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With the widespread use of learning analytics (LA), ethical concerns about fairness have

been raised. Research shows that LA models may be biased against students of certain

demographic groups. Although fairness has gained significant attention in the broader

machine learning (ML) community in the last decade, it is only recently that attention

has been paid to fairness in LA. Furthermore, the decision on which unfairness mitiga-

tion algorithm or metric to use in a particular context remains largely unknown. On this

premise, we performed a comparative evaluation of some selected unfairness mitigation

algorithms regarded in the fair ML community to have shown promising results. Using a

3-year program dropout data from an Australian university, we comparatively evaluated

how the unfairness mitigation algorithms contribute to ethical LA by testing for some

hypotheses across fairness and performance metrics. Interestingly, our results show how

data bias does not always necessarily result in predictive bias. Perhaps not surprisingly,

our test for fairness-utility tradeoff shows how ensuring fairness does not always lead to

drop in utility. Indeed, our results show that ensuring fairness might lead to enhanced util-

ity under specific circumstance. Our findings may to some extent, guide fairness algorithm

and metric selection for a given context.
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1 PRACTITIONER NOTES

1.0.1 What is already known about this topic

• LA is increasingly being used to leverage actionable insights about students and drive student success

• LA models have been found to make discriminatory decisions against certain student demographics — therefore, raising ethical concerns.

• Fairness in education is nascent. Only a fewworks have examined fairness in LA and consequently followed upwith ensuring fair LAmodels.

1.0.2 What this paper adds

• A juxtaposition of unfairness mitigation algorithms across the entire LA pipeline showing how they compare and how each of them
contributes to fair LA

• Ensuring ethical LA does not always lead to a dip in performance. Sometimes, it actually improves performance as well.
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• Fairness in LA has only focused on some form of outcome equality, however equality of outcome may be possible only when the playing
field is levelled.

1.0.3 Implications for practice and/or policy

• Based on desired notion of fairness and which segment of the LA pipeline is accessible, a fairness-minded decision maker may be able to
decide which algorithm to use in order to achieve their ethical goals.

• LA practitioners can carefully aim for more ethical LA models without trading significant utility by selecting algorithms that find the right
balance between the two objectives.

• Fairness enhancing technologies should be cautiously used as guides — not final decision makers. Human domain experts must be kept in
the loop to handle the dynamics of transcending fair LA beyond equality to equitable LA.

Statements on open data, ethics and conflicts of interest

All ethical requirements have been considered prior to conducting the analysis. The study was approved by the governing ethical board. (Ethics
Protocol Application ID: 204198).
The authors declare no conflict of interests.
Due to privacy concerns, we cannot share the dropout dataset. Access to other data and analysis associated with this publication is available at
this link

2 INTRODUCTION

The availability of powerful data infrastructure and futuristic visions of many educational institutions worldwide has resulted in increased deploy-
ment of LA1 technologies to drive student and institutional success as well as optimal resource allocation Dawson, Jovanovic, Gašević, and Pardo
(2017). Given the current COVID-19 pandemic, most educational institutions have transitioned learning activities to online instruction. This has
further increased the amount of learner-generated data almost exponentially. As a result, there has been an increased interest in LA as field of
research and practice. Since its inception, the prime focus of LA has been utilization of data from various learning environments (e.g., learning man-
agement systems (LMS), massive open online courses (MOOCS) or student information services ) and/or multimodal sensory (e.g., visual, auditory,
reading and writing, and kinesthetic) data to leverage insights on students Joksimović, Kovanović, and Dawson (2019). For instance, using LA, we
can predict: students at risk of failing a course Hlosta, Zdrahal, and Zendulka (2017) or learning outcomes Käser, Hallinen, and Schwartz (2017).

Despite the many benefits that LA provides, ethical concerns about their fairness have been raised Baker and Hawn (2021). A significant number
of fairness metrics Narayanan (2018) and algorithms satisfying such metrics Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2019) have been
developed in the broader ML community over the last decade. Despite the considerable number of research on fairness, we have not seen these
fairness-aware algorithms deployed in relevant real-life domains. This is probably because it is non-trivial to find the “best” algorithm or fairness
metric for each situation.

Furthermore, there is an ongoing debate on what is termed as the “impossibility theorem”, to wit, it is not possible to satisfy all fairness measures
simultaneously. Kleinberg, Mullainathan, and Raghavan (2016) analysed the relationship between calibration within groups, balance of negative class
and balance for positive class and proved that except in highly constrained special cases, it is impossible to satisfy all three measures simultane-
ously. Similarly, Chouldechova (2017) showed that in the event of unequal base rates across groups, a recidivism prediction instrument satisfying
predictive parity may still result in disparate impact. Berk, Heidari, Jabbari, Kearns, and Roth (2018) demonstrated the incompatibility between six
fairness measures and the impossibility to simultaneously maximize accuracy and fairness.

Several surveys have been done on different aspects of fair ML. We categorize them as follows: ones that provide a general literature overview
and those that experimentally evaluate fairness measures and unfairness mitigation algorithms. In the first category, Romei and Ruggieri (2011)
focuses on areas of application of fairness, methods and approaches to data collection and data analysis. The survey by Mehrabi, Morstatter,
Saxena, Lerman, and Galstyan (2019) covers the sources bias and how (un)fairness manifests in a different families of ML approaches. In the second
category, Žliobaitė (2017) computationally evaluated some fairness measures and shed light on the implications of using a particular measure.
Closely related to ours is the work of Friedler et al. (2019) where the authors experimentally compare some pre- and in-processing algorithms to
determine how the algorithms relatively perform.

