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Figure 1: Examples of multi-person tracking with moving cameras. (Left two images) two actors, and two moving and 3 static
cameras (Soccer1). (Right two images) One actor, and three moving and two static cameras (Walk2).

Abstract
We present a method for capturing the skeletal motions of humans using a sparse set of potentially moving cameras
in an uncontrolled environment. Our approach is able to track multiple people even in front of cluttered and
non-static backgrounds, and unsynchronized cameras with varying image quality and frame rate. We completely
rely on optical information and do not make use of additional sensor information (e.g. depth images or inertial
sensors). Our algorithm simultaneously reconstructs the skeletal pose parameters of multiple performers and the
motion of each camera. This is facilitated by a new energy functional that captures the alignment of the model and
the camera positions with the input videos in an analytic way. The approach can be adopted in many practical
applications to replace the complex and expensive motion capture studios with few consumer-grade cameras even
in uncontrolled outdoor scenes. We demonstrate this based on challenging multi-view video sequences that are
captured with unsynchronized and moving (e.g. mobile-phone or GoPro) cameras.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

In computer graphics, motion capture is a widely used way
to animate virtual human characters. Unfortunately, tradi-
tional marker-based motion capture systems are expensive
and cumbersome to use.

Recent years have seen a significant improvement
of marker-less skeletal human motion capture algo-
rithms [MHK06, Pop07, SBB10]. Many state-of-the-art
methods come close to the performance of marker-based al-

gorithms, but only when recording in highly controlled stu-
dio setups, where 1) there are sufficiently many exactly syn-
chronized high-quality cameras; 2) each camera is static and
scene motion is due to foreground objects only; 3) the back-
ground is not cluttered; 4) lighting is controlled; 5) the main
foreground actor is seldom occluded.

While relative to marker-based systems, this yields an eas-
ier apparatus with a reduced setup time, the hurdles towards
practical application are still large and the costs are still no-
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table. By being constrained to a controlled studio, marker-
less methods fail to fully play out their advantage of be-
ing able to capture scenes without actively modifying them.
Many practical computer graphics applications require mo-
tions to be captured on site, i.e. the camera system needs to
be brought to the set location, because the motion itself can-
not be relocated to a studio. Examples are capturing drivers
in cars, motion capture on outdoor film sets, recordings of
street performances, or the reconstruction of athletes in the
field. In such situations, scenes are often cluttered and fore-
and backgrounds may be dynamic. Further on, placement
and number of cameras may be starkly constrained, cam-
eras can often not be synchronized, and they may (have to)
move during recording. Some methods succeed in uncon-
trolled recording scenarios and allow certain camera mo-
tion (also outdoors [HRT∗09]), but have limited accuracy
and would fail in case of 1) cluttered scenes and with un-
constrained sparse camera sets; 2) small camera translation
or pure rotational motion; 3) motion blur due to hand-held
camera shaking.

We therefore present a method for marker-less 3D skeletal
human motion capture that succeeds in uncontrolled envi-
ronments and uses only a sparse, heterogeneous and weakly
constrained camera setup. The algorithm reliably captures
even complex 3D skeletal body motion 1) with potentially
as little as five cameras (e.g. mobile-phone cameras); 2)
with camera setups that are unsynchronized and of differ-
ing makes, resolutions and frame rates; 3) in cluttered indoor
and outdoor scenes where backgrounds are dynamic and the
actor can be occluded; 4) without using specialized auxiliary
sensors, such as 3D cameras; 5) with any type of camera
motion even including notable shaking.

The core algorithmic contributions are a new genera-
tive skeletal pose tracker that minimizes a single model-to-
image consistency measure simultaneously in the skeletal
actor poses and the poses of moving cameras (Sec. 4). We
demonstrate that this strategy is essential to deal with scenes
where cameras, foreground, and background can move and
image-based pre-calibration (e.g. via structure-from-motion
(SfM),e.g. [PVGV∗04,THWpS08]), fails. 3D model and 2D
image data compared during consistency measurement are
based on a Sums-of-Gaussian model used previously for in-
door tracking with static cameras [SHG∗11]. However, the
energy function and the minimization strategy have been
profoundly extended to match this more challenging sce-
nario. The smooth nature of our energy functional with ana-
lytic derivatives enables continuous optimization. It also en-
ables the automatic detection of the occlusion of body parts
either caused by the same person (self-occlusion) or by the
other people in the same scene (Sec. 5). This is properly
taken into account in the optimization.

While this is not the first method for outdoor motion cap-
ture, to the best of our knowledge, our algorithm is the first
that aims for motion reconstruction with moving cameras,

unsynchronized video streams, uncontrolled environment,
uncontrolled cameras motion, and multiple characters, all at
once. In summary, our algorithm augments earlier work on
markerless motion capture [SHG∗11, ESH∗12] with static
cameras that does not succeed under the aforementioned
challenging conditions. The novel algorithmic contributions
over previous work, that enable this, are:

1. A new pose fitting energy function extended to esti-
mate each camera’s motion together with actor pose; see
(Sec. 4.2). In particular, the following extensions were
done to the measurement of model-to-image consistency

a. Support for multi-person/multi-camera tracking
b. A two-sided similarity term †

c. Weighting in HSV color space
d. Prior on camera motion (smoothness)

2. The pose estimation scheme is using a new and improved
occlusion handling.

In our experiments, we show qualitatively and quantitatively
against ground truth that our algorithm can capture even
complex and fast body motion in cluttered outdoor scenes,
and that it succeeds with a wide range of heterogeneous,
unsynchronized and moving camera systems with varying
resolution, also just a few mobile phone or GoPro cameras.
We also contribute with a comprehensive evaluation data set
for quantitative comparison. It comprises multi-view video
footage recorded with static and moving cameras, ground
truth camera motion data, as well as reference data from a
marker-based motion capture system.

