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Abstract

Color is one of the most effective visual variables and is frequently used to encode metric quantities. Contrast
effects are considered harmful in data visualizations since they significantly bias our perception of colors. For
instance, a gray patch appears brighter on a black background than on a white background. Accordingly, the
perception of color-encoded data items depends on the surround in the rendered visualization. A method that
compensates for contrast effects has been presented previously, which significantly improves the users’ accuracy in
reading and comparing color encoded data. The method utilizes established perception models to compensate for
contrast effects, assuming an average human observer. In this paper, we provide experiments that show a significant
difference in the perception of users. We introduce methods to personalize contrast effect compensation and show
that this outperforms the original method with a user study. We, further, overcome the major limitation of the
original method, which is a runtime of several minutes. With the use of efficient optimization and surrogate models,
we are able to reduce runtime to milliseconds, making the method applicable in interactive visualizations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Display Algorithms

1. Introduction

Color is very effective in encoding data since it can be com-
bined with any other visual variable to enrich data represen-
tations. Color has many use cases such as to express metric
quantities, categorical data, interestingness, or guide through
tree-structured data [TdJ14]. It may also be used to map com-
plex data to single colors, which is intuitively perceived if
perceptual linearity is considered in the encoding [MBS∗14].
However, there is a danger as for all visual mappings. If the
color design is not appropriate, it may bias the analyst. There-
fore, our community provides guidelines on the effective use
of color. But some issues cannot be overcome in the design,
because they may only appear in the real application. Studies
showed that contrast effects (see Fig. 1) can bias the user in
reading color encoded data by up to 17% [War88].

There exist guidelines and rules of thumbs on how to avoid
contrast effects by appropriate color design. However, con-
trast effects cannot be avoided before the final image is ren-
dered since color appearance (of a pixel) depends on the
surround in the image (see Fig. 1). Mittelstädt et al. [MSK14]
presented a pixel-based optimization method that is applica-

Figure 1: Examples of contrast effects. (a) The ends of the
gray bar and also the cats (b) are perceived differently, but
are equal. (c) and (d) show compensated results of [MSK14].

tion independent and can be used as a post-processing method
to compensate for contrast effects in images or visualizations.
They showed that this method can double the accuracy of
users reading and comparing color encoded data.

The bias of contrast effects was also experienced in an inter-
active control room scenario for monitoring multiple critical
infrastructures with high resolution displays [MWE∗15] (see
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Figure 2: Overview of a smart grid [MWE∗15]. Transformer stations (rectangles) are connected via power lines and linked
to the communication infrastructure (triangles). While gray indicates normal operation mode, yellow elements on the screen
reveal a severe situation (violet stations are destroyed due to a debris avalanche in the eastern area). Due to contrast effects, the
elements in (a) seem to be more critical than they actually are, causing that operators unnecessarily try to reconfigure the system,
which increases operational costs. In (b), contrast effects are compensated showing (accurately) a less severe situation.

Fig. 2). In this application, color encodes the status of in-
frastructure elements and reveals to crisis managers when,
where and how to act. Thus, the color of elements must be
accurately perceived. The method to compensate for contrast
effects [MSK14] takes four minutes to compute the final re-
sult in this application, which is inappropriate for interactive
visualizations. We overcome this limitation by introducing
an efficient algorithm that uses efficient optimization and sur-
rogate models. Our novel method renders the high resolution
images of the sample application in 360ms, which is below
the latency limit of 500ms for interactions [LH14].

Another limitation is that the perception model of the
method assumes optimal conditions such as D65 ambient
light, a color calibrated monitor and an “average” user. We
hypothesize that the perception of contrast effects is different
from individual to individual. Therefore, we provide an exten-
sion to interactively personalize the method, which is possible
with the efficient algorithm. We found that this significantly
increases the user’s accuracy to read data values.

We claim the following contributions: 1) An efficient
method to compensate for contrast effects; 2) methods to
personalize contrast effect compensation; 3) an evaluation of
personalized contrast effect compensation with a user study.