1unless otherwise stated, in this work, we use LA to loosely represent ML in the educational settings

https://bit.ly/32yK9CD
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In the aforementioned works and more generally fair ML research, little attention has been paid to the domain of education. In the education
context, while Yu, Lee, and Kizilcec (2021a) focused on theoretical approaches and recommendations to reducing bias in education, Baker and
Hawn (2021) shed light on causes of bias in education and which protected groups are mostly affected. A similar study to ours was done by Riazy,
Simbeck, and Schreck (2020). The authors compared Kamishima, Akaho, Asoh, and Sakuma (2012)’s Prejudice Remover and Zafar, Valera, Rogriguez,
and Gummadi (2015)’s Margin-based classifier with four baseline classifiers across four fairness metrics. However, the breadth of the algorithms
they considered is relatively small. To the best of our knowledge, there is no work in LA that evaluates the unfairness mitigation algorithms across
the entire LA pipeline. A critical evaluation of how discrimination occur and are mitigated at various segments of the LA pipeline would guide LA
practitioners on which algorithm to use in light of the segment accessible to them.

On that premise, we evaluated a relatively larger collection of unfairness mitigation algorithms spanning the entire LA pipeline ( i.e. pre-
processing, in-processing and post-processing) across a relatively wide collection of fairness and performance metrics.We selected works regarded
to have shown promising results in the fair ML community. We tested for how they relatively compare and contribute to ensuring ethical LA based
on some hypotheses detailed in Section 5. We further investigated if our findings would be consistent with domains other than LA by performing
same evaluations using datasets other than educational dataset. The rest of our work is structured as follows: in Section 3, we perform literature
review. Section 4 captures information on datasets used, the algorithms evaluated and metrics used. Experiments and discussions are made in
Section 5, and then conclusions in Section 6.

3 LITERATURE REVIEW

In this section, we first discuss works on fairness in the broader ML community and then we zero in on fairness in LA. To help our discussion,
we made the following denotations. We represent non-sensitive attributes by X, sensitive or protected attribute by A, actual outcome by Y and
predicted outcome by Ŷ. We denote the privileged group and favourable outcome by A = 1 and Y = 1 (or Ŷ = 1) respectively. Conversely, we
represent unprivileged and unfavourable outcome by A = 0 and Y = 0 (or Ŷ = 0) respectively. We structured and reviewed literature as follows:
(a) (un)fairness discovery or measurement; (b) unfairness mitigation; and (c) fairness in LA

3.1 (Un)fairness Discovery or Measurement

According to Saxena et al. (2019), fairness may regarded as the absence of prejudice or any form of favouritism towards an individual or a group
based on their sensitive attributes. There are two broad approaches by which fairness is measured in literature, namely (a) correlation-based
approaches (b) causality-based approaches. Most of the fairness measures that we discussed in this work and more generally in the fair ML com-
munity are correlation-based (i.e., the correlation between the sensitive attribute and the target label is used to imply the existence of unfairness).
Kusner, Loftus, Russell, and Silva (2017) among others, argue that correlation-based fairness notions usually suffer from statistical anomalies. More
so, in a legal setting, a more admissible evidence of unfairness is based on counterfactual reasoning. For example, all other factors held constant,
would a male student that was predicted to dropout receive the same prediction had he been a female student? These questions are best answered
using causality. Both correlation-based and causality-based approaches to fairness measurements coalesce around two underlying notions of
fairness, namely group fairness and individual fairness. We discuss them in detail as follows:

3.1.1 Group Fairness (GF)

There are many variants of group fairness notion, however, the overarching idea is some form of statistical or predictive parity across demographic
groups.We put the group fairness measures that we rewiewed into three categories according to the criteria that their computations are predicated
on.

Measurements based on actual or predicted outcome: These measurements are the most basic and intuitive fairness measures. However, they
are faced with lots of limitations. Some common examples of these measurements are statistical parity (SP) Dwork, Hardt, Pitassi, Reingold, and
Zemel (2012) and disparate impact (DI) Feldman, Friedler, Moeller, Scheidegger, and Venkatasubramanian (2015). SP ensures that proportions of
individuals getting a favourable outcome are equal across demographics. The DI measure is based on the four-fifths rule. SP and DI are computed
by finding the difference and ratio respectively in proportions of each demographic group getting a favourable outcome.

Measurements based on actual and predicted outcome: These measures ensure that predictions are more faithful to the ground-truth. Hardt, Price,
and Srebro (2016) introduced the equal odds (EO) which requires that the true positive and false positive rates are equal for both protected and
unprotected groups. For instance in a dropout prediction, EO ensures that male and female students are accurately and falsely predicted to dropout
at similar rates. Equal opportunity (EOP) which is a relaxed version of EO ensures that the true positive rates for both protected and unprotected
groups are equal. Furthermore, some other error metrics that are computed from a confusion matrix can be group-conditioned to measure fairness.
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A difference in these group-conditioned error measures can be regarded as discrimination. Verma and Rubin (2018) lists a collection of such group-
conditioned error measures, namely positive predictive value difference (PPV-diff), false discovery rate difference (FDR-diff), negative predictive
value difference (NPV-diff) and false omission rate difference (FOR-diff).

