
probability of conditions in the world?

Common sense suggests not, and in this case, common sense is backed up by standard
theory in the form of what is referred to as bias/variance or complexity/data-fit trade-off
(Geman, Bienenstock, & Doursat, 1992; Hastie, Tibshirani, & Friedman, 2001). The bias/
variance tradeoff is a simple consequence of the fact that more complex models (e.g., with
more parameters or fudge factors) can generally fit data better than simpler ones, simply
because the extra parameters can always be fit so that the loss function is reduced. In the
limit, a sufficiently complex model (e.g., a high enough dimension polynomial) can fit any
data, even if the model is completely wrong. Fitting the data “too well” in this sense is called
overfitting. At the opposite extreme, fitting the data too coarsely, with a model that is too
simple, is called underfitting. Somewhere in the middle is a perfect balance, which,
unfortunately, there is no general way of finding, because there is no absolute way of
deciding what is signal and what is noise.

But generally to avoid overfitting, one must be willing to allow the data to be fit imperfectly,
leaving some variance unexplained. Indeed, in any realistic situation, one does not really
want to fit the data perfectly, because some of the data are noise—random fluctuations
unlikely to be repeated. Overfitting thus inevitably leads to poor generalization, because
some aspect of the learning was predicated on data that were unrepresentative of future data.
For this reason, virtually every working inference mechanism includes (implicitly or
explicitly) a damping process to restrain the complexity of models, sometimes referred to as
regularization (see Briscoe & Feldman, 2011; Hastie et al., 2001).

9. Overtuning to the environment
In the context of fitting our observer to the world, what this means is that setting priors to
match observed frequencies risks overfitting the world, or what might be called
“overtuning” to environment. The conventional view is that one cannot “overtune”; the
optimal observer is one whose prior matches the Lord's prior exactly, and the closer one can
come to it, the better. But in view of the bias/variance tradeoff, one would be unwise to fit
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one's prior too closely to any finite set of observations about how the world behaves,
because inevitably the observations are a mixture of reliable and ephemeral factors.

One may object that with a sufficiently large quantity of prior data, perhaps on evolutionary
time scales and with learning encoded genetically, the prior can be estimated with arbitrarily
high precision. But this conception assumes a fixed, repeating Bernoulli sequence with a
static prior—a fishbowl with an infinitely repeated probabilistic matrix. In practice,
environmental conditions are not singular, perfect, and unchanging. In reality, probabilities
vary over time, space, and context, in potentially unknown and unpredictable ways. The
environment inevitably contains uncertainty, not only about the classification of items on
individual trials but about the nature of the probabilistic schema itself. To fit past experience
perfectly is to overtune.

10. Uncertainty about the environment
For concreteness, one can imagine that the observer believes him- or herself to be in an
environment where the true prior is p(h), but that he or she might be in an alternative
(counterfactually nearby) environment with a slightly different true prior, whose value is
randomly distributed about p(h). Equivalently, one can simply imagine that the prior is
believed to be p(h) but that this belief is tempered by some uncertainty; in this conception,
the true prior is a fixed but unknown value, and the prior distribution captures the observer's
uncertainty about its value. The former scenario is more frequentist in “feel,” and the latter
more subjectivist, but they are mathematically equivalent: Both can be cast mathematically
in terms of a distribution of environments, with the priors governing them centered on a
“population mean” plus some error distribution. In either conception, our observer must
contend with a prior whose value cannot be regarded as a fixed value but rather as a
probability distribution over possible values.

I modeled this situation in another Monte Carlo simulation by assuming that the “true” prior
is itself chosen stochastically. First, we choose an imaginary prior p0 (the “population mean”
about which environments are chosen), and a vector e of probabilistic noise (components ei
chosen uniformly from (0,1), then normalized). We then create the actual environmental
prior p by mixing the mean with a quantity ε of noise,

(3)

The noise coefficient ε modulates the magnitude of uncertainty about the true nature of the
environment. Five levels of e were used, .1, .2, .3, .4, and .5. Zero noise ε = 0 corresponds to
the previous simulation, results of which are included here for comparison. All other
parameters are as before. Once the true prior has been chosen, we again evaluate priors q
ranging over the space of possible priors and evaluate their performance in the chosen
environment.