2. Related Work
2.1. Colormapping Guidelines & Color Perception
Encoding data with color is a well discussed topic in the
literature. Some approaches provide data-dependent [HB03]
and task-dependent guidelines [BRT95] to decide for an
appropriate colormap. The impact of contrast effects in in-
formation visualization was studied by Cleveland [CM83],
Ware [War88], and Brewer [Bre96]. There exists methods to

reduce harmful contrast effects such as spiral colormaps for
continuous data that vary over hues with linearly increasing
intensity [War88, LH92, MJSK15]. Further, Brewer [Bre96]
introduced a model to predict contrast effects and provides
guidelines to avoid contrast effects for categorical colormap-
ping. These approaches, however, cannot compensate for
contrast effects because color appearance depends on the
surround in the final rendering. Therefore, Mittelstädt et
al. [MSK14] presented a post-processing method to compen-
sate for contrast effects, which will be revisited in the follow-
ing. Fairchild [Fai13] and Hunt et al. [HP11] offer rich discus-
sions on the perception of color and there exist standardized
color appearance models such as CIECAM02 [MFH∗02]
and the iCAM framework [FJ04] that can be used to com-
putationally predict color perception. There exist, further-
more, several approaches to model different brightness ef-
fects such as the high-level (cognitive) model of Gilchrist
et al. [GKB∗99] or the low-level (physiological) model of
Blakeslee et al. [BPM05]. There exist related models on per-
ceptual shading presented by Schott et al. [SPH∗09] and
Solteszova et al. [STPV12], on depth ordering by Zheng et
al. [ZWM13], as well as on uniform motion spaces by Birke-
land et al. [BTV14].

2.2. Revisiting the Method for Contrast Compensation

The original method [MSK14] locally adapts each pixel
and/or its background until the data encoded by the pixel is
accurately perceived. This is an optimization problem since
the adaption of one pixel changes the perception of surround-
ing pixels. Thus, the algorithm has to find a solution, which
represents all pixels as accurate as possible. The necessary

212



Figure 3: The algorithm computes the perception model PM,
the bias with cost function f , and iteratively reduces the bias
in an optimization process. Our algorithm parallelizes PM
and f and also introduces a convergence threshold t.

steps of the optimization algorithm are: 1) Estimating (pixel-
wise) how a human will perceive the current image based
on a perception model; 2) Estimating the amount of bias by
comparing the perceived and original image based on cost
functions; 3) Determining the “gradient” of the bias per pixel
and adapting fore- and background according to the gradient
to reduce the bias. These steps are iteratively performed until
the perceived bias is minimized. A schematic approach is
illustrated in Fig. 3.
Perception Model. The iCAM framework [FJ04] is based
on the standardized color appearance model CIECAM02. It
is robust in predicting color appearance and physiological
effects such as simultaneous contrast in images. According
to iCAM, the color of each pixel is transformed from sRGB
into the CAT02 color space. This estimates the activation of
the three cone types in the human eye, which process long,
medium, or short-wavelength light (LMS channels). Each
LMS channel of the image is convolved with a Gaussian filter
K to model the perceived surround S. Then, each pixel of the
image I is locally adapted (for each channel) to the perceived
surround S and to the reference white D65 (Eq. 1).

K depends on the spatial frequency of the image and thus,
depends on the application. The original method proposes to
filter the image with several Difference-of-Gaussians (DOG)
kernels. K is then set to the kernel of the DOG that de-
termines the most dominant spatial frequency of the im-
age (with the highest response). The exponents ε0 and ε1
steer the extent of perceived contrast effects. ε0 steers the
effect for bright centers with dark surrounds and ε1 vice
versa (ε0:0.5; ε1:0.6). The constant c1-c3 are used to model
different ambient light conditions with chromatic adapta-
tion for each LMS channel (c1: 0.94, c2: 0.06, standard:
c3 = [94.93,103.54,108.72] [MSK14]).

PM(I,S,ε) := (c1 ·
D65

c3 · (S/I)ε
+ c2) · I (1)

PM′(I,S) :=

{
PM(I,S,ε0), if S > I
PM(I,S,ε1), else.

(2)

Cost Functions. We define I as the unbiased and original
input image. By our visual cognition system, we perceive
the image P = PM(I,S) with P 6= I. The difference between

P and I is the bias that misleads the analyst. The original
method [MSK14] describes several cost functions that esti-
mate the amount of perceived bias at each pixel. The most
important cost function (Eq. 3) measures the color differ-
ence (Eq. 4) of the foreground pixels F between P and I in the
DIN99 [CLR∗02] color space (by definition, the foreground
holds the data). If this cost function is zero for P, the data is
accurately perceived at (and only at) each pixel. See [MSK14]
for details on cost functions that remove harmful perceived
gradients or preserve structures of different granularity.

f1(I,P) :=
1
|F| ∑

p∈F
∆EDIN99(Pp, Ip) (3)

∆EDIN99 :=
√

∆L2
99 +∆a2

99 +∆b2
99 (4)

Gradient Estimation. The approximation of the gradient
for reducing contrast effects is based on two assumptions:
1) Foreground pixels represent valuable data that must be
accurately represented; 2) Background pixels can be adapted
to compensate for the effects on foreground pixels.