Measurement based on Generalised Entropy Indices: This measure is borrowed from an economic principle used to measure inequality of income
among a population. This measure quantifies unfairness by measuring how the outcome of an algorithm benefits different individuals or groups
unequally. The benefit for an individual i can be computed using a benefit function bi. The choice of benefit function is dependent on the domain
of application. For simplicity, we use the binary benefit function defined in Speicher et al. (2018) which is computed as bi = ŷi− yi +1. The benefit
of a group g, is the mean of the benefits received by individuals in that group ; µg = 1

|g|
∑

i∈g bi. For a constant α 6∈ {0, 1}, the generalized entropy
of benefits b1, b2, .....bn with mean benefit µ is computed as:

εα(b1, b2, ...., bn) =
1

nα(α− 1)

n∑
i=1

[(
bi

µ
)α − 1] (1)

The generalized entropy index has the subgroup decomposability characteristic. It can be decomposed into a group fairness (between-group
entropy index (BGEI)) and individual fairness (within-group entropy index (WGEI)) components i.e., εα(b1, b2, ...., bn) = εαβ (b) + εαω(b). The BGEI
and WGEI are denoted by εαβ (b) and εαω(b) respectively. The theil index is special case of generalized entropy index with α = 1. The theil index
also has a group fairness (between-group theil index (BGTI)) and individual fairness (within-group theil index (WGTI)) components.
Although group fairness measures are able to measure group-based discrimination, individual-level unfairness are not properly detected. Individual
fairness was thus introduced.

3.1.2 Individual Fairness (IF)

Individual fairness is based on the idea that similar individuals should be treated similarly. There are fewer individual fairness measurements
compared to group fairness. We put the individual fairness measures that we rewiewed into three categories based on the following criteria:

Measurements based on similarity metric: A predictor satisfies individual fairness if individuals i and j who are similar with respect to a given
similarity metric; such as a distance function (i.e. d(i, j) < ε) defined for a particular task are given similar outcomes. IF was introduced by Dwork,
Hardt, Pitassi, Reingold, and Zemel (2012). The similarity metric in their work, however, is assumed to be given which may be unrealistic in certain
instances as was stated in their paper as the most challenging aspect of their work. Based on this idea, Zemel, Wu, Swersky, Pitassi, and Dwork
(2013) introduced the Consistency (IF)2 measure. This measure compares the outcome of an individual i to those of its k-nearest neighbours.

Measurements based Generalised Entropy Indices (GEI): As we already discussed under the group fairness, the GEI can be decomposed into group
and individual fairness components, the WGEI and WGTI components are used for measuring individual-level unfairness.

Measurements based Counterfactual Reasoning: We discuss two of the highly cited causality-based measures. Kusner, Loftus, Russell, and Silva
(2017) introduced the counterfactual fairness measure which compares the same individual with an “imagined” version of themself. A predictor is
counterfactually fair if a male individual in the real world will have the same outcome in the counterfactual world where his gender is flipped to
female. One limitation of Kusner, Loftus, Russell, and Silva (2017)’s measure is that it assumes the entire effect of the sensitive attribute on the target
label to be “discriminatory”. To tackle this limitation, Chiappa (2019) introduced the “path-specific counterfactual fairness”. This measure checks the
causal effect of the sensitive attribute on the target label along fair and unfair causal pathways. Causal discovery of unfairness is still nascent and
has a great potential of improving fair ML. To the best of our knowledge, results from existing works show that algorithmic discrimination may be
relatively “better” discovered and mitigated when tackled from the causal perspective. However the tools available for our comparative evaluations
are all of the correlation-based approaches. Thus, we leave evaluation of causality-based approaches for future work.

3.2 Unfairness Mitigation

A naïve way of mitigating unfairness would be simply deleting all the sensitive features in the dataset that serve as the basis for discrimination. This
however, is far from being adequate as non-sensitive attributes may act as proxies for sensitive attributes (usually referred to as redlining) Feldman,
Friedler, Moeller, Scheidegger, and Venkatasubramanian (2015). Researchers have come up with unfairness mitigation algorithms that tackle the
various segments of a ML pipeline. There are those that that remove biases in the training data (pre-processing), the algorithm itself (in-processing)
or the predicted outcomes (post-processing).

2For the sake of clarity, consistency as a fairness measure is emboldened to differentiate it from the noun consistency
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3.2.1 Pre-processing

Pre-processing methods work on the motivation that the quality of any model depends on the quality of the training data, hence a fair dataset
would result in fair outcomes. Pre-processing approaches modify biased historical data to remove discriminatory patterns. The Learning Fair Rep-
resentation (LFR) algorithm of Zemel, Wu, Swersky, Pitassi, and Dwork (2013) learns a latent representation that encodes the essential information
of the data while obfuscating information related to sensitive attributes in order to satisfy consistency and SP. Similarly, in order to satisfy both
group and individual fairness, Calmon, Wei, Vinzamuri, Ramamurthy, and Varshney (2017)’s Optimized Preprocessing (OptimPreProc) used the
idea of probabilistic transformation of the training dataset formulated as a convex optimization problem with three constraints, namely minimizing
discrimination, preserving utility and reducing distortion in the individual data samples. Feldman, Friedler, Moeller, Scheidegger, and Venkatasub-
ramanian (2015)’s Disparate Impact Remover (DIR) ensures group fairness while preserving rank-ordering by editing feature values. Although the
features are changed to ensure fairness, labels remain unchanged, thus label biases may still be present in DIR’s fair data. Kamiran and Calders
(2012) developed ways to modify a biased data bymassaging, where the labels of some individuals in the dataset are changed, reweighing algorithm
(RW), where weights are systematically assigned to individuals to achieve group fairness and by sampling, where sample sizes of the subgroups are
changed to make the dataset fair. Pre-processing approach is used for algorithms that have access to the training data and can modify it. The fair
pre-processed data can thereafter be used to learn any ML algorithm to make fair decisions.