2. Related Work

Algorithms for tracking human motion from videos have
seen great progress in recent years [BM98, DR05, BSB∗07].
Detailed overviews of this field and discussions on es-
tablished algorithms can be found in recent survey arti-
cles [MHK06, Pop07, SBB10].

In recent years, methods that try to infer poses [ARS10,
ILS11] from single-view images, or motions from monoc-
ular video [WC10], have gained more attention. However,
these methods do not yet reach the accuracy of multi-view
methods, and only work on very simplified models with
few degrees of freedom. Most multi-view approaches com-
bine a body model of the actor to be tracked with data ex-
tracted from images, such as silhouettes, for pose estimation
(e.g. [GRBS10, LSG∗11]). Other works make use of addi-
tional sensors, such as inertial sensors [PMBG∗11], or depth
sensors [BMB∗11].

Only few works exist that deal with tracking human mo-
tion from moving cameras. Hasler et al. [HRT∗09] proposed

† The concept of symmetric similarity was presented in [ST02].
However, our novel continuous and differentiable two-sided term is
essential in case of moving cameras and allows for fast tracking.
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an algorithm for motion tracking with moving and unsyn-
chronized cameras. In their approach, camera synchroniza-
tion and calibration problems were decoupled from pose es-
timation by explicitly solving these problems before pose es-
timation: frame accurate synchronization is performed based
on audio. The camera parameters for each set of (synchro-
nized) video frames are estimated by performing SfM. Shi-
ratori et al. [SPH11] mount outwards facing cameras to the
limbs of an actor and estimating the skeletal pose based on
SfM of the actor’s environment. These approaches have sev-
eral limitations: SfM fails in case of cluttered scenes with
dense moving background (e.g., crowds of people), motion
blur due to hand-held camera shaking, and small camera
translation or pure rotational motion. Furthermore, frame-
level synchronization might be insufficient for heteroge-
neous cameras as demonstrated in [ESH∗12] (i.e., sub-frame
accurate synchronization leads to a significant improve-
ment), and body-mounted cameras mean unwanted active
modification of the scene. Recently, Elhayek et al. [ESH∗12]
proposed an algorithm that broke the limitation of frame-
level synchronization in [HRT∗09]. By representing the pose
parameters as an analytic function of time, they enabled
tracking with heterogeneous and unsynchronized cameras
in sub-frame accuracy. However, they showed results with
static cameras only.

Ye et al. [YLH∗12] presented an algorithm that tracks
human motion with multiple consumer depth sensors (i.e.
Kinects). They simultaneously optimize skeletal pose and
sensor position based on image correspondences from fea-
ture tracking and geometric correspondences between the
point clouds and the performer’s surface. However, due to
the use of depth sensors, the method cannot be applied in
outdoor scenarios, and fails if no stable image features can
be found in the background. To enable rendered fly-arounds
in virtual replays, Germann et al. [GHK∗10] tracked artic-
ulated billboard models of soccer players from TV cameras
in a soccer stadium. However, their algorithm is not fully
automatic and taylored to soccer pitches where foreground
separation is easier.

3. Overview

Input to our algorithm is a set of video streams of the
same scene, yielding a set of frames I = {I1, . . . , In} ob-
tained from several cameras (camera indices omitted for
readability). These cameras can be of varying make, reso-
lution and frame rate, and they can move during recording.
Video streams are not expected to be temporally synchro-
nized (see Sec. 6) and the global time stamps are explic-
itly estimated, as discussed shortly. We assume that intrinsic
cameras parameters are known (e.g. through calibration be-
fore recording).

As opposed to studio-based methods, we assume that
lighting can vary mildly during recording, large part of the
background can be dynamic, and the tracked person can be
occluded for the duration of a few frames. The output of our

Figure 2: Left: skeletal representation of a performer. Cen-
ter: a 3D SoG representation approximating the body shape
of the performer. Right: image SoG representation (each box
represents one 2D Gaussian G2).

algorithm is a continuous motion function X(t) :R→Rn that
returns an n-dimensional pose vector for a given time stamp
t. Here, n is given as n= 6c+m, where m= 43 is the number
of degrees of freedom of the skeletal model (pose and joint
angles, thus describing the pose; see [SHG∗11] for more
details) and c is the number of moving cameras in the scene.
The 6 parameters for each moving camera describe transla-
tion and rotation. Due to the ambiguity between camera and
performer motion in a single camera view, we can represent
camera motion as an additional rigid transformation to the
pose of the actor in a specific single view. This simplifies
the optimization, as camera parameter optimization can be
handled in the same way as actor motion. Note that in our
setting we represent joint parameters as continuous tempo-
ral curves, thus they can be calculated for every sub-frame
time instant of the motion (see Sec. 4).

For each tracked actor, the template body model must be
shape-adjusted, which we do in a semi-automatic way from
a set of calibration poses prior to motion recording using the
algorithm of Elhayek et al. [ESH∗12]. It could also be done
manually in case one has no control over the footage and
actor motion.