As an example, a gray foreground will appear brighter on
a black background. In order to compensate for this effect,
the foreground can be encolored “darker”. The contrast effect
of the black background will shift the “darker” foreground
in the same “direction” and let it appear brighter. Thus, the
gray foreground is perceived as intended. Concluding, by
inverting the “direction” of the effect (e.g., darken too bright
pixels) in a perceptual color space such as DIN99, the method
can compensate for contrast effects at singular pixels. ∆F
holds the directions of the effects, which are estimated by the
difference of the original image I and the perceived image P,
with ∆F = 0 for background pixels (Eq. 5).

∆F := P− I (5)

Background pixels can reduce the effects on foreground
pixels by adapting in the direction of the bias. In the example,
the background pixels can become brighter in order to reduce
the contrast to the gray foreground. The effect on surrounding
foreground pixels ∆S can be estimated by convolving the
difference image ∆F with the same kernel K of the perception
model (since ∆F = 0 for background pixels).

∆S := ∆F ∗K (6)

The gradient to reduce contrast effects is estimated with
Eq. (7), with (ϕ1 = α,ϕ2 = 0) for foreground pixels, (ϕ1 =
0,ϕ2 = α) for background pixels, and α being the step size
estimated by the optimization algorithm.

∆G :=−ϕ1∆F +ϕ2∆S (7)

3. Efficient Compensation of Contrast Effects
A major limitation of the original method to compensate for
contrast effects [MSK14] is a runtime of several minutes.
This section introduces a novel method that uses efficient
optimization and surrogate models to reduce complexity and
runtime to milliseconds.
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3.1. Why “good” solutions are “good enough”
The original method applied line search optimization that
uses the gradient ∆G to reduce contrast effects in each it-
eration. It is combined with simulated annealing in order
to avoid convergence to a local minimum of the cost func-
tions. The cost functions are based on estimating the color
differences between the perceived and original image (see
Eq. 3). The method tries to converge the cost functions to zero.
However, since there is a limit for humans to perceive color
differences [Mac42] (just-noticeable-difference: JND), con-
vergence to zero is not obligatory to provide a “good” solution.
This indicates that local minima may be as good as global
minima since humans cannot perceive any difference between
the solutions. This allows a shortcut for the optimization al-
gorithm to converge the cost functions to a threshold. The se-
lection of the convergence threshold is dependent on how the
different cost functions are handled by the selected optimiza-
tion algorithm. We use golden section line search [PTV07],
which converges to local minima. As in the original method,
we aggregate the cost functions to an equally weighted sum.
The threshold of convergence t is selected with t = 1∆E in
DIN99 (see Section 2.2) where 1∆E approximates the JND
for simplicity (see [MEO94] for accurate experiments).

The complexity of our algorithm can be estimated for
each part. The perception model requires a convolution of
the image, which has a complexity of O(2kn) (separable
convolution), with n being the number of image pixels and k
being the size of the kernel in one dimension. The estimation
of the gradient does also require a second convolution with
O(2kn). The cost functions are of O(n) linear complexity.
As a rule of thumb, the golden section algorithm converges
in approximately c ≈ k steps. Thus, the complexity of the
algorithm is O(c(2kn+2kn+n))≈O(nk2).
Massive Parallelism. The perception model, the cost func-
tions, and the estimation of the gradient can be performed
on each individual pixel independently. This allows transfer-
ring the computation to the GPU. The runtime is, thereby,
significantly reduced by the degree of parallelization.

3.2. Surrogate Models
Surrogate models approximate the result of a computational
model with reduced complexity or calculation on a subset of
the input data [SHB∗14]. Our surrogate model reduces the
complexity by sampling the input image. The main idea is to
learn from a sampled image how to compensate for contrast
effects and then to apply this to the original image.

3.2.1. Sampling
Sampling is a well known method to reduce the complexity
of signals and images. If the sampling theorem (sampling
rate f > 2 fmax with fmax being the maximum frequency in
the original signal) is satisfied, the original signal can be
reconstructed without information loss. Typically, fmax is
very high. This does not allow compressing the image to
major extend since f would need to be high as well. How-
ever, by violating the sampling theorem, reconstruction would

Figure 4: (a) Original image. (b) shows the compen-
sated image without sampling in comparison to recon-
struction with (c) our method and (d) the Lanczos filter
method [Tur90] (both with 7px sampling interval).