3.2.2 In-processing

In-processingmethods achieve fairness by explicitly introducing extra fairness constraints in the training algorithm. The authors of Kamiran, Calders,
and Pechenizkiy (2010) modified the splitting criterion of a decision tree classifier to ensure fairness. Zhang, Lemoine, and Mitchell (2018) used
Adversarial Debiasing (AdDeb) to learn classifiers that maximize accuracy while removing influence of sensitive attributes on predictions. The
inability of the adversary to predict the sensitive group based on the predictions made by the predictor shows that the predictions are fair since
they are not dependent on the protected attributes. A discrimination-aware regularization term is added to the objective function of a logistic
regressionmodel in Kamishima, Akaho, Asoh, and Sakuma (2012)’s Prejudice Remover (PR). The prejudice remover can be applied to ensure fairness
in any predictive algorithm with probabilistic discriminative model. Three approaches were used by Calders and Verwer (2010) for a naive bayes
classifier viz. (a) modification of conditional probability distribution, (b) learning group-specific models, (c) adding a latent variable to the bayesian
model. The work in Celis, Huang, Keswani, and Vishnoi (2018) introduces what they call a meta-algorithm (Meta) for classification which takes a
generic collection of fairness constraints as a unifying framework to satisfy some of the existing fairness metrics. In-processing approaches are
used in scenarios where access to and modification of the internals of the ML algorithm is possible.

3.2.3 Post-processing

Post-processing approaches work by modifying the results of a previously trained model to achieve desired measures of fairness with respect to
different groups. Post-processing may be regarded as shifting the decision boundary of baseline classifiers for different groups to achieve some
fairness notion. Kamiran, Calders, and Pechenizkiy (2010) relabelled the leave nodes of a decision tree classifier to achieve group fairness. Hardt,
Price, and Srebro (2016) used linear programming to find probabilities with which output labels were changed to optimize equal odds and equal
opportunity. Similar to equal odds algorithm is another work by Pleiss, Raghavan, Wu, Kleinberg, and Weinberger (2017) called Calibrated Equal
Odds (CalEqOdds) with a single error constraint (such as false positive parity or false negative parity). CalEqOdds optimizes over a calibrated
classifier score outputs to determine the probabilities with which outputs are post-processed to satisfy equal odds constraint. Post-processing
approaches are useful for blackbox systems where there is only access to the predicted outcomes.

3.3 Fairness in LA

LA is increasingly being used by educational institutions to leverage actionable insights such as: predicting students at risk of failing a course
Hlosta, Zdrahal, and Zendulka (2017) or learning outcomes Käser, Hallinen, and Schwartz (2017) for the necessary interventions to be made. Aside
the obvious benefits that LA provides, their increased adoption and deployment has raised ethical concerns about fairness. We briefly overview
literature on fairness in LA. For a comprehensive literature review of fairness in LA and LA itself in general, we refer readers to Baker and Hawn
(2021); Yu, Lee, and Kizilcec (2021a) and Gardner and Brooks (2018); Lang, Siemens, Wise, and Gasevic (2017) respectively as that is beyond the
scope of this paper. Although fairness has been quite extensively explored in other domains such as criminal justice, it is nascent in the context
of LA. The limited examinations of fairness does not in effect imply limited evidence of unfairness in LA Blanchard (2012); Hu and Rangwala
(2020); Ocumpaugh, Baker, Gowda, Heffernan, and Heffernan (2014); Yu, Li, Fischer, Doroudi, and Xu (2020). For example, some models tend
to generalize well for urban and suburban students but not rural students Baker and Gowda (2010); Ocumpaugh, Baker, Gowda, Heffernan, and
Heffernan (2014). Blanchard (2012) showed how students from WEIRD (white, educated, industrialized, rich and democratic) were oversampled



6

by an intelligent tutoring systems (ITS) compared to those from non-WEIRD countries. Also, models for predicting course failure were found by
Hu and Rangwala (2020) to discriminate against African-Americans.

There have been a few works advancing the ethical LA agenda by designing fair LA models. In a “naive” attempt at unfairness mitigation,Yu,
Lee, and Kizilcec (2021b) carried out a study to ascertain whether the inclusion or exclusion of protected attributes had an effect on fairness
and performance of an LA model. They found no significant difference in performance and fairness between the protected attribute-aware and
protected attribute-blind models. In order to correct the racial and gender bias in their LA model, Lee and Kizilcec (2020) post-processed a Random
Forest model by setting protected group-specific classification thresholds to achieve equal opportunity. Similarly, Hu and Rangwala (2020), built
an LA model to ensure fairness with respect to race and gender using metric free individual fairness. Their results interestingly suggest that biased
data may not always necessarily lead to biased predictions. Given that there are many different options of LA models with varying levels of fairness
and performance for a particular task, the decision on which one to choose becomes difficult. In light of that, Sha et al. (2021) compared four
traditional LA models and two deep learning (DL) LA models. They found the traditional models to be relatively more fairer but less accurate
compared to the DL models and vice versa. They also reported how simple equal sampling of protected groups improved fairness. Similar in result
with respect to fairness but contrasting performance results,Kung and Yu (2020) also reported how interpretable models such as Logistic regression
were equal or less unfair with interestingly no compromise in accuracy compared to complex models and thus advocating for interpretable LA
models. Gardner, Brooks, and Baker (2019) also showed in their work no strict evidence of fairness-accuracy tradeoff. The authors performed
a replication study on five Massive Open Online Course (MOOC) dropout prediction models and measured fairness using a metric they refer
to as Absolute Between-ROC Area (ABROCA). Gardner, Brooks, and Baker (2019) found unfairness to be mostly associated with course gender
imbalance. Given that there are existing algorithms in the fair ML community dedicated to unfairness mitigation, it is crucial to investigate how
these algorithms can be leveraged to build fair LA models. To that effect, Riazy, Simbeck, and Schreck (2020) compared Kamishima, Akaho, Asoh,
and Sakuma (2012)’s Prejudice Remover and Zafar, Valera, Rogriguez, and Gummadi (2015)’s Margin-based classifier with four baseline LA models.
As expected, the dedicated unfairness mitigation algorithms improved the fairness compared to the baseline LA models. However, the breadth
of unfairness mitigation algorithms in Riazy, Simbeck, and Schreck (2020)’s work is relatively small (i.e., two in-processing algorithms). To further
advance their work, we comparatively evaluated some selected unfairness mitigation algorithms spanning the entire LA pipeline by testing them
on some fairness and performance related hypotheses detailed in Section 5.

