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Figure 1: Interactive animation of deformable bodies, modeled using Position Based Dynamics [MHHR07] and composed of
hundreds of thousands of constraints. We alter the constraints’ topology for reducing the number of GPU kernel calls required
for the computation, leading to significant speed-ups with negligible visual effects on the actual motion. Color key: Red, our
approach. Green, parallel Gauss-Seidel. Blue, averaged Jacobi.

Abstract
We introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploit-
ing the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose
dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node
corresponds to a constraint and two constraints are connected by an edge if they influence at least one com-
mon particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph
such that the resulting topology is q̂-colourable, where q̂ ≥ 2 is an arbitrary number. We color the graph, and
the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to
each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning
technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the
visual quality, robustness and speed of serial position based dynamics.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing—I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

1. Introduction

The interactive animation of soft and rigid bodies is still a
challenging problem for the Computer Graphics community.
The final users expect outstanding quality, and for this rea-
son the mathematical models defining the animated objects
have become more and more sophisticated through the years.
Position-Based Dynamics (PBD) [MHHR07] is a widely
spread method for interactively animating rigid bodies, soft
bodies and fluids [MMCK14,DCB14,MM13]. Its popularity
is due to its robustness, speed and ease of implementation.
In PBD, each object is modeled as a particle system, and the

relationship between particles is expressed using geometri-
cal constraints. The set of constraints is solved in a Gauss-
Seidel fashion: the constraints are solved sequentially one
by one. This iterative way is unsuitable for parallel compu-
tation, which however is very important because multi-core
systems and massive parallel GPUs are ubiquitous today.

Graph coloring algorithms are a useful tool for extracting
concurrency in parallel scientific computing, including iter-
ative methods for sparse linear systems [JP94]. As described
in [BMO∗14], the serial Position-based Dynamics approach
can be parallelized by building a graph with a node for each

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



M. Fratarcangeli & F. Pellacini / Scalable Partitioning for Parallel Position Based Dynamics

constraint. Two nodes are connected by an edge if the cor-
responding constraints share at least one particle. Coloring
the graph with a distance-1 algorithm such that two adjacent
nodes do not have the same color, divides the set of nodes
into q independent partitions, each one corresponding to a
color (Fig. 2). Then, the constraints belonging to the same
partition can be solved in parallel during the animation phase
by using a dedicated GPU kernel call.

However, we observed that the performance hit introduced
by the kernel calls drastically mitigates the performance
speed up introduced by the parallelization (Table 1). In gen-
eral, the partitions produced by standard coloring algorithms
are fragmented and differ greatly in size, which leads to a
high number of partitions (hence a high number of kernel
calls), and an unbalanced workload (e.g., see Fig. 3).

nb kernel calls constraints ms/frame
200K 1.7

344 400K 2.2
800K 1.9
200K 3.8

688 400K 4.0
800K 3.7
200K 5.3

1032 400K 5.5
800K 13.0

Table 1: The overall computation time is heavily influenced
by the number of GPU kernel calls rather than the size of the
data (Performance measured on a Nvidia GeForce 660).

Contributions. This paper proposes a novel partitioning
technique which allows to solve in parallel the original se-
rial PBD approach. We alter the topology of the constraint
graph G to make it divisible into an arbitrary number of in-
dependent partitions q̂≥ 2, each one requiring a GPU kernel
call to be solved. Allowing a low q̂, we reduce the number of
kernel calls which leads to an enhanced overall performance
of the animation algorithm. Furthermore, the obtained inde-
pendent partitions have similar cardinality, achieving a good
load balancing.

The minimal amount of colors needed is bounded by the size
ω(G) of the maximal cliques in the graph. Our goal is to use
an arbitrary number q̂ ≤ ω(G) of partitions. The core idea
of our technique is to modify the topology of the cliques
having size q > q̂ in the constraint graph, such that these
become q̂-colourable. We modify the topology of the cliques
by inserting phantom constraints and particles in appropriate
places, as explained in Sec. 4. Modifying the topology, the
original dynamics of the particles system is altered; however,
in Sec. 5 we show that this difference is minimal.