result in artifacts (see Fig. 4(d)). Therefore, the common ap-
proach in image sampling is to limit fmax and to filter high
frequencies (higher than fmax) with a low pass filter [Tur90].
Likewise in image scaling, pixels are interpolated for up or
downscaling [KL11]. Low pass filtering or any other inter-
polation of the input image is harmful for the compensation
algorithm because interpolation between pixels also modi-
fies contrasts without considering human perception. Thus,
the input for our algorithm would be harmed, resulting in
artifacts. However, sampling without limiting fmax typically
leads to a violation of the sampling theorem and thus, leads
to artifacts in the sampled signal (high frequency noise that
was sampled) and artifacts in reconstruction (high frequency
information that was not sampled). High frequencies in the
sampled image (artifacts) are smoothed in the surround cal-
culations of the perception model and thus, do not critically
influence other pixels. However, the reconstruction of the fi-
nal image requires methods to handle aliasing effects, which
is discussed in the next section.

The additional costs of sampling is a computation of
O(n/M) complexity with M being the sampling interval.
However, sampling reduces the complexity of the overall
algorithm to a major extend. First, the number of pixels is
reduced quadratically to n/M2. Second, the size of the ker-
nel of the perception model is significantly reduced to k/M.
Since k/M is typically very small (≈ 10), the influence of the
convolution can be omitted in the complexity considerations.
This reduces the complexity from O(nk2) to O(nk/M2).

3.2.2. Compensation with Surrogate Models
As stated before, the reconstruction step is critical since alias-
ing effects must be handled. The compensation algorithm
is applied on the sampled image Is. The result is a sampled
image IC

s , in which contrast effects are compensated. The
challenge is to compute the compensated version IC of the
original image I. This cannot be reconstructed from the com-
pensated sampled image IC

s with standard methods since the
sampling theorem is violated. Therefore, any interpolation
such as scaling or reconstruction by low pass filtering would
result in artifacts (see Fig. 4(d)).
We state the following assumptions:
A1 Pixels at similar locations share similar surrounds.
A2 Pixels affected by the same contrast effect at similar

locations can be compensated in the same way.
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Figure 5: Contrast compensation with surrogate models. The method applies contrast compensation on the sampled image
and “learns” how to compensate for contrast effects. The method determines the contrast effects for each original pixel, finds
an equivalent sampled pixel in the (sampled) proximity, and applies the compensation. The algorithm adjusts the parameters
automatically to provide an accurate solution without artifacts.

The idea of our reconstruction is that the algorithm learns
how to compensate for contrast effects based on the sam-
pled image and then applies the compensation to pixels in
the original image by utilizing A2 (Fig. 5). Therefore, in the
reconstruction phase the algorithm has first to apply the per-
ception model on the original image I in order to estimate the
perceived image P. The perception model requires to model
the surround S for each original pixel, which is expensive.
However, by following A1 we can assume that the nearest
neighbor Is,p in the sampled image of each original pixel Ip
has the same surround. This reduces the calculation of the
surround to a simple lookup Sp = Ss,p and requires no addi-
tional efforts since the compensation algorithm has already
computed Ss,p in the last iteration. Once the surround for
each pixel is known, the algorithm can directly estimate the
perceived image P and thus, the direction of contrast effects
with ∆F = P− I (including background pixels in Eq. 5).

Due to A2, we can compensate pixels of the original image
with pixels of the sampled image that are effected by the
same contrast effect and share similar locations. The algo-
rithm starts the search for an equivalent pixel Is,p+ at the near-
est neighbor in the sampled image and continues the search
in a spiral pattern. The algorithm stops, if the directions of
contrast effects are similar (e.g., estimated by the cosine sim-
ilarity: cos(∆Fp,∆Fs,p+) > 0.99). With A2 we can assume
that pixel Ip will be compensated in the same way as Is,p+ and
thus, apply the direction of compensation ∆Cs,p+ to the orig-
inal pixel with ∆Cs = IC

s − Is. The “extent” of compensation
is scaled by the “extent” of the contrast effects (Eq. 8). This
allows estimating the compensated image with IC = I +∆C.

∆Cp :=
|∆Fp|
|∆Fs,p+|

·∆Cs,p+ (8)

This approach reduces the amount of artifacts significantly
since no interpolation is applied that would lead to aliasing ef-
fects. High frequencies of the original image, that are missing
in the sampled image, can also be compensated if the algo-
rithm finds an equivalent pixel affected by the same contrast
effects (even if the pixels share not the same color).