4 DATA SETS, ALGORITHMS AND METRICS

4.1 Data sets

We performed the experiments on five real world datasets. Four of them: (German credit Lichman (2013), Law School Kusner, Loftus, Russell, and
Silva (2017), Compas Angwin, Larson, Mattu, and Kirchner (2016) and Voilent Crime Angwin, Larson, Mattu, and Kirchner (2016)) are commonly
used in the fair ML community . We also used first semester records of 3 cohorts of students from 2015-2017 for a particular program in a large
public Australian University to predict if they would dropout of the program within their 3-year duration of study. Dropout prediction is one of
the most common LA tasks, as such, most of our analysis would be based on the dropout dataset. Unless otherwise stated, all datasets used are
the preprocessed version from Friedler et al. (2019). For the Law school data, we used the preprocessed version used in Kusner et al. (2017). We
binarized all categorical features in the dropout data. For non-binary categorical features, binarization was done using an indicator function. Some
courses required more online engagement than others, thus to make them comparable, we “z-normalized” the online engagements for each specific
course. Data details are summarised in Table 1 .

TABLE 1 Details about dataset used for experimental evaluation

Data Domain Samples Protected Attribute Prediction
Dropout Education 696 Home Language dropout
Law School Education 21,790 Race first year average
German Credit Finance 1,000 Age loan default
Compas Criminal Justice 6,167 Race recidivism
Violent Crime Criminal Justice 4,010 Race recidivism
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4.2 Measures

The fairness measurements for the experimental evaluation have already been discussed in Subsection 3.1. First of all, we chose these fairness
measures because they are the most commonly used measures in the fair ML community Mehrabi et al. (2019); Verma and Rubin (2018). More
so, a recent experiment by Srivastava, Heidari, and Krause (2019) examined most of the fairness measures that we considered in this work . In
Srivastava, Heidari, and Krause (2019)’s experiment, the participants were each presented with 20 hypothetical questions w.r.t fairness across
different contexts and were asked to choose an operationalisation of fairness that they deemed fair w.r.t each question and explain the reason
behind their choice. Their results showed how these fairness measures (considered in this work) aligns with the lay person’s perception of fairness.
We would like to point out that although the fairness measures we considered are not exhaustive of all contexts, the collection is relatively large
enough to generalise for most contexts. We measured predictive performance w.r.t accuracy, precision (aka PPV) and NPV. Using the dropout data
as a case study, the accuracy indicates how often the model correctly predicts dropout and non-dropouts on the overall level. Zeroing in on each
respective class, we use precision to measure how often students that were predicted to dropout actually dropped out. Conversely, we used NPV
to measure how often students predicted not to dropout actually did not dropout. The predictive performance and fairness measures used in this
study are summarized in Table 2

TABLE 2 Performance and fairness measures (GF= group fairness, IF= individual fairness). The full meaning of the performance and fairness
measures can be found Subsection 3.1. Also, see the same for the full formulae for BGEI, BGTI, WGEI, and WGTI

Measure Formula Type
Accuracy TP + TN/(TP + TN + FP + FN) Performance

Precision TP/(TP + FP) Performance

NPV TN/(TN + FN) Performance

DI (P(Ŷ = 1|A = 0))/P(Ŷ = 1|A = 1) ≥ τ = 0.8 GF

SP P(Ŷ = 1|A = 0) − P(Ŷ = 1|A = 1) GF

EO P(Ŷ = 1|A = 0, Y = y) = P(Ŷ = 1|A = 1, Y = y), y ∈ {0, 1} GF

EOP P(Ŷ = 1|A = 0, Y = 1) − P(Ŷ = 1|A = 1, Y = 1) GF

PPV-diff (TP/(TP + FP)A=0) − (TP/(TP + FP)A=1) GF

FDR-diff (FP/(TP + FP)A=0) − (FP/(TP + FP)A=1) GF

NPV-diff (TN/(TN + FN)A=0) − (TN/(TN + FN)A=1) GF

FOR-diff (FN/(TN + FN)A=0) − (FN/(TN + FN)A=1) GF

BGEI εαβ (b),α 6∈ {0, 1} GF

BGTI εαβ (b),α = 1 GF

WGEI εαω(b),α 6∈ {0, 1} IF

WGTI εαω(b),α = 1 IF

Consistency Consi = 1 − 1
Nk

∑N
i=1

∑
j∈kNN(xi)