2. Related Work

Position Based Dynamics. Position Based Dynam-
ics [MHHR07, BMO∗14] has been employed in a broad

p2

p3

p0

p1

c2,3c3,0

c0,1 c1,2

(a)

c0,1

c1,2

c2,3

c3,0

p1 p2

p3p0

(b)

Figure 2: (a) Four particles connected by stretch constraints.
(b) The corresponding dual graph: each node represents a
constraint and two nodes are connected if they share at least
one particle. The graph is bipartite and can be colored with
two colors. Constraints belonging to the same colors can be
solved in parallel.
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Figure 3: (a) A ring is composed of five particles connected
together by stretch constraints. (b) The coloring of the corre-
sponding dual graph results are much more fragmented than
the configuration in Fig. 2b: at least five colors must be used
thus the parallel computation requires more kernel calls.

range of applications, from knot simulation [KPFG07]
to face animation [Fra12] and automatic character skin-
ning [DB13, RF14]. Its original formulation considered just
soft bodies, like cloths and inflatable balloons. Recently,
several works have been considering both rigid bod-
ies [DCB14] and fluids [MM13]. Strain tensor constraints
have been proposed in [MCKM14], which allows realistic
cloth animation effects. The unified framework presented
by [MMCK14] employs PBD as a building block to model in
real-time the animation of gases, liquids, deformable solids
and rigid bodies, including interaction and collision with
each other. The computation of the dynamics is performed
in parallel on a commodity graphics card. They voxelize
input meshes into particles and then employ a parallel
Jacobi solver combined with an under-relaxation method
and a successive over-relaxation method. By contrast, in our
approach we use a Gauss-Seidel solver in the same spirit
of the original Position Based Dynamics approach but in a
parallel fashion. Our approach is thus stable and robust, and
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allows us to directly use triangular and tetrahedral meshes
without any additional preprocessing.

In [M0̈8], a hierarchical ad-hoc position-based approach for
clothes is devised in order to accelerate the convergence
of the solver. In [BB08], a red-black parallel Gauss-Seidel
schema is used for animating inextensible clothes using a
force-based system. While providing excellent performance,
this method is restricted to meshes with a regular grid topol-
ogy. The mesh is subdivided into strips of constraints. The
strips that have no common particles are independent from
each other and can be solved in parallel. However both the
solvers presented in [M0̈8] and [BB08] lack the generality
needed to simulate volumetric objects with arbitrary topol-
ogy.

Parallel Gauss-Seidel method. The Gauss-Seidel algo-
rithm is an efficient and iterative method for solving linear
systems of equations, such as the linearized geometrical con-
straints used in PBD. Its convergence is notoriously faster
than other solvers (e.g., Jacobi), however, the underlying al-
gorithm is inherently serial: the equations are solved one af-
ter the other in an iterative way. Each time an iteration is
completed, the difference between the current solution and
the optimal one decreases. Previous works have exploited
sparsity in the linear system to extract parallelism and opti-
mize the GPU implementation of popular solvers, like pre-
conditioned conjugate gradient (PCG) [WBS∗13] and GM-
RES [BCK11].

Iterative solvers have been extensively employed in contact
resolution [BFA02]. A parallel iterative rigid body solver
that avoids jitter artifacts at low iteration counts is presented
in [TBV12]. The complementarity problem arising from the
rigid body systems is solved iteratively by lumping the con-
tacts in blocks, using parallel Gauss-Seidel to solve the con-
tacts within the blocks, and Jacobi to combine the blocks
together.

In [CA09, AFC∗10], a parallel, coloring-based technique is
presented for solving dense systems using the Gauss-Seidel
method. In this method partitions are unbalanced and the
thread synchronization relies on internal, potentially slow,
atomic instructions. In contrast, our approach focuses on
sparse systems and leads to balanced partitions which can
be independently solved without explicit synchronization.