The adaption of one pixel can have significant impact on
the perception of other pixels. Therefore, this reconstruction
has a limit in the spatial proximity requirement of A2. If
this is violated (the algorithm finds no equivalent pixel in the
proximity but far away), then the compensation of this pixel
does not correspond to the compensation of the pixels in its
surround, which results in artifacts. To overcome these issues,
the search of the algorithm can be stopped if no pixel is found
in, for example, the 25-neighborhood of a pixel in the sam-
pled image. The compensation could then be approximated
by state-of-the-art reconstruction, for example, a Lanczos
filter [Tur90]. However, in our experiments, we found that
this gives poorer results than an unlimited search by our re-
construction (see Fig. 4). The quality of reconstruction can be
increased by increasing the sampling frequency since it cor-
relates with the degree of violation of the sampling theorem.

The reconstruction has to be performed on each original
pixel but can be parallelized on the GPU and is of O(n)
complexity. This results in a complexity for sampling, con-
trast compensation and reconstruction ofO(n/M2+nk/M2+
n)≈O(n) and thus, linear complexity.

3.3. Automatic Parameterization
The result of a surrogate model can be evaluated after re-
construction by using the convergence threshold as quality
threshold (see Section 3.1). Thus, our algorithm computes
the perception model on the final result (compensated image)
and estimates the quality of the perceived result with the cost
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Figure 6: (a) The effectiveness of the algorithm with different sampling intervals and t = 1∆E being the quality threshold (zero
line due to logarithmic scaling). At a sampling interval of 7px, the algorithm is still able to find a “good” solution for the security
visualization (green). (b) The computation time decreases significantly with increasing sampling interval. With 7px sampling
interval the security visualization can be rendered in 360ms.

functions of the optimization algorithm (see Section 2.1). If
the quality is higher than the quality threshold, we would not
perceive any difference between the optimal and the current
solution (see Section 3.1). In cases with a quality below the
threshold, the sampling interval is decreased and the whole
algorithm is restarted to find a better surrogate model. This
process of parameter estimation is an optimization process,
which can be solved, for instance, with greedy algorithms or
by simply decrementing the sampling interval. Section 5 dis-
cusses application depended parameterization and provides
methods to support the algorithm with references to ease the
search for a valid sampling interval.

3.4. Computational Evaluation
To exemplify the performance of the algorithm, we applied
different sampling intervals on different types of visualiza-
tions: a security visualization [MWE∗15] (Fig. 2), a choro-
pleth map [Van12], and a pixel-based visualization [JSMK14].
All three had different resolutions and required different ker-
nel sizes for the perception model (Fig. 6). We performed the
computational evaluation on a standard laptop (Intel Core i7-
4600U; Onboard Intel HD Graphics 4400).

As described in Section 3.3, the effectiveness of the
method can be estimated by computing the color differences
between perceived result and the original image. The
efficiency is measured in milliseconds of computation time.
Figure 6 reveals that the original images of all applications are
suffering from the influence of contrast effects. The method
without sampling (equivalent to the method of [MSK14] but
GPU accelerated) is most effective. However, our method still
provides good solutions over the quality threshold, with much
higher efficiency. Note, that the security visualization may
be sampled with 7px, thereby, reducing the computation time
from 27 seconds to 360ms. Since the quality is over the qual-
ity threshold, users cannot perceive any difference between
this solution and the optimal solution (see Section 3.1).

4. Personalized Perception Models
Color appearance (including perception of hue, saturation,
and intensity) is based on processing red, green, and blue
wavelengths of light with the corresponding cone types in the
human eye. The original method converts the input image into
the three LMS channels (for the three cone types). It predicts
contrast effects by calculating Eq. 2 on each channel, which
models achromatic (intensity) and chromatic (saturation, hue)
contrast effects. The exponents ε0 (bright center, dark sur-
round) and ε1 (vice versa) control the degree of perceived
local cone contrast. The method applies the same exponents
for all different types of cones. However, we assume that this
is not sufficient and our goal is to determine six exponents εX0
and εX1, two for each cone type (e.g., εS0 and εS1 for blue),
to accurately model individual perception of (a)chromatic
contrast effects. The exponents ε0 and ε1 can then be re-
placed by the personalized exponents for each corresponding
LMS channel. In the following section we present methods
of personalization and a user study to validate our hypothesis.