Fig. 3 shows the results. The decrease in performance with divergence from the true prior is
again visible, as is the increase with the entropy of the subjective prior. The novel element
here is the modulation of this latter effect by ε, the magnitude of noise or uncertainty about
the meta-environmental mean. The more uncertainty, the better mean performance in this
new (and more uncertain) environment. More specifically, given a fixed level of divergence
from the true prior, the more uncertainty the observer's prior contains, the better its
performance (see inset). In this sense, having a more “random” prior works better, even at a
fixed level of ostensible tuning (divergence).
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This plot suggests performance that is, in a very literal sense, superior to that of an ideal
observer of the same environment. The well-versed reader will recoil at this
characterization, because by definition performance cannot exceed that of the ideal. But the
classical ideal observer presumes a perfectly well-defined environment, whose governing
probabilities are fixed and invariant; indeed, the entire point of the construct is to model
optimal performance given such knowledge. (Nothing proposed here involves performance
superior to the ideal observer in the classical situation.) But in real circumstances, there is
almost always uncertainty about the environment, outside of the imaginary world of the
well-defined and infinitely repeated random experiment. Real environments exhibit
uncertainty, not only about the outcomes of individual trials but also about the underlying
governing probabilistic schema. In such environments, an “overlyidealized” ideal observer
lacks robustness and can perform poorly when conditions stray from the assumptions.

11. The regularized ideal observer
This leads to the idea of the regularized ideal observer, illustrated graphically in Fig. 4. The
regularized ideal observer is really a spectrum of possible priors, with the classical ideal
observer having D(p║q) = 0 (i.e., p = q) at one pole and a completely entropic prior at the
other. (This is not Jaynes' maximum-entropy prior, which already incorporates everything
that is known, but the prior with maximum entropy given the hypothesis space alone—e.g.,
equal priors on all hypotheses.)

As a concrete example, imagine you have a coin that has been flipped some large number of
times and come up heads 57% of the time. What prior should one use in the future? The
“frequentist prior” is p(h) = .57. The answer based on symmetry considerations alone (two
apparently similar sides, treat them equally) is p(h) = 0.5. The regularized ideal prior is the
class of priors in between, that is, 0.5 < p(h) < 0.57. The regularized prior can be thought of
as a “bead on a string” connecting these two poles (Fig. 4).

Why would one choose to disregard, or partly disregard, empirical evidence that the truth is .
57? That is, why would one push one's bead away from the ecological prior? Again, the
answer is uncertainty about the model of the environment. If the environment from which
the prior data were drawn were really a fixed stochastic source, with all nuisance variables
randomized (as in a Fisherian experiment), then conventional methods of estimating the
heads probability would apply, leading to an estimate that balanced the influence of the data
and the influence of the prior according to Bayes' rule. But if the environment is not
assumed fixed, then no matter how much data one has in support of the model in which h
has probability p(h), there is residual uncertainty about whether that model will continue to
apply identically in the future. Conventional estimation procedures designed to robustly
estimate the prior, such as cross-validation, are aimed at stabilizing the estimate of the
(presumed fixed) generating distribution of past performance. But as per Hume, the future is
not guaranteed to resemble the past. The uncertainty is not statistical but ontological. How
do we know that future observations will reflect, so to speak, the same coin? And how will
we perform with different but similar coins? Believers in the Lord's prior assume that future
observations of the same environment will, by definition, represent ever more flips of the
same coin. But for an organism in a natural environment, subject to inevitable change, this
assumption is baseless—an implicit invocation of the “frequentist fantasy” of infinitely
repeated random experiments. To assume a fixed, repeating probabilistic model is
essentially wishful thinking, lacking evidential support, and impossible even in principle to
support empirically. Instead of assuming that the world will continue identically into the
future, an intelligent observer ought to guard against the inevitable modification of
conditions. To accomplish this, the prior must, to some degree, be regularized away from
past data.
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So we can remedy the situation by assuming that the prior has some uncertainty, that is,
noise, around it. Fortunately, it is easy to predict, at least in a general way, how probability
distributions change when noise is added to them: Their entropy increases. This point is
illustrated schematically in Fig. 5, which shows how a particular prior (here, a distribution of
p over hypotheses) generally increases in entropy when random probability noise (another
distribution chosen independently) is added. This is essentially the second law of
thermodynamics. Technically, we would say that entropy function is concave, meaning that
for independent distributions p (here, the prior) and e (here, the noise), entropy is
superadditive, H(p + e) ≥ H(p) + H(e).

Fig. 6 illustrates the same idea in “prior space,” the space of possible priors p (here depicted
two-dimensionally, but the same applies in higher dimensions). If the true prior p is
perturbed, the prior tends to move in the direction of maximum entropy. Our coin with
observed frequency 57% heads might actually have higher than 57% probability of heads,
but it is more likely to have less (i.e., closer to 50%), giving it higher entropy. This effect
becomes more extreme the higher the dimension; the more degrees of freedom in the prior,
the more likely they will blur when noise is added, resulting in greater entropy.