3. Background

Since we propose a partition technique for parallelizing the
Position Based Dynamics (PBD) approach using a graph
coloring algorithm, and because we want to keep the paper
as self contained as possible, we briefly summarize the core
idea of PBD and the basic theory of sequential vertex color-
ing.

3.1. Position Based Dynamics

Position Based Dynamics (PBD) [MHHR07, BMO∗14] is a
method based on Verlet integration for interactively animat-
ing deformable objects. The objects are modeled as a set of n
particles whose motion is governed by a set of m non-linear
constraints. The system of constraints is solved using Gauss-
Seidel iterations by directly updating the particle positions.
PBD avoids the use of internal forces, and the positions are
updated such that the angular and the linear momenta are
implicitly conserved. In this way, the whole process is not
affected by the typical instabilities of interactive physically-
based methods.

The set of constraints is composed of non-linear equality and
inequality equations such that:

Ci(p)� 0, i = 1, . . . ,m (1)

where the symbol � stands for either = or ≥, p =[
pT

1 , . . . ,p
T
n

]T
is the vector of particle positions, n is the

number of particles and m is the number of constraints. For
example, the distance constraint

C(p1,p2) = |(p1−p2)|−d2 = 0 (2)

is used to keep particles p1 and p2 at distance d. The con-
straints are generally non-linear, like in the just mentioned
example, and they are solved sequentially through Gauss-
Seidel iterations. Each equation is linearized individually in
the neighborhood of C around the current configuration p to
find the correction ∆p:

Ci(p+∆p)≈Ci(p)+∇pCi(p) ·∆p = 0 (3)

where∇pCi(p) is the vector containing the derivatives of the
equation Ci w.r.t. the n components of p.

The correction ∆p is imposed to be in the direction of
∇pC(p):

∆p = λi∇pCi(p) (4)

This condition implicitly conserves the linear and angular
momenta for the single constraints while, at the same time,
allowing us to solve the under-determined system of con-
straints. Combining Eq. 3 and 4 yields:

λi =−
Ci(p)

|∇pCi(p)|2
(5)

3.2. Coloring Strategy

Partitioning as a coloring problem: To attack the problem
of minimizing the number of partitions, we map the parti-
tioning to a graph coloring problem. For this, we now recall
some basic graph theory. A non-reflexive graph G is an or-
dered pair (V,E) where V is a finite and nonempty set of
vertices, and the edges E are unordered pairs of distinct ver-
tices:

E ⊂ {(u,v) : u 6= v, u,v ∈V}
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A distance-1 coloring of a graph G is a mapping

φ : V →{1,2, . . . ,q} s.t. φ(u) 6= φ(v),∀(u,v) ∈ E

If G can be colored with q colors, it is said to be q-colorable
and the smallest q for which G is q-colorable is the chromatic
number χ(G). Finding the chromatic number χ(G) is a NP-
hard problem [GJ79]. A q-coloring φ of a graph G induces
a partition of the vertices where each set is formed by the
nodes with the same colors:

Pi = {v ∈V : φ(v) = i, i = 1, . . . ,q}

where Pi is the partition corresponding to the i-the color.

Lower bound for the chromatic number χ(G): A graph
G0 = (V0,E0) is a subgraph of G = (V,E) if V0 ⊂ V and
E0 ⊂ E. Given a nonempty set V0 of V , the subgraph G0 =
(V0,E0) is induced by V0 if

E0 = {(u,v) : (u,v) ∈ E, u,v ∈V0}

If each pair of distinct vertices in V0 is adjacent then G0 is
a clique of G. Cliques are important in graph coloring prob-
lems because a lower bound for the chromatic number χ(G)
of a graph G is the size ω(G) of the maximal clique in G.