4.1. Methods of Interactive Personalization
Method of Adjustment. We show the user different samples
of contrast effects (Fig. 7(left)). The samples consist of red,
green and blue patches on different backgrounds in order to
produce extreme contrast effects in each type of cone and all
types combined (gray sample). The left and right patches in
each sample as well as the center share the same color (50%
intensity in the according channel in the CAT02 color space).
The backgrounds are set to zero and full intensity (e.g., black
and white). The compensation algorithm is applied on the
image and the result is visualized to the user. The slider under
each patch controls the exponents εX0 and εX1 and can be
modified by the user. For instance, the left gray patch on black
background is perceived brighter (Fig. 7(b)). If the user moves
the left slider (εC0) to the right, the compensation algorithm
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Figure 7: Left: (a) The user is shown samples of contrast effect for each type of cones in the human eye. The colors of the left,
right, and middle patch in each sample are equal. The sliders parametrize the perception model. The user is asked to match
the colors of the patches with the center and thus, personalizes the method. (b) No compensation with εC0 = 0 and εC1 = 0.
(c) Compensation with εC0 = 0.8 and εC1 = 1.0. Right: Staircase method for personalization: The user selects the patch (a), (b),
or (c) that appears most similar to the reference (d). The parameter is adapted and iteratively refined.

will (more and more) darken the gray patch (Fig. 7(c)). For
personalization, the user tries to match the left gray patch
with the gray center and then tries to match the right patch
with the center until the patches and the center appear similar.
The six personalized exponents are found, if the patches of
each sample appear similar.
Staircase Method. For each exponent, we show the user
an image with patches (for red, green, blue, and gray, see
Fig. 7(right)) compensated with different parameters, e.g.,
for bright centers and green cones: εM0: {0.4,1.0,1.6} (dif-
ference: ∆εM0: 0.6). The user selects the compensated patch,
which appears most similar to the reference, e.g., εM0: 0.4.
Then, the parameter is iteratively refined with the halved
difference in each iteration until the user does not perceive
any difference between the patches, e.g., εM0: {0.1,0.4,0.7}
with (∆εM0: 0.3) in the second iteration.

There is one issue: imbalanced exponents lead to chromatic
shifts. For example, if the exponent εS0 for blue cones is
significantly higher than the exponent εL0 for red and εM0 for
green, a gray patch will appear yellow on a black background
after compensation. Therefore, we balance the exponents for
each cone type by pooling the measurements of the colored
samples with the measurement of the gray sample (e.g., ε

′
X0 =

0.5(εC0 + εX0)). The pooling is repeated until no chromatic
shift is perceived by the user.

4.2. Evaluation of Personalized Perception Models
Mittelstädt et al. [MSK14] showed that compensation of
contrast effects significantly improves the accuracy of users
reading and comparing color encoded data. The goal of our
experiments is to evaluate if the perception of contrast ef-
fects differs between subjects, and to evaluate if personalized
compensation will outperform the original method. Our hy-
pothesis are the following:

H1 Subjects find different configurations for personalized
contrast effect compensation.

H2 Subjects are more accurate in reading and comparing
color encoded values with personalized perception models
than with the standard perception model.

4.2.1. Experiment
The task was to read and compare color encoded data values
from displays. The subjects were shown a pixel-cell based
visualization with color-encoded time series data and a color
legend. The color legend was divided into nine value ranges
and the subject was asked to assign two marked data objects to
value ranges based on the color legend (see Fig. 8). Contrast
effect compensation was applied on the visualization with
different perception models. The time series was normalized
[0,9] and the marked values shared the same data value in
the range of [3,7] but had different surrounds. The error in
comparison was measured by the difference between the
assigned value distance and the real value distance.

Figure 8: The subjects had to assign the highlighted values
to the value range in the color legend (here 4).

The experiment factors are four different configurations of
the perception model applied in the compensation algorithm
(personalized model, standard model, the model of another
person, and no compensation). Further, three common
color legends are selected for each visual channel: intensity
(grayscale), saturation (blue to white), and hue (blue to red).

Design. The experiment was within-subject designed with
12 subjects (students; 5 females; no visualization experts;
normal color vision). Subjects were instructed and performed
both personalization methods. The method was selected,
which was most satisfying to the subject. Three persons of
a pre-study provided their personalized model for the final
study. These models were randomly selected as “model of
another person”. Each subject performed four runs. In each
run, the order of (the three) colormaps was randomized and
the subjects performed the task with each perception model
(four models, order randomized). This results in 12 trials per
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Figure 9: Experiment results. (a) Cone contrast exponents ε0
and ε1 of all subjects. (b) Error of subjects comparing color
encoded values with different parameters for the perception
model in contrast effect compensation.

run and 48 trials per subject. The task was performed under
controlled lab conditions with standardized ambient light and
a color calibrated monitor (sRGB).