For tracking multiple people in a scene, we initialize the
pose of each actor independently. Then, our algorithm es-
timates a single combined motion function X that concate-
nates the motion functions of individual actors. This is dif-
ferent from running a single-person tracker for each actor
where the occlusions caused by different actors would not
be taken into account. By estimating a single large motion
function, we handle multiple people tracking exactly in the
same way as the self-occlusion (see Sec. 5). Accordingly, the
remainder of this and next sections focus only on the single
actor case without loss of generality for multiple actors.

Before tracking commences, we first synchronize video
streams up to frame-level accuracy by using the audio
stream [HRT∗09]. We refine this initial result by the global
multi-view image-based space-time alignment method of El-
hayeket al. [ESH∗12] which yields frame rates and offsets at
sub-frame precision.

In the beginning, we also expect a small amount of user
interaction to obtain an extrinsic camera calibration Cext for

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



4 A. Elhayek & C. Stoll & K. I. Kim & C. Theobalt / Outdoor Human Motion Capture by Simultaneous Optimization of Pose and Camera Parameters

one multi-view frame of each camera at the nearest time
stamps (after temporal alignment). We employ a bundle-
adjustment with manually marked features in the scene
background [HZ04]. Note that this is only needed for one
set of frames.

The core of our algorithm is a new energy minimiza-
tion approach where a model-to-image consistency energy
functional is jointly optimized with respect to camera pose
and skeletal pose parameters (Sec. 5). The energy func-
tional is based on the Sums-of-Gaussians scene represen-
tation of [ESH∗12] which we profoundly extended to deal
with our more general scene conditions, such as moderate
appearance variations, occlusion, and dynamic background,
as well as the sparse visual evidence from only few cam-
eras (Sec. 4.2). In this paper, we briefly restate important
concepts from prior work that we build on, but focus on the
newly developed extensions. Employing a space-time opti-
mization strategy is essential (Sec. 4.1) to deal with the lack
of exact frame synchronization, and to be able to benefit
from larger temporal baselines to regularize tracking with
few cameras. With few cameras, occlusions of the actor,
even for a short period, can lead to catastrophic failure of
joint angle and camera optimization (see Sec. 6 for exam-
ples). We explicitly detect occlusions by monitoring the en-
ergy variation in time. Once an occlusion is detected, the
corresponding camera is disabled for optimization and does
not contribute to the energy anymore. In case it is a moving
camera, its pose parameters are re-initialized based on cor-
responding linearly interpolated parameter values (Sec. 5).

4. Tracking with moving and unsynchronized cameras

One of the most important aspects of motion tracking with
casually captured videos is that the cameras may move, and
accordingly, the camera parameters have to be estimated for
each frame in the video. In existing approaches for this sce-
nario, estimation of these two sets of parameters is decou-
pled by pre-estimating camera parameters (e.g. performing
SfM) and subsequently optimizing the pose (of the actors)
given these known cameras. Unfortunately, this strategy
cannot be exercised when the background is cluttered, the
camera translation motion is not sufficient or the videos are
blurry due to shaking cameras unless these conditions, SfM
fail (see Fig. 7 and supplementary video). Our video streams
(e.g. with as little as five cameras) are sparse and frame cap-
ture is not synchronized. Furthermore, there are many inher-
ent ambiguities in model-image-matching which aggravate
finding an optimal solution: the free motion of the body can-
not be decoupled from the ego-motion of the cameras. For
instance, it is often impossible to distinguish between an ac-
tor moving towards a static camera and a moving camera
approaching a static actor.

A core innovation of our tracking algorithm is the simulta-
neous optimization of skeletal pose parameters and the pose
parameters of every moving camera. Both camera and skele-

tal pose parameters are separately retained, but the effect of
changing one set of parameters could still be compensated
by the change of the other. Capturing the scene with one or
more static cameras resolves this ambiguity. However, when
there are no static cameras, the final results can only repre-
sent relative motion to the cameras and will not have a fixed
global coordinate space. Our system uses the body model as
common reference point to optimize skeletal pose and the
pose of moving cameras. We are thus not forced to rely on
unstable background features.

Our approach is instantiated as an energy minimization
algorithm:

E(X) =−L(S|X)+λ1ELim(X)+λ2ESmooth(X), (1)

where L(S|X) is a likelihood term that measures the similar-
ity of model parameter X to data S and ELim and ESmooth are
prior terms that enforce limits and smoothness on joint an-
gles and camera poses, respectively. The hyper-parameters
λ1 and λ2 are set to 0.1 and 0.01, respectively (see Sec. 6 for
discussion on tuning hyper-parameters).

The individual components of the energy are detailed
in the following. We will also detail the continuous pose
parametrization and specific representation of image and
shape data we employ. Optimizing continuous curves for
skeletal and camera poses is essential since our data are not
frame-synchronized and are spatially sparse. We can stabi-
lize optimization by considering image data from larger tem-
poral baselines.

4.1. Continuous parameterization and scene
representation

We extend concepts from [ESH∗12] and instead of identi-
fying parameter vectors for each discrete time stamp (cor-
responding to synchronized frame indices), we construct a
continuous, parameter vector-valued motion function X(t) of
time t representing both skeletal and camera pose parame-
ters. In this setting, the likelihood of a specific motion func-
tion X with respect to a set of images is evaluated by sam-
pling X at the time stamp ti of each image Ii ∈ I.