Sequential Vertex Coloring: Most of the extensive litera-
ture on graph coloring is not relevant for the problem we
are addressing. For example, algorithms for coloring planar
graphs, requiring just 4 colors, are not suitable because if
there is a clique of at least 5 vertices, then G is not planar
(Kuratowski’s theorem, [Kur30]).

Graph coloring algorithms designed for general graphs are
not helpful because they are usually restricted to graphs with
at most 100 vertices, and in our case the graph is generally
much larger. Algorithms of time complexityO(n2) or higher
are not acceptable, and this requirement prunes away many
coloring algorithms.

The greedy heuristic depicted in Alg. 1 is able to provide a
good solution and it can be computed inO(n). In general, an

Algorithm 1 Greedy heuristic for coloring a graph

1: procedure GREEDY(G(V,E))
2: let v1,v2, . . . ,vn be an ordering of V
3: for i = 1 to n do
4: determine forbidden colors to vi
5: assign vi the smallest permissible color
6: end for
7: end procedure

arbitrary ordering may perform very poorly but it is possible
to show that, for any G, there exists at least one ordering
of vertices for which the sequential algorithm produces an
optimal coloring. In fact, given φ an optimal coloring of G,
if we feed Alg. 1 with the ordering of vertices so that {φ(vi)}
is not decreasing, then we obtain an optimal coloring.

We used the smallest-last ordering defined in [MB83,
CM83]. Assume that the vertices vk+1, . . . ,vn have been se-
lected. Choose vk so that the degree of vk in the subgraph
induced by

V −{vk+1, . . . ,vn}

is minimal. This choice guarantees that Alg. 1 produces a
coloring with at most

max{1+δ(G0) : G0 is a subgraph of G } (6)

colors where δ(G0) is the smallest degree of the vertices in
G0.

4. Partitioning Algorithm

Equivalent Graph Coloring Problem: In the original PBD
approach, the constraints are solved sequentially in a Gauss-
Seidel fashion: the constraints are solved iteratively one af-
ter the other, from the first to the last one, then the process
starts over again and is repeated a number of times nits for
each animation frame. Increasing nits leads to a more pre-
cise solution of the system, sacrificing performance. Usually
a number of iterations between 2 and 24 is used, depending
on the topology of the particle system and the total number
of constraints.

Our objective is to find a partitioning of the set of constraints
such that the constraints belonging to each partition can be
solved in parallel on commodity graphics hardware. A ker-
nel call is invoked for solving one single subset of constraints
belonging to a partition, and a lightweight thread is instanti-
ated for solving a single constraint. Our goal is to minimize
the number of kernel calls because the kernel launch over-
head influences the performance significantly. Furthermore,
the cardinality of all partitions must be approximately the
same for achieving a good load balancing.

We formulate this partitioning as a coloring graph problem,
where each partition (and thus a kernel call) corresponds to
a color. As seen in Sec. 3.2, the chromatic number χ(G) is
lower bounded by the size ω(G) of the maximal clique in the
graph. Our goal is to use an arbitrary number q̂ of partitions,
which is usually smaller than ω(G).

The core idea of our algorithm is to modify the topology of
the cliques having size q > q̂ in the graph, such that these be-
come q̂-colorable. We modify the topology of the cliques by
inserting phantom constraints in proper places, as explained
in the following paragraph. We first introduce the concept
of phantom constraints and phantom particles, and then pro-
ceed to depict the greedy strategy used to insert the phantoms
into the original constraint graph.

Phantoms: Given a particle pi, a phantom particle p f as-
sociated to pi is a particle which has initially the same
state of pi. Given pi and a set of phantom particles
Fi =

{
p f0 , . . . ,p fn

}
associated to pi, a phantom constraint
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(a) A set of particles connected by stretch constraints. Here ci, j
is the short notation for C(pi, p j).
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(b) The constraint graph corresponding to Fig. 4a. The graph
contains a clique, a complete graph K5, and it can not be colored
with less than 5 colors.
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(c) Removing the shared particle p0 by adding a phantom con-
straint, the resulting constraint graph becomes bipartite and the
coloring problem can be solved with just two colors.
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(d) The set of particles corresponding to Fig. 4c. The phantom
constraint C f disconnects the original topology and binds the re-
moved particle p0 to the phantom particles p f1 , . . . , p f5 .