Results. Fig. 9 summarizes our results. The Wilcoxon Signed
Rank Test was applied for paired significance tests. The me-
dian cone contrast exponents for bright centers with dark
surrounds εX0 was 0.48 (inter-quartile range (iqr): 0.24) as
well as for dark centers with bright surrounds εX1 (iqr: 0.44).
There was a significant (p < 0.05) difference between per-
sonalized perception models (median: 0.96; iqr: 0.35) and the
perception models of other persons (median: 1.04; iqr: 0.44).
Subjects were also significantly (p < 0.05) more accurate
with personalized models than with the standard model (me-
dian: 1.29; iqr: 0.56). Further, the standard perception model
significantly (p < 0.01) outperformed no compensation (me-
dian: 2.08; iqr: 0.5). As in [MSK14], there was no difference
in accuracy between the colormaps. Five subjects selected
the staircase method but there was no difference in accuracy
to the subjects that selected sliders.

4.2.2. Discussion
The median cone contrast exponents (εX0:0.48; εX1:0.48) of
our subjects were close to the standard perception model
of [MSK14] (ε0:0.5; ε1:0.6). However, we can still approve
H1. The high inter-quartile ranges reveal that our subjects
found different personalized parameters for contrast com-
pensation. Further, there is a significant difference in user
accuracy between applying personalized models and the mod-
els of other persons in the experiment task. This is not sur-
prising since there is significant individual variability in the
distribution of cones [CSP∗87] and differences in spectral
sensitivity [WJM10]. In our study, contrast effects caused
errors in comparing color values of 23%. The error decreased
to 14.2% with the standard model [MSK14] and was further
significantly reduced to 10% with personalization, which con-
firms H2. This reveals the need for personalization of contrast
effect compensation. However, we found that some subjects
had problems with the personalization methods. Five were
not able to match the colored patches with sliders. Three had
problems to perceive color difference in the staircase method.
However, in both cases the subjects had no problems with the
other method and there were no accuracy differences between
both groups. There exists other methods to capture individual
characteristics of color vision [Fai13], but it remains unclear,
which methods work best for contrast effect compensation.

5. Application
In this section, we discuss how our new method for contrast
effect compensation can be parameterized and integrated in
real systems. We further provide a use case of an existing
crisis management system [MWE∗15].

5.1. Application Dependent Parameterization
We provide a configuration tool to personalize the perception
model and to parametrize the method for the target appli-
cation. The parameters for personalization and application
dependent parameters (kernel size and sampling interval) are
stored in configuration files that can be loaded into the com-
pensation algorithm. One of the application dependent param-
eters of the perception model is the size K of the Gaussian
kernel, which models the surround perception. This depends
on the spatial frequency of the image and thus, depends on the
application. We allow the user to load a reference image of
the application and our configuration tool estimates the kernel
sizes by using the approach in [MSK14] that uses Difference-
of-Gaussians to determine K (see Section 2.2). If the applica-
tion uses interactions, which will significantly change the size
of elements and thereby the spatial frequency of the image
such as zooming, the application should adapt the kernel size.
We recommend to load several reference images of different
zoom levels. The tool fits the different kernel sizes by deter-
mining a regression model, which could be used to adjust the
kernel size during runtime if the user zooms. If the application
contains different types of visualizations with different spatial
frequencies, we recommend to load reference images of all
visualizations and to create several configuration files that are
used if the analysts navigates from one view to the other.

In addition, our tool can estimate the parameters for sur-
rogate modeling on the reference images. The tool performs
compensation with different surrogate models by increasing
the sampling interval and evaluates the performance for each
model (see Section 3.3). The tool increases the sampling in-
terval until the surrogate model provides a quality lower than
the quality threshold. Then the interval with the lowest com-
putation time but with a sufficient quality is selected. This
parameter is stored as reference in the configuration files for
the real application. This reference may become invalid due
to interactions (e.g., zoom and pan). As the compensation
algorithm is able to detect if the solutions lacks in quality,
parameters can be adjusted on-the-fly (see Section 3.3).

5.2. Use Case
The monitoring and understanding of the relationship of
critical infrastructures and the coordinated management of
their failures is one of the biggest challenges in critical in-
frastructure protection and crisis response. In the applica-
tion [MWE∗15], infrastructure elements are represented by
symbols, such as rectangles for transformer stations and tri-
angles for mobile stations (see Fig. 2). All infrastructures
are visualized on a map to reveal their geo-spatial context.
Color is used to visualize the status of each infrastructure
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element, indicating the “request of action”. The visual design
and especially the coloring is very critical in this domain
since this enables decision makers to perceive and under-
stand the situation in its context. Colormaps are, therefore,
designed according to the principles and guidelines of the
community, considering issues such as perceptual linearity,
intuitiveness, attention steering, and visual saliency. The so-
lution is a colormap with three color anchors: gray (normal
status: no action required), yellow (warning: action required)
and red (alarm: immediate action required). The colors be-
tween these anchors are interpolated in a perceptual uniform
color space varying from gray to yellow over saturation and
from yellow to red over color hue with equalized saturation
and intensity. This steers the user’s attention to critical ele-
ments while uncritical elements disappear in the background.
Thus, saturation indicates when the operator has to take ac-
tions and the color indicates the level of alarm.