For representing the 3D spatial extent of the body model,
as well as the 2D input images, we employ the Sums-of-
Gaussians (SoG) model of [SHG∗11] where human body
is approximated with a kinematic skeleton, to the bones of
which 72 3D isotropic Gaussian functions G3 are attached.
The parameters of a Gaussian function, including the loca-
tion (mean) µ, the variance σ

2
k , and the corresponding repre-

sentative color value c, are estimated based on a set of ex-
ample images; see [SHG∗11] for more details. This yields
a smooth (i.e., continuously differentiable as many times as
desired) representation of human body model as exemplified
in Fig. 2. An analogous model is used to describe images.
This 2D Gaussian representation G2 is used to represent
each uniformly colored region in every image after quad-tree
clustering of similarly colored regions (Fig. 2 right).
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Since estimating a continuous motion function X for a
long sequence is computationally intractable, we divide the
sequence into overlapping time segments {S1, . . . ,Sns} (of
length 2/30 sec. for each, with an overlap interval of 0.6/30
sec.) and estimate the local motion functions Xi as quadratic
polynomials for each Si independently. This results in 3×n
parameters for each Xi (3 being the number of parameters
for a quadratic polynomial; there is no coupling between dif-
ferent parameters). A globally smooth motion function X is
implicitly reconstructed by blending the Xi at overlap using
partition-of-unity [ESH∗12]. Accordingly, the variables to
be optimized are the coefficients of the polynomial for each
segment.

4.2. Likelihood: model-to-image similarity

We now explain the likelihood of a motion function Xi corre-
sponding to a given segment Si of an input sequence which is
an extension of [ESH∗12]. At a given time instance, the mo-
tion function and a video frame are represented as a 3D and
a 2D SoG, respectively. Then, the likelihood is calculated
by projecting the 3D Gaussian functions in the 3D SoG into
the corresponding image plane and measuring the overlap to
all 2D Gaussians. The positions of each 3D Gaussian is a
function of both the skeleton and camera parameters. How-
ever, it should be noted that the skeletal pose parameters are
optimized based on the data of every cameras, while the pa-
rameters of each moving camera are optimized based on the
data of that camera only (i.e. by maximizing the similarity
between this camera’s 2D SoG and the projected 3D SoG).
For simplicity of notation, we will omit the segment index i
when there is no risk of confusion.

We represent an image I j with time stamp t j as the 2D
SoG KI(t j) and the respective model X(t j) as 3D SoG
KM(t j). Then we can define the likelihood of the motion
function X as the sum of similarities of KM(t j) and KI(t j)
for t j ∈ Si:

L(X |S) = 1
n(i) ∑

t j∈S

S3(KM(t j),KI(t j))

S2(KI(t j),KI(t j))
, (2)

where n(i) is the total number of images in Si, S3(A,B) is the
similarity of a 3D SoG, A and a 2D SoG, B as will be defined
shortly. Since every KI(t j) for t j ∈ Si consists of a different
number of 2D Gaussians, we normalize S3(KM(t j),KI(t j))
by the similarity of KI(t j) with itself. The general similarity
of two 2D SoGs Ka and Kb is defined as

S2(Ka,Kb) =
∫
R2

∑
i∈Ka

∑
l∈Kb

d(ci,cl)G
2
i (x)G

2
l (x)dx

= ∑
i∈Ka

∑
l∈Kb

Eil , (3)

where G2
k is a Gaussian function parameterized by the color

ck, center pixel location µk, and blob size σk. Eil is the sim-
ilarity of two image Gaussians G2

i and G2
l . The color simi-

larity function d(ci,c j) measures the similarity between the

colors of two Gaussians and is defined at the end of this sub-
section. This integral has an analytic solution and analytic
derivatives with respect to µk and σk, enabling efficient opti-
mization (Sec. 5).

Based on S2, the similarity S3 is calculated by projecting
each 3D Gaussian G2

k in KM(t j) into the respective camera
image plane using the projection operator Ψ(t j) and by com-
puting the corresponding 2D similarity S2 therein:‡

S3(KM(t j),KI(t j)) = ∑
i∈KI

min

(
∑

l∈Ψ(KM)

Eil ,Eii

)
, (4)

where the min (with Eii) is taken as an efficient approxi-
mate self-occlusion test, in order to prevent the overlapping
projected 3D SoGs from erroneously contributing multiple
times in the above sum. The role of the denominator in Eq. 2
is to normalize the contributions of Gaussians of differing
sizes across different images.

Weighting in HSV color space. As illumination in out-
door scenes can vary more strongly than in studio setups, we
use a new color similarity that is more resistant to intensity
changes. The similarity d for two HSV values a and b is
defined as

d(a,b) = 2ϕ3,1(‖a−b‖W )−1, (5)

where ϕ(·)3,1 : R → [0,1] is the smooth, compactly sup-
ported Wendland function [Wen95] and ‖a− b‖2

W := (a−
b)>W (a − b) with W = diag([1,1,0.2]>), and diag(v)
builds a diagonal matrix consisting of the entries of v. The
down-weighting of the value component (using W ) in the
HSV model is decided based on preliminary experiments: In
outdoor scenes, the value component was most severely af-
fected by changes of illumination (e.g., shading, highlight,
and specularity) and we experimentally determined a factor
of 0.2, i.e. 20% to be a good choice.