∣∣∣ŷi − ŷj

∣∣∣ IF

4.3 Algorithms

For our baseline models3, we did model selection using H2O.ai’s AutoML and found Gradient BoostedMachines (GBMs) had the best performance
ahead of XGBoost, Random Forest and Extremely Randomised Trees. The AutoML module auto handles the hyperparameter tuning, we evaluated
the hyperparameters by manually setting the nfolds argument to 10 for 10-fold cross validation. In addition to the GBM, we also used a Logistic
Regression (LR) model as our baseline partly because of their interpretability and also Kung and Yu (2020)’s research showed they tend to be
relatively fair compared to complex models without compromising accuracy. The unfairness mitigation algorithms that we evaluated in this work

3We refer to models without any fairness constraint (assumed to be biased) as baseline models. Subsequently, such models produce baseline predictions
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are among those considered in the fair ML community to have shown promising results in unfairness mitigation. These algorithms have gained a
lot of attention (see citation count in Table 3 ) and have undergone rigorous review process before being published in top-tier ML conferences
such as NIPS and ICML. We opine that these algorithms are prime candidates for real-world adoption if there be such a situation. The details of
the unfairness mitigation algorithms are summarised in Table 3 .

TABLE 3 Selected unfairness mitigation algorithms

Algorithm Citations (October, 2021) Type Modifies
DIR 1006 Pre-processing Biased Data
RW 526 Pre-processing Biased Data
LFR 1063 Pre-processing Biased Data
PR 466 In-processing Biased Model
AdDeb 487 In-processing Biased Model
Meta 128 In-processing Biased Model
EqOdds 1856 Post-processing Biased Predictions
CalEqOdds 392 Post-processing Biased Predictions

5 EXPERIMENTS, RESULTS AND DISCUSSION

Althoughwe usedmany datasets for our evaluations, our analysis would bemostly based on the student dropout dataset. The other datasets are for
benchmarking and test of generalizability of findings. The favorability of our prediction outcome (i.e. being predicted to dropout) may be regarded
as a two-sided coin. For instance, if being predicted to dropout comes with some form of intervention package to help the “at-risk” student, then
we consider that to be a favourable outcome. However, if being predicted to dropout negatively affects the reputation of the student, then it
becomes unfavourable. In this work, we consider being predicted to dropout as favourable. English as home language students are considered as
privileged group and all others unprivileged.

5.1 Experiments

We randomly shuffled each dataset into ten shuffles and performed five-fold cross validation on each shuffle. We thus have 50 results for each
performance and fairness metric for every algorithm. For the baseline algorithms, we used the H2O.ai python implementation. We have already
discussed in Subsection 4.3 how the internal tunings were done. For the unfairness mitigation algorithms, we used implementations in IBM’s AI
Fairness 360 (AIF360) package Bellamy et al. (2018). DIR has a hyper-parameter λ for tuning the tradeoff between fairness and accuracy. λ = 0

signifies no-fairness while λ = 1 ensures maximum fairness. We experimented on values of λ in [0, 1] space. PR also has a hyper-parameter η.
Just like the authors of the algorithm, we explored the influence of the η values between 0 and 100. We do same for Meta’s τ hyper-parameter at
increments of 0.2 in [0, 1].

The operation of the pre-processing and post-processing algorithms are not straightforward like the in-processing algorithms. For the pre-
processing, we first transform (i.e., pre-process) the “biased data” into a “fair data” and then train the GBM and LR on the “fair data”. The predictions
of the now fair GBM and LR models on the test set are then evaluated for fairness and performance. In the case of the post-processing, we first
train the supposedly biased GBM and LR models, and then post-process their predictions on the the test set based on a fairness constraint. We
compared all algorithms using the average statistic of all performance and fairness measures for all shuffles. The standard deviations are shown
by error bars in plots. We would like to state that since some algorithms are designed specifically to satisfy some specific fairness measures, those
algorithms may perform better than others when all the algorithms are compared using that specific measure. We only included figures that are
relatively sufficient to explain the our findings. Please refer to the supplementary material for the remaining figures.

We formulate our results and discussions as hypothetical questions that we seek to answer. Although some of the questions have already been
asked in literature, just as Gardner, Brooks, and Baker (2019) puts it: replication studies helps to either solidify the substantiality of discoveries
in prior works, or report new discoveries. More so, it has been shown that up to date, there is limited replication studies in LA: estimated at
approximately 0.13%.Gardner, Brooks, and Baker (2019). Our evaluation questions are as follows:
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5.2 Do models trained without fairness constraint always replicate biases in data?