Figure 4: Application of our partition technique to a simple particle system composed of 6 particles and 10 constraints.

C f (pi,p f0 , . . . ,p fn) projects the position of the particles to
their barycenter:

∆p =
∑

N
k=1 pk

N
−p, ∀p ∈ {pi∪Fi} (7)

where N = |pi∪Fi|. This corresponds to the constraint av-
eraging step in averaged Jacobi. While averaged Jacobi per-
forms this operation on all particles, we only apply it to a
small subset. In other words, a phantom constraint is similar
to a set of distance constraints with zero rest length between
each particle and their barycenter. Instead of solving the dis-
tance constraints one by one, a phantom constraint projects
all of its particles in a single step.

Phantoms Insertion Algorithm: Phantom particles and
constraints are inserted into the topology of the graph con-
straint for making it q̂− colorable applying Algorithm 2.

Line (2) is used to initialize the set S of cliques in the
graph. For this purpose, we use the Bron-Kerbosh algo-
rithm [BK73] because it is proven to run in time O(dn3d/3)
for sparse graphs, where n is the size of V and d is the degen-

erancy of of G, that is the smallest number such that every
subgraph of G contains a vertex of degree at most d [ELS10].
Then, in line (3) the set S is sorted in decreasing order of the
size of the cliques so that in the following lines the cliques
s ∈ S are processed from the biggest to the smallest. The
processing of each clique s with size |s|> q̂ begins from line
(4). Lines (5)-(11) are used to find the particle p jmax which is
shared more times between the constraints Ci (pi1 , . . . ,pin);
the nodes forming the current clique s. The number of oc-
currences for each particle is counted, and then the most
shared one p jmax is selected. In lines (12)-(19), p jmax is re-
moved from every constraint in the clique s and is replaced
by a phantom particle p f , which is initialized with the same
state of p jmax . As a result of this, at the end of the process the
constraints in the same clique do not share anymore p jmax

and the corresponding nodes disconnect. In other words, the
size of the cliques decreases and its value is exactly the target
number of colors q̂. In lines (21)-(23), a phantom constraint
C f is created by grouping together the phantom particles,
stored in the set F , together with the particle p jmax .

Fig. 4 provides an example of this process. We start from a
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Algorithm 2 Greedy strategy to make a graph q̂−colorable

1: procedure MAKECOL(G, q̂)
2: S← AllCliquesIn(G), using [BK73]
3: Sort S in order of decreasing size
4: for each s ∈ S : |s| > q̂ do
5: count[]← 0
6: for each Ci (pi1 , . . . ,pin ) ∈ s do
7: for each p j ∈ {pi1 , . . . ,pin} do
8: count[j]← count[j]+1
9: end for

10: end for
11: jmax← j : (count[ j] = max(count[]))
12: for each Ci (pi1 , . . . ,pin ) ∈ s do
13: F ←∅
14: if p jmax ∈ {pi1 , . . . ,pin} then
15: Create p f ← p jmax

16: {pi1 , . . . ,pin}← ({pi1 , . . . ,pin}−p jmax )∪p f
17: F ← F ∪p f
18: end if
19: end for
20: if F 6= ∅ then
21: Create C f (p jmax ∪F)

22: end if
23: end for
24: end procedure

simple configuration of particles connected by distance con-
straints C(pi,p j) as shown in Fig. 4a. The corresponding
constraint graph is shown in Fig. 4b: the nodes of the graph
correspond to the distance constraints and the label on each
edge provides the shared particle between the constraints at
the endpoints. The graph contains a clique of five elements,
and is 5-colorable. We select the most shared particle p0 and
remove it by adding five phantom particles and one phantom
constraint (Fig. 4c). The corresponding configuration of par-
ticles is given in Fig. 4d. By doing this, the graph becomes
2-colorable and the constraints can be arranged in two parti-
tions of approximately the same size. However, the original
topology is changed and this is reflected in a different dy-
namic behavior of the animated object. The visual difference
is minimal as assessed in Sec. 5 and in the accompanying
video.