Two-sided color similarity term. In contrast to the one-
sided color similarity term used in [SHG∗11, ESH∗12]
where d ≥ 0, the two-sided color similarity term (Eq. 5)
can be negative when the two input colors are distinct (see
Fig. 3). This is important in case of moving cameras, where
each camera has its own pose (i.e. translation and rotation)
parameters which are optimized based on it own data only
(in contrast, the human pose parameters are constrained with
data from several views). Figure 4 shows that with the one-
sided similarity term, for a given skeletal pose and cam-
era parameters, one can erroneously increase the likelihood
(specifically, the similarity S3 between the model and the
image; Eq. 2) by moving the camera towards the object. In
this case, the corresponding projected 3D Gaussians become
larger and accordingly they lead to higher similarities in (3)

‡ It should be noted that the projection operator is a function of the
camera parameter which is encoded in X(t j).
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Figure 3: Two-sided vs. one-sided color similarity term.
Left: The one-sided similarity term d(a,b) = ϕ3,1(‖a−b‖)
only adds positive values to the energy if the color differ-
ences ‖a− b‖ are less than a Wendland support of 0.15.
Right: The two-sided similarity term (Eq. 5) additionally pe-
nalize dissimilar colors.

Figure 4: Tracking an object with two cameras. Left: loca-
tions of cameras with respect to the object and Right: the
constant input image from camera 2 (dark blue circle) over-
laid with the projection of the 3D object (light blue) which
is a function of the camera and pose parameters. If we move
camera 2 closer to the object (bottom row), the virtual ob-
ject is larger than the input which increase the overlapping
between them. This can erroneously increase the likelihood
if we do not penalize the dissimilar with the white back-
ground, which is achieved with the two-sided similarity term
(Sec. 4.2).

in general. In contrast, the two-sided term solves this ambi-
guity by penalizing the dissimilarity between the projected
object and the background. In addition, the two-sided term
is also important to enable reliable tracking with only very
few static cameras, as we show later.

4.3. Prior on camera motion

As motions of camera and actor are inherently ambiguous
(see earlier discussion), estimation of the camera and pose
parameters is inherently ill-posed. During the optimization,
the effect of a change in camera position may be canceled
out in the energy by opposite global pose change of the body.
Temporal drifting over subsequent segments and irrevocable
convergence to an erroneous local minimum could thus eas-
ily happen (see Fig. 9d for an example).

We approach this problem by enforcing first-order tempo-
ral smoothness over the parameters. This prevents any rapid
change in parameters and the above-mentioned problem can
be prevented as our experiments confirm (see Sec. 6):

ESmooth(X) =
ns

∑
i=1

∑
j:S j∩Si 6=∅

‖X(li)−X(l j)‖2, (6)

where li is the middle point of a segment Si in time and ns
is the number of segments. Esmooth requests similar values
for model parameters at midpoints of overlapping segments
from all camera sources.

The other prior ELim constrains joint angles to an anatom-
ically plausible range as in [ESH∗12].

5. Combined camera and pose optimization

We optimize the energy functional (1) using the conditioned
gradient descent approach presented in [SHG∗11]. At the
beginning of a motion sequence, we expect that the body
model is shape initialized, and a rough manual initialization
of the pose S0 in which the actor stands is given. This shape
initialization is performed as described in [SHG∗11].

Occlusion handling. As explained earlier, detecting and
handling the case that a person is occluded from a camera
view is crucial for our method. By design, the contribution
of each camera to the likelihood is clearly separated from the
other cameras (2) and is smooth over time. This enables oc-
clusion detection by monitoring the variation of each model
Gaussian’s energy component in time.

During the optimization, we inspect the similarities (3)
between the projected 3D Gaussians of the model KM
and the 2D image Gaussians of each camera KI : For a
given image SoG KI(k) (corresponding to a camera Ck), the
model Gaussian Gi ∈KM is marked as false-projected when
maxG j∈KI(k)

Ei j < To for a given threshold To, where the sim-
ilarity Ei j is calculated for the pair Ψ(Gi)(Gi ∈ KM) and
G j ∈ KI(k). when the number of false-projected Gaussians
is larger than a threshold Tn, we decide that an occlusion has
occurred in the image Ik. In this case, we exclude this camera
from the optimization, as the occlusion may otherwise neg-
atively influence the pose estimation of the other cameras.
If the occluded camera is non-static, we also do not opti-
mize the corresponding camera parameters. The pose opti-
mization is then continued with the remaining cameras, and
the parameters of the camera in which the skeleton is oc-
cluded are linearly extrapolated. The parameters To and Tn
were held fixed at 0.6 and 30 during the experiments.

During the occlusion, the extrapolated parameters of the
cameras are compared with the corresponding projected
SoGs of the human model (as estimated based on unoc-
cluded cameras). In this way, the end of the occlusion can be
detected (i.e. When the number of false-projected Gaussians
is less than a threshold Tn). In case the occluded camera is
moving, once the occlusion is finished, the camera tracking

c© 2014 The Author(s)
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starts again with the extrapolated parameters as initializa-
tion. This strategy succeeds in most of our test cases where
occlusions are short and camera motion smooth. In all other
cases (e.g. Fig. 13), more time-consuming global pose opti-
mization would be needed after the occlusion ends.

6. Experiments

We evaluated our algorithm on seven real world sequences,
which we recorded in an uncontrolled outdoor scenario with
varying complexity: The sequences vary in the numbers and
identities of actors to track, the existence and number of
moving objects in the background, and the number of mov-
ing and static cameras. Sequences also differ in the makes,
the frame resolutions and, and the frame rates of cameras. By
quad-tree decomposition, all images are effectively down-
sampled to a resolution of 160× 90 before tracking. More-
over, We recorded two additional sequences in studio for
marker based quantitative evaluation of both skeletal motion,
as well as camera motion reconstruction accuracy. Table 1
summarizes the specification of the sequences used in exper-
iments. Since cameras are not sub-frame-level synchronized,
it is unlikely that frames from all cameras are available for a
given time stamp. Accordingly, the time complexity can only
measured based on an average over a time span. Due to the
more elaborate energy (in particular the two-sided term), and
a larger parameter space, runtime of our algorithm is slightly
lower than the approaches by [ESH∗12, SHG∗11]. Further,
the run-time of our algorithm depends on the number of
cameras and actors, and the complexity of the scene, e.g. the
number of Guassians needed in 2D. For a single actor and
five cameras, our algorithm takes around a minute for pro-
cessing a single segment S (Sec. 4.1) that contains around
two frames captured from each camera. Using the discrete
(non-space-time) optimization algorithm of [SHG∗11] (see
also Section 6.3) on a similar sequence recorded in studio
(i.e. lower scene complexity) with 8 cameras, our method
performs at 13 seconds per frame. Apart from body model
initialization which requires the user to apply a few strokes
to background segment the images of four actor initialization
poses (see [SHG∗11]), tracking is fully-automatic.