If there is any uncertainty about the true prior, or (equivalently) any doubt that future
instances will be drawn from the same distribution as past ones, then a regularized ideal
observer is superior to a classical ideal observer. In this sense, the regularized ideal observer
might reasonably be called “super-ideal,” or perhaps more accurately “robust-ideal.” It is
robust in a number of senses: against noise, against faults in the assumptions about the
environment, and against actual changes in the nature of the environment; and for all these
reasons is more portable into moderately different environments. From an epistemic or
subjectivist perspective, these are all essentially equivalent conditions: They all reflect
subjective uncertainty about the priors governing future generation of data.

Naturally, there are many ways to construct a suitably regularized prior; the above
construction is intended only as an instructive illustration. The main constraints are (a) that
the prior should be understood as a state of belief rather than an objective fact about the
environment, and (b) that beliefs about the environment are uncertain. These constraints
imply, contrary to widespread intuition, that there is no one true prior (i.e., the Lord's), but
rather a family of possibilities from which to choose. As mentioned above, one well-
developed approach that accommodates these constraints is hierarchical Bayes (Gelman,
Carlin, Stern, & Rubin, 2003; Goodman et al., 2011; Salakhutdinov et al., 2010). In these
models, priors are drawn from analytical families that are themselves parameterized by
higher level parameters (hyperparameters) which themselves have prior distributions. In this
way, the prior can be adapted flexibly to the environment, estimated in a suitably regularized
manner based on environmental data. Critically, this approach entails that while some values
of the parameters might work better than others, there is no one “true” prior.

12. Conclusion
The idea that perceptual and cognitive mechanisms derive their success in part from a
meaningful connection to the statistics of the natural world, perhaps first suggested by
Brunswik (1956), and greatly extended by many more recent authors, is a profound insight.
An agent's choice of priors, implicitly entailed by its decisions and behavior, has tangible
implications; if they are misset, performance is materially diminished. But how exactly do
you set the priors to achieve optimal performance? The argument in this article is that the
contemporary fashion of setting them from tabulations in the environment has deep
conceptual problems, invoking a hodgepodge of conflicting ideas from Bayesian and
frequentist camps that would be accepted by neither. As Jorma Rissanen, the founder of
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Minimum Description Length theory, remarked about setting the prior: “[o]ne attempt is to
try to fit it to the data, but that clearly not only contradicts the very foundation of Bayesian
philosophy but without restrictions on the priors disastrous outcomes can be prevented only
by ad hoc means” (Rissanen, 2009, p. 28).

This article develops techniques for conceptualizing the prior that (a) avoid contradictions
with the foundations of Bayesian inference, and (b) suitably restrict—or, more properly,
regularize—its relation to the environment. In the Bayesian tradition, the observer's prior
may legitimately be based on any kind of knowledge or beliefs, including but not limited to
data about frequencies. Of course, some subjective priors are better than others. From an
evolutionary point of view, the best prior is one that maximizes adaptive fitness, not one that
happens to agree with a relative frequencies in the environment (cf. Hoffman, 2009; Mark et
al., 2010). The main point of this article is that “Bayesian frequentist” attitudes—faith in the
Lord's prior—are not only epistemologically naive but, moreover, risk overtuning.
Overtuning, in turn, leads to a fragility of performance in future encounters with the same
class of environments, which is maladaptive. Priors must be suitably regularized to truly
optimize the fit between mind and world.

Acknowledgments
Supported in part by NSF SBR-0339062, NIH EY15888, and NIH EY021494. I am grateful to Nick Chater, Sean
Fulop, Manish Singh, Josh Tenenbaum, and Qasim Zaidi for helpful comments.

References
Barlow, HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith,

WA., editor. Sensory Communication. Cambridge, MA: MIT Press; 1961. p. 217-234.

Barlow HB. Inductive inference, coding, perception, and language. Perception. 1974; 3:123–134.
[PubMed: 4457815]

Barlow HB. Conditions for versatile learning, Helmholtz's unconscious inference, and the task of
perception. Vision Research. 1990; 30(11):1561–1571. [PubMed: 2288075]

Barlow, HB. What is the computational goal of the neocortex?. In: Koch, C.; Davis, JL., editors.
Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press; 1994. p. 1-22.

Briscoe E, Feldman J. Conceptual complexity and the bias/variance tradeoff. Cognition. 2011; 118:2–
16. [PubMed: 21112048]

Brunswik, E. Perception and the representative design of psychological experiments. Berkeley:
University of California Press; 1956.