As Alg. 2 is executed, the number of vertices in a maximal
clique in G (that is, the clique number ω(G)), is decreased.
We keep executing Alg. 2 until ω(G) = q̂, then we apply the
sequential vertex algorithm (Alg. 1), for partitioning G. The
lower bound of the number of colors (partitions) is the size
of the maximal clique in G. We found in practice that these
two numbers are equal in most cases.

5. Results

We used our partitioning algorithm in a constraint-centric
solver written in c++/CUDA. We implemented the different
types of constraints specified in [MHHR07]. Each type of
constraint is solved by a dedicated GPU kernel. A kernel is
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Figure 5: Relative error in cloth simulation. As the number
of colors decreases, the difference with the exact solution in-
creases. The cloth is composed of ~10K stretch constraints.

called per each partition. Each thread processes a single con-
straint. The resulting particle positions are mapped to a ver-
tex buffer object, and used to render in OpenGL; in this way
the data always remains in video RAM, without the need of
slow downloads towards the host. We defined a constraint
graph for each type of constraint, partitioned it using our
technique and then we ran a kernel call for each partition.
All the phantom constraints were solved in parallel with a
single kernel call.

Fig. 7 and Fig. 8 compare the size of the partitions obtained
using both plain Sequential Vector Coloring and our tech-
nique, increasingly reducing the number of colors. The his-
tograms on the side of the pictures show the reduced frag-
mentation of the partitions.

Fig. 5 shows the relative error introduced by phantoms when
the number of colors decreases, for a simple cloth anima-
tion. We measured the residual error versus time in the fol-
lowing scenes (included in the accompanying video), which
converge to a rest configuration in a short amount of time
(Fig. 6).

Squishy ball: A squishy ball, composed of ~452K stretch
constraints and ~250K tetrahedral constraints, falls under
gravity force.

Omotondo: A deformable object, composed of ~80K
stretch constraints and ~65K tetrahedral constraints, is flat-
tened and then left free to come back to its rest volume.

Tori: 400 deformable tori, for a total amount of ~493K
stretch constraints and ~313K tetrahedral constraints, form
a pile.

We used parallel Gauss-Seidel considering partitions ob-
tained with plain Sequential Vertex Coloring and our algo-
rithm, and compared the results with the solution of an av-
eraged Jacobi solver. For this latter, we used a number of
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Figure 6: Test cases (top row, left to right): Squishy ball, Omotondo and Tori. Convergence graphs (bottom row): residual error
on constraints versus time (in ms). Color key: Red, our approach. Green, Gauss-Seidel. Blue, averaged Jacobi.

Figure 7: Partitioning of the SQUISHY BALL (~250K tetra-
hedral constraints) and OMOTONDO (~65K tetrahedral con-
straints) datasets. The side histograms show the number and
size of partitions obtained with a Sequential Vertex Coloring
(left column), and with our technique (right column).

iterations so that the residual error would be the same on the
other solvers. We report the performances in Table 2. Tim-
ings were measured on a Nvidia Quadro K6000 and do not
consider rendering and collision handling. As expected, the
speed-up w.r.t. Sequential Vertex Coloring is governed by

Figure 8: Partitioning of the BIG TORUS dataset (~52K tetra-
hedral constraints), using our technique with a decreasing
number of colors.