Figures 1, 5, 6, and 7 show example poses tracked from
sequences Walk1, Walk2, Walk4, Run, Soccer1, and Soccer2
(see also the accompanying video). Our algorithm success-
fully estimated the pose parameters of actors as well as the
positions of the moving cameras in these sequences. In par-
ticular, our algorithm successfully tracked the two actors in
Soccer2 who often occlude each other (Fig. 9) and the ac-
tors in highly cluttered scenes (Walk2, Walk4, and Run each
of which contains 9 moving background people; see video).
When tracking the moving camera from the Soccer1 se-
quence, SfM failed to successfully estimate the camera mo-
tion due to motion blur as shown in Fig. 7: Since the hand-
held camera is shaking, motion blur occurred across several
frames which causes feature tracking to fail. In contrast, our

Figure 7: Left: Pose tracking on Soccer1 sequence viewed
from a moving camera . Right: Tracking of the same cam-
era using SfM. The estimated trajectory of the camera is
displayed as a yellow line which is far from being smooth
indicating the failure.

Figure 8: Left: Tracking Soccer1 fails with only 3 static
cameras. Right: With 2 additional moving cameras it suc-
ceeds.

method was able to successfully track both camera and ac-
tor pose, even with the challenging background (see video).
Only on some isolated frames with stark occlusion, the arm
or head are incorrectly tracked, as expected.

To evaluate whether using moving cameras in addition to
static cameras, actually improves the quality of the pose re-
construction, we tracked sequence Soccer1 once with only 3
static cameras, and compared the results to the full tracking
with 3 static and 2 moving cameras (Fig. 8). While moving
cameras add unknowns to the optimization problem, the ad-
ditional images provide enough information to increase the
tracking accuracy and estimate the camera dynamics.

6.1. Evaluation of system design choices

We qualitatively evaluated the importance of the various
components of our algorithm (see Secs. 3 and 4) on the se-
quences.

Figure 9a compares tracking with our new (non-positive
definite) color similarity measure (5) (top row) against track-
ing with the old color measure of [ESH∗12, SHG∗11] (bot-
tom row). The new color measure is crucial for successfully
estimating the motion of moving cameras (see Sec. 4.2).

In outdoor recordings, the observed brightness of the ob-
jects and the background can change. By making our color
similarity measure more resistant to changes in brightness
(Fig. 9b, top row), tracking becomes more stable com-
pared to the original brightness-sensitive color measurement
(Fig. 9b, bottom row). When the Euclidean distance is used
instead (bottom), the color of the body model is not distinc-
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Table 1: Specification of the sequences used in the experiments.

Sequence Soccer1 Soccer2 Walk1 Walk2 Walk3 Walk4 Run Walk5 Walk6
# moving cams. 2 1 1 3 8 2 1 0 3
# static cams. 3 4 4 2 0 6 6 8 5
frame rates 23.8 120 25
camera types mobile-phone (HTC One X) GoPro studio cameras
frame resol. 1280×720 (original); 160×90 (operating resol.; see text) 256×256
# tracked objs. 2 1
# moving background objs. 0 9 0

(a) (b) (c)

Figure 5: Qualitative analysis of tracking results. The tracking results are displayed as skeletons overlaid over two of the input
images. (a) Walk2: The second row shows the accurately tracked skeleton in a camera view that is not used by the algorithm. (b)
and (c) Walk1: The first row shows two frames from a static camera which captures the motion of another camera. The second
row is the view of the moving camera. The tracked location of the moving camera (white rectangle) is overlaid on the static
camera view. The green and red lines depict x and y axes of the camera orientation in the image plane. The moving camera
location in the static view is highlighted with the red circles; see the video.

tive enough from the background color as the change of inci-
dent illumination (due to shadows; see supplementary video)
leads to a large variation in the value component, that causes
a tracking error.

Figure 9c demonstrates the importance of our occlusion
handling. When the number of cameras is limited, the erro-
neous contribution of a camera under occlusion to the likeli-
hood can mislead tracking (bottom). This is avoided by ac-
tively detecting the occlusion and excluding the correspond-
ing camera from likelihood computation (top).

Finally, our first-order smoothness prior (ESmooth; Eq. 6)
prevents the camera or pose parameters from drifting quickly
to implausible values, as observed in the second row of
Fig. 9d (see Sec. 4.3).

6.2. Quantitative evaluation

As it is difficult to obtain ground-truth values for real actor
motion in an outdoor scenario, we performed a quantitative
analysis of our tracking algorithm on synthetic and studio
data that were jointly recorded with a multi-view video and
marker-based motion capture system.