A gray scale is used in the background to visualize the
geographic information and to utilize the effect that uncritical
elements blend with the background. Unfortunately, contrast
effects boost less saturated colors. This lets analysts perceive
elements “more” yellow, and therefore, more critical than
they actually are (see Fig. 2). Therefore, we integrated the
efficient method for compensating contrast effects into this
application. We personalized and parametrized the method
by using our configuration tool (Section 5.1). The application
provides overviews for different critical infrastructures such
as power grids and street networks. Thus, we had to determine
for each view a different configuration file. Further, zooming
and panning are the most prominent interactions in this appli-
cation. Therefore, we determined configuration files for dif-
ferent zoom levels and instantiate a regression model for the
parameter that depends on the spatial frequency of the image.

In our sample application, contrast effects shifted the
colors on average by five JNDs (just noticeable differences;
see Fig. 6: 22.34JND). Since the colormap is perceptual linear
and provides 40 JNDs, this results in an approximate bias of
12.5% in reading the status of elements on average, which is
not acceptable in security applications. The bias is decreased
with compensation to only 2% (2−0.32JND) on average. The
computation time for contrast compensation is decreased
from four minutes to 360ms, whereby the surrogate model
uses 175ms and the reconstruction 185ms, which is below
the latency limit of 500ms for interactions [LH14]. However,
hundreds of milliseconds are still noticeable in seamless
transitions such as panning, zooming, or view transition.
Therefore, we disable contrast compensation during
transitions and perform the method once the image stabilizes.

6. Discussion & Limitations
Runtime & Interaction. The runtime of the original
method [MSK14] for contrast effect compensation is reduced
significantly and we argue that contrast compensation is now
possible in interactive applications. However, hundreds of
milliseconds are still a burden for dynamic visualizations,

animations or seamless transitions such as panning, zooming,
or view transition. And further, for complex visualizations in
which the rendering and interactions are already computation-
ally expensive. By disabling contrast compensation during
seamless interactions, we provide an accurate visualization
once the image stabilizes. However, we discovered that sub-
jects experience the changes when the compensated image
replaces the original image after the interaction is complete.
Furthermore, perception of brightness and contrast has a
temporal context [EJS04, BS11]. It is not yet clear how these
effects bias the analysts in the analysis process. Therefore,
it remains an open question how to effectively apply contrast
compensation during interactions or animations.
Personalization & Perception Model. With our configura-
tion tool it is possible to interactively determine all parameters
for the algorithm and to personalize the perception model
on the lowest levels of color vision (for each cone type).
While the mechanisms of the lowest levels of color vision
are well researched and characterized [FJ04], the mechanis-
tic description of higher levels is still controversially dis-
cussed [Sto09]. Some studies conclude that research fails
to provide evidence for higher order mechanisms in color
vision at all [Esk09]. This indicates that personalization of
the lowest levels might be sufficient to capture individual’s
characteristics of (a)chromatic contrast perception and our ex-
periment shows that this significantly improves the accuracy
of users reading and comparing color encoded data. However,
recently published results present evidence for higher order
mechanisms [HG13]. We see high potential in these results
for our method, but it is not yet clear how to transfer these re-
sults into a computational model for image color perception.
Future Work. The quality of compensation depends on the
basis perception model, which does not model all physiolog-
ical effects of color vision. Further, it is not yet clear how
the gradient has to be adapted to handle imbalanced person-
alized exponents of cone contrasts, which currently lead to
chromatic shifts in the compensated result and have to be
balanced, limiting personalization. We see another challenge
for collaborative environments since perception of contrast
effects differs significantly between individuals.

7. Conclusion
In this paper, we present an efficient algorithm to com-
pensate for contrast effects and provide a computational
evaluation of the effectiveness in comparison to the
original method [MSK14]. The performance gains make
compensation of contrast effects applicable for interactive
visualizations and experiments. We, further, introduce
methods to personalize contrast compensation and show in a
user study that this significantly improves the accuracy of
users reading and comparing color encoded data.
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