Most of the existing research in fair ML show that models trained without some fairness constraint leads to unfair outcomes. Our aim is to evaluate
if data bias “necessarily” result in predictive bias. The only fairness metrics we could compute from the the “ground truth” in the data itself are
disparate impact (DI), statistical parity (SP) and consistency. We computed these metrics from the biased test data and compared them with those
computed from the predictions of the baseline models and the fairness-aware models. For some metrics, the baseline models as well as some
fairness-aware models replicated (or exacerbated) the biases in the data. From Figure 1 , we observed that unfairness w.r.t SP was either replicated
or marginally exacerbated by the baseline models across all datasets. With our student dropout prediction, this implies that in the situation where
such models are deployed, some Non-English as home language students likely to drop-out may end up not being identified for the necessary
interventions to be made. This is consistent with the unequal dropout distributions (50.33% for Non-English and 64.95% for English as home
language students) in the dataset — perhaps, another reason why equal sampling should be encouraged in order to ensure fair LA models. Contrary
but not entirely surprising, in Hu and Rangwala (2020)’s work, an unconstrained Logistic regression model made fair predictions even though there
was evidence data bias — of course the dataset used and the how it was preprocessed before model training plays a huge role. Similarly, our GBM
model had marginally better fairness in terms of DI on the law school and dropout data compared to the DI in the bias data. We observed that
some unfairness mitigation algorithms had relatively less fairer results w.rt. to some fairness metrics compared to the baseline. Hu and Rangwala
(2020) also made similar findings. This however is not entirely surprising due to the “impossibility theorem” stated earlier. From Figure 1 , the value
for consistencymetric in the biased data remained unchanged in the baseline predictions and most of the fairness-aware models. This however is
expected since those algorithms are designed to satisfy group fairness. The LFR algorithm was introduced with consistency, thus, its not surprising
that is satisfies consistency better than other algorithms. Intuitively, this suggests that it would be prudent for a decision maker wanting to use
some unfairness mitigation algorithm to firstly use the fairness metric that came bundled with the algorithm except in cases of “metric-agnostic”
algorithms. Overall, we find that data bias does not necessarily result in predictive bias; sometimes (rarely), even the baseline models may be
relatively fairer compared to some fairness-aware models w.r.t some metrics.

FIGURE 1 Comparing unfairness in biased data (data) with unfairness in predictions by a (fairness-aware or fairness-unaware (baseline)) model.
Ideal fairness value is indicated by green short-dashed line. For consistency, ideal value= 1. Color code: Biased data= brown, baseline= red, pre-
processing= blue, in-processing= green, post-processing= gray.

5.3 Do constraints always adversely affect predictive performance?

We also evaluated for a simple yet important question as to whether models trained without any fairness constraint performed better than those
with fairness constraints. We compared the predictive performance of the baseline models with fairness-aware models across 3 performance
metrics. From Figure 2 , for the dropout dataset, we observed marginal differences in predictive performance between the fairness-aware models
and fairness-unaware models across all three performance metrics — accuracy, precision and NPV. We observed that, the LFR algorithm actually
improves predictive performance compared to the baseline model for the dropout data. We think this is probably because the latent representation
of the biased data learnt by the LFR algorithm was “richer” than the biased data. This performance of the LFR algorithm is however not consistent
across all datasets. On average, we find that the fairness-aware models had slight dip in performance metrics across datasets. This suggests that
aiming for ethical LA may sometimes come at a price. We further discuss this fairness-utility tradeoff in Subsection 5.4.
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FIGURE 2 Comparing predictive performance of baseline models with fairness-aware models. Color code: baseline= red, pre-processing= blue,
in-processing= green, post-processing= gray.

5.4 Does more fairness necessarily imply less predictive performance and vice versa?

Which unfairness mitigation algorithm is able to ensure much fairness without compromising a lot of utility 4? In this section we compare the
baseline and the various unfairness mitigation algorithms. For some algorithms, we observed that improving fairness caused a slight dip in per-
formance and vice versa. From Figure 3 , we observed that there is no single “winner” algorithm across all metrics and datasets. For example,
for the dropout dataset, the LFR was able to find a relatively better balance between predictive performance and fairness, however it performed
worse compared to the other algorithms on the law school and german credit data. Conversely, the AdDeb performed badly compared to the other
algorithms on the dropout data but it was able to find a relatively better fairness-utility tradeoff on the law school data. Perhaps not surprisingly,
we observed that majority of the algorithms had similar individual fairness-utility tradeoff and varied group fairness-utility tradeoff. Although no
algorithm is consistent in finding an optimal balance between utility and the various fairness measurements, on the overall level, in a real-world
(fair dropout prediction) deployment situation, our results show that the LFR might likely be the first choice as it finds a relatively better balance
between performance and fairness (both group and individual) compared to the other algorithms.

Also for algorithms that had hyper-parameters, for determining fairness-utility tradeoff, we evaluate this tradeoffs at different hyper-parameter
levels. From Figure 4 , for the prejudice remover, we observed that increasing the η value had very marginal effect on utility. However, there
was consequent improvement in SP and EO across datasets. Increasing the η value barely had an effect on the BGEI, this is not surprising as the
algorithm was not designed to satisfy BGEI, moreover, the BGEI had already been satisfied even at η = 0. We found the Meta algorithm to be
very sensitive to variations in its hyper-parameter τ . For the dropout data, we observed that increasing τ resulted in an increase in fairness w.r.t
SP, WGEI and EO and a consequent decrease in all performance metrics. This goes on till at τ = 0.8where a further increase in τ actually worsens
fairness and rather improves accuracy and precision. We observed similar phenomena for the violent crimes and the german credit data. This we
find quite surprising because the higher the τ value, the more we expected the fairness measure to approach 0. This suggests that sometimes,
sacrificing utility does not necessarily always improve fairness. Therefore, a careful hyper-parameter optimization is very crucial.
For the DIR, we generated fair datasets at different repair levels and trained and tested the GBM and LR models at each repair level. From Figure
5 , we observed very different results for the two models trained on the fair data produced by the DIR. This was an interesting observation, such
that given two different models trained on the same fair data, the internals of each respective model may lead to different fairness results. For the
logistic regression model, we also found that for every increase in repair level, there was a corresponding increase in accuracy till at λ = 0.5 for
the dropout data and λ = 0.7 for the violent crime and german credit datasets. At these respective repair levels, a further increase in repair led
to a fall in accuracy. Again, careful hyper-parameter selection is key. The increase in accuracy of the GBM and LR models with increase in repair
level is consistent with what we found for the LFR using the dropout dataset. This suggests that sometimes, the new forms of data learnt by the
pre-processing algorithms are “richer” for training LA models than the biased data.