Synthetic data.We rendered multiple sequences contain-
ing a single actor with several combinations of static and
moving cameras. The synthetic datasets represent perfect
conditions for our algorithm, i.e. it is free of noise and
motion blur and clearly separates background and fore-
ground. This allows us to exactly evaluate the accuracy of
the optimization (Fig. 10). The motions of each camera are

c© 2014 The Author(s)
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(a) (b) (c)

Figure 6: Examples of tracking. The tracking results are displayed as skeletons overlaid over the input images in the first and
the third rows. (a) Soccer2, (b) Walk4, and (c) Run: The second row shows the tracked skeletons in views that do not correspond
to any camera views

(a) (b) (c) (d)

Figure 9: Importance of algorithmic components (Soccer2). The results of our algorithm (top) and alternatives constructed
by replacing or removing a certain component, respectively: (a) the two-sided color similarity (5) is replaced by a one-sided
similarity [ESH∗12, SHG∗11], (b) the weighting in HSV color scheme is disabled (i.e., W = I in Eq. 5), (c) the occlusion
handling is disabled, (d) the smoothness term in the prior (6) is removed, see text for details.

generated by combining different translations and rotations
around the capture volume.

Visual inspection shows that our algorithm manages to
correctly track the skeletal and camera poses in all synthetic
sequences. As expected, numerical evaluation indicates that
a higher number of moving cameras (from a fixed number
of total cameras) increases the error, since the optimization

becomes more difficult (Table 2). In this particular setup, at
least 2 static cameras fix the global position of the actor ac-
curately. Therefore, decreasing the number of static cameras
from 5 to 3 does not affect the skeletal joint position accu-
racy on an absolute scale, however, it decreases the moving
camera tracking accuracy. In general, one static camera is
not sufficient to localize the absolute coordinates of the ac-
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Figure 10: Left: an example frame from the synthetic se-
quence. Right: tracking result with estimated locations and
orientations of three moving cameras overlaid on the frame.

tor and the cameras completely. This leads to an unknown
global transformation between our and the ground truth co-
ordinate frames which make the absolute 3D coordinate er-
ror not meaningful. Thus, we use 2D joint position error.

6.3. Marker-based quantitative evaluation

An additional important contribution of this paper is a set
of validations on sequences that were recorded inside a
studio with both a multi-view video system and a frame-
synchronized Phase-space marker-based motion capture sys-
tem. The Phasespace system uses 2 active LED markers at-
tached to the body of the performing actor in the center of
the studio. The multi-view video system features cameras
of 2048×2048 pixel resolution runnig at 25 fps. All images
are effectively downsampled to a resolution of 256×256 be-
fore tracking. The tests in this section are performed using
a discrete pose optimization algorithm that estimates a dis-
crete set of pose parameters per time step, rather than our
space-time optimizer. For a frame-synchronized video sys-
tem, this yields better results. Further, this is the only way
we can compare against the baseline method of [SHG∗11],
which also uses this discrete optimization strategy. In the
sequences recorded with this setup, the person wears nor-
mal street clothing, and markers are attached on top. We will
make all these sequences available to the research commu-
nity. The specifics of each sequence in the set are explained
in the following paragraphs that evaluate several facets of
our new algorithm.

First, we want to demonstrate that several of our ex-
tensions of the pose fitting energy compared to [SHG∗11]
also lead to improved tracking accuracy over that baseline
method when recording with static cameras only. The first
sequence was recorded with 8 static video cameras and the
marker system in studio lighting, is 150 frames long and
shows the actor performing a walking motion. We consider
the marker positions measured with the PhaseSpace system
as a ground truth for evaluating the tracking accuracy. To this
end, we need to identify the positions of the markers w.r.t the
skeletal model tracked by our algorithm. We do this by de-
scribing each marker with an offset vector in a local frame
of the nearest bone. Each such offset between a marker and
one skeletal joint is estimated based on observing the offset
vector between the marker and the joint on a set of correctly

tracked frames, and keeping the average displacement. First,
adding only our weighting in HSV color space to the algo-
rithm of [SHG∗11] already decreases the average marker po-
sition error from 4.0 cm to 1.9 cm over the baseline method.
If, in addition, we add the two-sided color similarity term
(which is essential in case of moving cameras) we observe a
further reduction in error to 1.4 cm. However, extending the
energy from [SHG∗11] with the two-sided term alone (i.e.
without any weighting in HSV color space), may still lead
to errors n bad lighting conditions (e.g. part of the actor is in
shadow), because it penalizes dissimilar colors. An adaptive
color model would be needed for that which we investigate
in future work.. This shows that several of our algorithmic
extensions to the baseline fitting energy also benefit the case
of static camera tracking and lead to a notable reduction in
tracking error; see Fig. 11 and the supplementary video.

We now further show that even in studio conditions, the
static algorithm [ESH∗12, SHG∗11] fails with moving cam-
eras. To confirm this fact and to evaluate the camera tracking
accuracy of our algorithm, we recorded a second in studio
sequence with 3 moving and 5 static cameras. The sequence
is 500 frames long. Our reference for accuracy comparison
are the motion capture markers on the body. Our SfM based
tracking of the moving cameras may contain errors, and thus
yield reprojection errors in the moving cameras. Therefore,
the 2D positions of two markers in one moving camera view
were annotated manually in a range of 100 frames as ground
truth. We use the 2D distance in the image planes of that
camera between the respective body markers tracked by our
algorithm and the ground truth to assess accuracy. The aver-
age error of [SHG∗11] is 25.9 pixels which reflects its failure
to track this sequence. In contrast, our algorithm achieves
an average of 1.8 pixels as it tracked tracked that sequence
much more reliably; see Fig. 12 and video.