Burnham, KP.; Anderson, DR. Model selection and multi-model inference: A practical information-
theoretic approach. New York: Springer; 2002.

Chater, N.; Oaksford, M. The probabilistic mind: Prospects for Bayesian cognitive science. Oxford,
England: Oxford University Press; 2008.

Cover, TM.; Thomas, JA. Elements of information theory. New York: John Wiley; 1991.

Cox, RT. The algebra of probable inference. London: Oxford University Press; 1961.

D'Agostini, G. Bayesian reasoning in data analysis: A critical introduction. World Scientific
Publishing; 2003.

Elder JH, Goldberg RM. Ecological statistics of Gestalt laws for the perceptual organization of
contours. Journal of Vision. 2002; 2(4):324–353. [PubMed: 12678582]

Feldman, J. Perceptual models of small dot clusters. In: Cox, IJ.; Hansen, P.; Julesz, B., editors.
Partitioning data sets. Vol. 19. 1995. p. 331-357.DIMACS Series in Discrete Mathematics and
Theoretical Computer Science

Feldman J. Curvilinearity, covariance, and regularity in perceptual groups. Vision Research. 1997;
37(20):2835–2848. [PubMed: 9415364]

Feldman Page 14

Top Cogn Sci. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Feldman J. Bayesian contour integration. Perception & Psychophysics. 2001; 63(7):1171–1182.
[PubMed: 11766942]

Feldman J, Singh M. Information along contours and object boundaries. Psychological Review. 2005;
112(1):243–252. [PubMed: 15631595]

de Finetti, B. Theory of probability. Torino, Italy: Giulio Einaudi; 1970/1974. Translation 1990 by A.
Machi and A. Smith, John Wiley and Sons

de Finetti, B. Philosophical lectures on probability. New York: Springer; 2008. collected, edited, and
annotated by Alberto Mura

Fisher, R. Statistical methods for research workers. Edinburgh, Scotland: Oliver & Boyd; 1925.

Geisler WS, Diehl RL. Bayesian natural selection and the evolution of perceptual systems.
Philosophical Transactions of the Royal Society of London B. 2002; 357:419–448.

Geisler WS, Perry JS, Super BJ, Gallogly DP. Edge co-occurrence in natural images predicts contour
grouping performance. Vision Research. 2001; 41:711–724. [PubMed: 11248261]

Gelman, A.; Carlin, J.; Stern, H.; Rubin, H. Bayesian data analysis. 2nd. Boca Raton, FL: Chapman
and Hall; 2003.

Geman S, Bienenstock E, Doursat R. Neural networks and the bias/variance dilemma. Neural
Computation. 1992; 4:1–58.

Goodman ND, Ullman TD, Tenenbaum JB. Learning a theory of causality. Psychological Review.
2011; 118(1):110–119. [PubMed: 21244189]

Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning: Data mining, inference,
and prediction. New York: Springer; 2001.

Hoffman, DD. The user-interface theory of perception: Natural selection drives true perception to swift
extinction. In: Dickinson, S.; Tarrr, M.; Leonardis, A.; Schiele, B., editors. Object categorization:
Computer and human vision perspectives. Cambridge, England: Cambridge University Press;
2009.

Howie, D. Interpreting probability: Controversies and developments in the early twentieth century.
Cambridge, England: Cambridge University Press; 2004.

Jaynes ET. The well-posed problem. Foundations of Physics. 1973; 3:477–491.

Jaynes ET. On the rationale of maximum-entropy methods. Proceedings of the I E E E. 1982; 70(9):
939–952.

Jaynes, ET. Probability theory: The logic of science. Cambridge, England: Cambridge University
Press; 2003.

Jeffreys, H. Theory of probability. 3rd. Oxford, England: Clarendon Press; 1939/1961.

Jones M, Love BC. Bayesian fundamentalism or enlightenment? On the explanatory status and
theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences. 2011;
34:169–188. [PubMed: 21864419]

Knill, D.; Richards, W. Perception as Bayesian inference. Cambridge, England: Cambridge University
Press; 1996.

Laplace, PS. Thèorie analytique des probabilitès. Paris: Courcier; 1812. Reprinted as Oeuvres
completes de Laplace, 1878–1912. Paris: Gauthier-Villars

Lehmann, EL. Fisher, Neyman, and the creation of classical statistics. New York: Springer; 2011.