5.5 What is the consistency between group fairness and individual fairness

We do not dispute the existence of incompatibilities that have been shown by the earlier cited works, however, unlike the “impossibility theorem”,
we introduce what we term “consistency theorem”. In this work, we investigate how consistent some correlated group and individual fairness

4we use performance and utility interchangeably
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FIGURE 3 Utility-Fairness tradeoff of algorithms. Ideal fairness-utility tradeoff values are indicated by means of a black star on the plots. Different
shapes refer to different algorithms while different colors refer to different “fairness variant” of a particular algorithm. For instance, red dots (o)
refer to a baseline GBM while blue dots (o) refer to a GBM model trained on a fair data from the LFR algorithm. First three columns are individual
fairness-utility tradeoff and last 3 columns are group fairness-utility tradeoff

measures are.More formally, assuming there is a decisionmaker wanting to achieve consistency of two fairnessmeasures out of a pool of correlated
group fairness measures gf1, gf2, gf3...gfk and individual fairness measures if1, if2, if3...ifk, our work is to show whether any two measures for
example, gf1 and if1 are consistent and the algorithms that satisfy these consistencies. The knowledge of these consistencieswould help the decision
maker in deciding which unfairness mitigation algorithm to choose in order to consistently achieve the desired fairness measures simultaneously.



12

FIGURE4 Effect of hyper-parameter variations of Prejudice remover,Meta Classifier on performance and fairness. Ideal value for fairnessmeasures
is 0 and that of performance measures is 1. Note: Hyper-parameters can be thought of as “sliders”, i.e., increasing hyper-parameter value should
increase fairness with (a probable) drop in performance and vice versa

FIGURE 5 Effect of DIR repair level variations on accuracy and disparate impact of GBM and LR models

From Figure 6 ,we observed that all algorithms did well in satisfying the BGEI. As reported by Speicher et al. (2018), we observed that increasing
the between-group fairness in most cases may relatively worsen the within-group fairness. We opine that “bounded consistency” can be achieved
if the fairness measurements are chosen to lie within a lower bound. For example, consider the WGEI vs BGEI for the dropout dataset in Figure
6 , if we set the WGEI to lie within [0-0.13] and BGEI to lie within [0-0.1], majority of the algorithms would satisfy both measures within these
bounds. For our student dropout prediction, this bounded consistency implies that most of the algorithms (LFR, DIR, CalEqOdds, Reweighing and
even sometimes the baseline) would assign favourable outcomes to both within and between student groups whose home language are English
and not English. Depending on how high the stakes involved are, a higher threshold value would be ideal. Also, we found the LFR algorithm tends
to perform relatively better in satisfying statistical parity and consistency across datasets compared to the other algorithms. Again, this is quite
expected as the LFR was designed with consistency and statistical parity in mind. We observed many correlations between the various fairness
metrics. For instance, equal opportunity was correlatedwithWGEI for most algorithms across datasets. Intuitively, this suggests that when students
who dropped out are actually predicted to dropout at equal rates regardless of their protected attribute, it equally benefits individuals within each
demographic group. Overall, we observed that no single algorithm is able to consistently satisfy all fairness measures optimally. In order achieve a
near-optimal consistency, if possible, an algorithm may be designed to optimize for consistency of some group fairness measure and some other
individual fairness measure that are not affected by the impossibility theorem.

6 CONCLUSION

We analysed some selected unfairness mitigation algorithms based on some hypotheses to comparatively evaluate how they contribute to eth-
ical LA. Our results aligns with similar findings of Hu and Rangwala (2020) — although most LA models may pick up biases in training data, data
biases do not always necessarily imply predictive bias. We found that there are instances where some unfairness mitigation algorithms perform
worse with respect to some fairness metric compared to a no-fairness model. Also, with regard to utility-fairness tradeoff, we find that, opti-
mizing for more fairness does not always lead to reduction on predictive performance. More interestingly, for algorithms that modify the data
(specifically LFR and DIR), we found that sometimes, the debiased data is more “richer” for ensuring accurate predictions compared to the biased
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FIGURE 6 Consistency of group and individual fairness across the baseline and the various unfairness mitigation algorithms. Ideal points of
consistency are indicated by means of a black star on the plots

data. Furthermore, our results suggest that if reasonable thresholds are decided by policy-makers we can have unfairness mitigation algorithms
that satisfy bounded consistency. For algorithms that provide hyper-parameters for fairness-accuracy tradeoff, our results suggest that careful
hyper-parameter optimization is the major key to get the right balance between fairness and utility.

We believe that humans are the ones at receiving end of algorithmic decisions. Therefore issues of fairness should not be entirely left to models
satisfying some mathematical definition of fairness. There should be a human-in-the-loop who makes final decisions.

All of the algorithms we evaluated are based on the equality of some fairness metric. We suggest its about time fair LA focused a lot more on
equity. Equality is feasible only when there is a levelled-playing ground. Thus in LA, the goal should be equitable LA where students are given not
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necessarily equal treatment but rather “needed” treatment to ensure their success. How to measure what is “needed” in itself is a research worth
investigating.
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