We further tracked the three moving cameras using a SfM
algorithm [THWpS08] and landmarks in the studio back-
ground. It failed to track two of the three cameras because
their motion consist of only rotation and small translation.
This further shows the power of our algorithm which works
with any type of motion in the cameras, but also means
that we cannot quantitatively compare the tracking accuracy
of these two cameras obtained with our algorithm against
ground truth. We used the correct SfM tracking of the third
camera as a ground truth to evaluate our camera tracking ac-
curacy. The average camera position error is 16.4 (cm) and
the average difference in angle in viewing direction between
ground truth and our tracked solution is 13.4 degrees. This
also shows quantitatively that the camera tracking is of good
quality.

Discussion. As the estimation of the camera motion pa-
rameters is based only on a small sample of the 3D space
(i.e., the position and pose of the actor), resulting cam-
era paths can be less accurate then with SfM approaches.
The uncertainty is large in the camera’s viewing direction
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(a) (b) (c) (d)

Figure 11: Quantitative evaluation of algorithmic components (Walk5). Tracking result of (a) [SHG∗11]; average error 4.0
(cm). The blue dots correspond to the markers positions, (b) our weighting in HSV color scheme with [SHG∗11]; average error
1.9 (cm) , (c) both weighting in HSV scheme and two-sided similarity with [SHG∗11]; average error 1.4 (cm), (d) the plot of
the markers positions error per frame where the blue, green and red correspond to (a), (b) and (c); respectively.

Figure 12: Comparison with [SHG∗11] on a moving and static cameras sequence (Walk 6). Four sample frames of the tracking
result from one moving camera view. Top: [SHG∗11]; average error 25.9 (pixel). Bottom: Our algorithm; average error 1.8
(pixel).

(and becomes more pronounced with large focal lengths), as
small changes in the distance of the camera to the performer
have only little influence on the appearance of the model. But
our quantitative evaluation shows that the obtained accuracy
is still good under these more challenging conditions. Also,
our method successfully tracks both camera and human mo-
tion in scenes where traditional SfM methods would fail as

demonstrated in the supplementary video and the quantita-
tive experiments reported earlier. For some scenes, we could
include image features as additional evidences into our en-
ergy function to increase the stability of the tracking.

Our algorithm requires the tuning of four hyper-
parameters: λ1 and λ2 for controlling the contribution of
prior on the final energy and To and Tn for occlusion de-
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Table 2: Performance of the proposed algorithm for a synthetic scene with varying number of moving and static cameras. The
skeletal pose error is measured on average over 65 predetermined skeletal joint position and over the entire frame range in the
sequence. The 2D joint position error is measured in a 2D plan of a cameras which is not included in the optimization.

# Moving cams. 1 1 2 3
# Static cams. 5 3 2 1
Average camera position error (cm) 12.44 12.96 16.43 24.17 36.98 59.43 60.56
Average camera view angle error (degree) 2.88 3.09 2.8 2.62 5.31 5.89 11.37
Average skeletal 2D joint position error (pixel) 0.5636 0.5430 0.6532 4.4346

Figure 13: Failure cases. Left: Moving camera does not re-
cover after a long occlusion. Right: Inaccurate arms track-
ing because of the motion blur.

tection. We chose their values through experiments and kept
them fixed for all results.

Although our algorithm produced reasonable tracking re-
sults even in challenging environments, failure cases remain.
Figure 13 exemplifies specific directions where future im-
provement is desired: Our occlusion handling strategy re-
lies on the linear extrapolation of camera motions during the
occlusion. This may fail when the camera motion is highly
nonlinear, which is likely for long occlusions as shown in
Fig. 13 left. For this case, a more expensive global optimiza-
tion could be exercised for recovering from the occlusion.
Figure 13 right shows an example of tracking failure (in the
left arm) due to strong motion blur.

In the future, synergies between motion deblurring and
tracking shall be explored. Occlusion of body parts in many
camera views can lead to tracking errors. Solutions to this
problem deserve further investigation. Our occlusion detec-
tion scheme for cameras can also be used in detecting skele-
tal pose tracking failures (Sec. 5): When there are more
than one camera undergoing occlusion, this indicates a likely
skeletal pose error, and a global pose optimization, such as
particle filtering, could be initiated to recover from it.

7. Conclusion

This paper presents an algorithm for marker-less human mo-
tion capture with moving and unsynchronized cameras that
requires only minimal user interaction. Unlike existing ap-
proaches for skeletal tracking with moving cameras, our al-
gorithm does not require any additional hardware and suc-
ceeds on even highly dynamic and cluttered scenes and for
a more general range of camera motion where feature-based

camera calibration fails. Furthermore, our algorithm oper-
ates with only few cameras and enables accurate full-body
outdoor motion tracking of one or several actors who per-
form non-trivial motion. This is made possible by a new
energy functional that simultaneously models camera and
skeletal pose parameters in a space-temporally consistent
way based on the appearance of tracked actors. We demon-
strated the starkly improved performance and application
range of our algorithm relative to a baseline method it origi-
nated from both quantitatively and qualitatively in an exten-
sive set of experiments. In this context we further contribute
with one of the first evaluation datasets for video-based
pose tacking with moving cameras that features ground truth
marker-based pose data, as well as ground truth motion data
of non-stationary cameras. We believe that our technique is
a step towards bridging the gap between complex and ex-
pensive capture studios and unconstrained outdoor motion
capture, such as on-set tracking, which is essential in many
computer graphics applications.
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