Maloney LT, Zhang H. Decision-theoretic models of visual perception and action. Vision Research.
2010; 50:2362–2374. [PubMed: 20932856]

Mark JT, Marion BB, Hoffman DD. Natural selection and veridical perceptions. Journal of Theoretical
Biology. 2010; 266:504–515. [PubMed: 20659478]

Marr, D. Vision: A computational investigation into the human representation and processing of visual
information. San Francisco, CA: Freeman; 1982.

Mellor, DH. Probability: A philosophical introduction. London: Routledge; 2005.

von Mises, R. Probability, statistics and truth. New York: Macmillan; 1939.

Oaksford M, Chater N. Précis of Bayesian rationality: The probabilistic approach to human reasoning.
Behavioural Brain Science. 2009; 32:69–84.

Feldman Page 15

Top Cogn Sci. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Popper KR. The propensity interpretation of probability. British Journal for the Philosophy of Science.
1959; 10(37):25–42.

Purves, D. Brains: How they seem to work. Saddle River, NJ: FT Press; 2010.

Richards, WA. The approach. In: Richards, WA., editor. Natural computation. Cambridge, MA: MIT
Press; 1988.

Richards, WA.; Bobick, A. Playing twenty questions with nature. In: Pylyshyn, Z., editor.
Computational processes in human vision: An interdisciplinary perspective. Norwood, NJ: Ablex
Publishing Corporation; 1988. p. 3-26.

Rissanen, J. Model selection and testing by the MDL principle. In: Emmert-Streib, F.; Dehmer, M.,
editors. Information theory and statistical learning. New York: Springer; 2009. p. 25-43.

Salakhutdinov, R.; Tenenbaum, J.; Torralba, A. Technical Report MIT-CSAIL-TR-2010-052. 2010.
One-shot learning with a hierarchical nonparametric Bayesian model.

Sharpe, O. Beyond NFL: A few tentative steps. In: Koza, JR., et al., editors. Genetic programming
1998: Proceedings of the third annual conference. Madison, WI: Morgan Kaufman; 1998. p.
593-600.

Shepard RN. Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin &
Review. 1994; 1(1):2–28.

Sivia, DS. Data analysis: A Bayesian tutorial. 2nd. Oxford, England: Oxford University Press; 2006.

Venn, J. The logic of chance: An essay on the foundation and province of the theory of probability,
with especial reference to its logical bearings and its application to moral and social science, and
to statistics. London: MacMillan; 1888.

Wasserman, L. All of statistics: A concise course in statistical inference. New York: Springer; 2003.

Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Computation. 1996;
8(7):1341–1390.

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation. 1997; 1(1):67–82.

Feldman Page 16

Top Cogn Sci. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Results of the Monte Carlo simulation, showing that classification performance (A)
decreases linearly with divergence of the observers's choice q from the true prior p but (B)
increases with the entropy of the chosen prior q. Results are plotted for three different
choices of “true” priors: high entropy (p1 = 0.5; p2 = 0.5), lower entropy (p1 = 0.3; p2 = 0.7),
and very low entropy (p1 = 0.1; p2 = 0.9). The residual error when the true prior is used
(divergence = 0, far left) is the Bayes error.
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Fig. 2.
Results of the Monte Carlo simulation for four classes, again showing that classification
performance (A) decreases linearly with divergence from the true prior, but (B) increases
with the entropy of the chosen prior. Here, in higher dimensions, the effect of entropy is
stronger, with a steeper slope and smaller error bars. Results are shown from two choices of
prior with different entropies (p1 = {.1, .3, .3, 3}, p2 = {.1, .2, .3, .4}). Note with a larger
number of classes, the classes are more confusable, leading to a larger Bayes error.
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Fig. 3.
Results of the simulation with various levels of uncertainty added to the true prior, showing
(A) decrease in performance with divergence and (B) increase in performance with entropy,
separated by the level ε of noise. Inset shows mean performance as a function of ε.
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Fig. 4.
The class of regularized priors, depicted as a “bead on a string” connecting the ecological
prior to the point of maximum entropy. Sliding the bead all the way to the maximum-
entropy point ignores past experience; sliding it all the way to the ecological prior sacrifices
robustness against uncertainty.
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Fig. 5.
When probability noise is added to a prior, the result is (usually) a higher-entropy prior.
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Fig. 6.
A probability space {p1,p2} (with p3 = 1 − p1 − p2; the prior with maximum entropy is at
{1/3,1/3}). The figure illustrates what happens when probability noise is added to a given
“meta-prior,” or population mean from which priors are drawn. Noise can move the prior in
any direction, but it usually moves it in a direction that increases entropy.

Feldman Page 22

Top Cogn Sci. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