the number of kernel calls. Our method outperforms the par-
allel averaged Jacobi solver for two reasons. First, a Gauss-
Seidel solver is faster to converge than Jacobi. Second, the
Jacobi solver considers all of the constraints and particles for
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each iteration, while a Gauss-Seidel solver considers just a
subset of elements for each kernel call, which requires less
computational load on the parallel processors of the GPU.

scene its c kc/f fps s
GS 8 702K 880 205 5.9x

squishy ball GSPh 8 704K 448 405 11.6x
J 110 702K 110 35 1x
GS 16 144K 736 280 1.4x

omotondo GSPh 16 155K 432 384 2x
J 74 144K 74 195 1x
GS 4 806K 172 225 8x

tori GSPh 4 822K 148 240 8.6x
J 43 806K 40 28 1x

Table 2: Performance results. GS: Gauss-Seidel, GSPh: our
approach, J: averaged Jacobi, c: total number of constraints,
kc/f: total number of kernel calls per frame, fps: frames per
second, s: speed-up wrt Jacobi.

Collision detection is implemented using a sparse signed dis-
tance field, similarly to [MMCK14]. At the end of each it-
eration, the position of each particle is tested; if a particle is
in an illegal position, then a collision constraint is generated
on-the-fly, projecting the particle in a valid state. Each col-
lision constraint affects exactly one particle, hence the cor-
responding constraint graph is disconnected and all the con-
straints can be solved in parallel with a single kernel call.

Hybrid Jacobi solver: A simpler variation of the phantom
method , which we refer to as hybrid Jacobi solver, is de-
scribed as follows. The set of constraints is first partitioned
using Sequential Vertex Coloring; then during the animation
phase the first q̂ partitions are solved using parallel Gauss-
Seidel and all the remaining constraints are solved with a
single Jacobi iteration and constraint averaging. This method
is easy to implement and avoids the computation and the in-
sertion of the phantom particles and constraints. The conver-
gence speed of the hybrid Jacobi solver is actually compa-
rable with the phantom particle method (Fig. 9). However,
using this approach may lead to spurious rigid modes in the
final solution like in the simple case depicted in Fig. 10. This
problem may depend on the order in which the constraints
are solved. We observed that the magnitude of these unde-
sirable rigid modes increases with the number of constraints
(Fig. 10f).

6. Limitations and Future Work

Our technique allows to partition the set of constraints us-
ing an arbitrary number of colors q̂, by injecting phantom
particles and constraints in the topology of the constraint
graph G. The constraints belonging to a partition are solved
in parallel with a single kernel call, thus a low number of
partitions lightens the performance overhead introduced by
GPU kernel calls. However, decreasing the number of colors
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Figure 9: Residual error on constraints versus time. Com-
parison of the hybrid Jacobi solver with the different types
of iterative solvers considered in this paper. The test case
refers to the one in Fig. 10. Color key: Red, Gauss-Seidel
with phantoms. Green, Gauss-Seidel. Blue, averaged Jacobi.
Purple, hybrid Jacobi.

(a) (b) (c)

(d) (e) (f)

Figure 10: (a) Cloth composed of 400 particles and 1121
distance constraints, stretched to 16 times its rest area. The
cloth is then left free to go back to its rest configuration with-
out considering numerical integration. Solutions obtained
with (b) Gauss-Seidel, (c) our approach, (d) averaged Jacobi
and (e) hybrid Jacobi. The amount of spurious rigid modes
introduced by hybrid Jacobi increases with the number of
constraints (f).

raises the relative error (Fig. 5), and may reduce the con-
vergence speed of the solver. We found that usually a good
trade-off between performance and visual quality is choos-
ing q̂ = ω(G)/2, where ω(G) is the size of the maximal
cliques in G. Our method does not require any specific ar-
rangements of constraints and it could be applied to paral-
lelize any method employing a Gauss-Seidel solver.

In the future, we would like to explore parallel coloring algo-
rithms which may allow the definition of partitions directly
on the GPU. This would allow interactively change to the
topology of the system enabling, for example, cutting and
tearing of the constrained particle system.
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