
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS’ THESIS

Geometry and Attribute Compression for
Voxel Scenes

Author:
Bas Dado

Supervisor:
Prof. Elmar Eisemann

This thesis was submitted
for the degree of Master of Science

in the

Computer Graphics & Visualization Group
Department of Intelligent Systems

December 9, 2015

http://www.tudelft.nl
http://www.basdado.com
http://graphics.tudelft.nl/~eisemann/
http://graphics.tudelft.nl
http://cs.tudelft.nl/

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Department of Intelligent Systems

Master of Science

Geometry and Attribute Compression for Voxel Scenes

by Bas Dado

Voxel-based approaches are today’s standard to encode volume data. Recently, di-
rected acyclic graphs (DAGs) were successfully used for compression, but they are re-
stricted to a single bit of (geometry) information per voxel. We present several methods
to compress arbitrary data (e.g., colors, normals, or reflectance information). Our most
successful method decouples geometry and voxel data via a novel mapping scheme,
enabling us to apply the DAG principle on the geometry while compressing the voxel
attributes using a specialized algorithm. This leads to a drastic memory reduction. Our
method outperforms existing state-of-the-art techniques and is well-suited for GPU ar-
chitectures, resulting in real-time performance on commodity hardware for colored
scenes with up to 17 levels (131, 0723 resolution) treated in core.

i

HTTP://WWW.TUDELFT.NL
http://faculty.university.com
http://cs.tudelft.nl/

Acknowledgements
This research was executed in collaboration with the Computer Graphics and Vi-

sualization (CG&V) group at the faculty of Electrical Engineering, Mathematics and
Computer Science (EEMSC) of the Delft University of Technology (TU Delft). I would
like to thank all members of this group for their input and support, but some members
in particular.

First and foremost, I would like to thanks Timothy Kol for his day-to-day support
throughout this project. He helped work out the ideas and algorithms used in this
paper, and proved very important with the evaluation and testing. Secondly, I would
like to thank Elmar Eisemann for his proposal to start this thesis, and for his very
valuable input and ideas during our discussions. I would also like to thank Pablo
Bauszat and Jean-Marc Thiery for our discussions, and for their ideas and contributions
to this project. Finally, I would like to thank Thomas Höllt, Nicola Pezzotti and Renata
Raidou for letting me work in their office, and Ruud de Jong and Bart Vastenhouw for
providing me with a PC capable of shader debugging.

In addition, I’d like to thank my girlfriend, Linda, for her amazing support during
my years at the TU Delft, and in particular during this final project. The biggest grati-
tude goes out to my parents for their endless, incredible support, and for giving me the
opportunity to obtain a degree in engineering. Without you, none of this would have
been possible.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Background 3
2.1 Related Work . 3
2.2 Definitions . 4

3 Methods 6
3.1 Node count reduction . 6

3.1.1 Naive method . 6
3.1.2 Bittrees . 7
3.1.3 Geometry-material decoupling . 8
3.1.4 Variations . 9

3.2 Efficient tree storage . 10
3.2.1 Naive method . 10
3.2.2 Pointer and offset sizes per level 10
3.2.3 Pointer entropy encoding . 11
3.2.4 Virtual nodes . 11

3.3 Data quantization . 11
3.3.1 Colors . 12
3.3.2 Normals . 12
3.3.3 Fixed point values . 14

3.4 Data compression . 14
3.4.1 Tight packing . 14
3.4.2 Repeated-block compression . 14
3.4.3 Bittree based compression . 15
3.4.4 Palette compression . 15

4 Implementation 18
4.1 DAG/Octree . 18

4.1.1 Construction . 18
4.1.2 Memory storage . 19

4.2 Renderer . 20

5 Results 22
5.1 Compression . 22

5.1.1 Efficient tree storage . 24
5.1.2 Data quantization . 25
5.1.3 Data compression . 26

5.2 Construction times . 29

iii

5.3 Rendering performance . 30
5.4 Applications . 31

6 Conclusions 33
6.0.1 Future work . 34

A Graph data tables 35
A.1 Figure 5.1 . 35

A.1.1 4096 Quantized colors . 35
A.1.2 Full colors . 36

A.2 Figure 5.2 . 38
A.2.1 Geometry DAG . 38
A.2.2 Topology and offsets . 39

A.3 Figure 5.3 . 40
A.4 Figure 5.4 . 41
A.5 Figure 5.5 . 42

A.5.1 Lossy compression . 42
A.5.2 Lossless compression . 42

A.6 Figure 5.6 . 42

Bibliography 44

iv

Chapter 1

Introduction

FIGURE 1.1: Compressed voxelized scene at different levels of detail, rendered in real time
using raytracing only. Our hierarchy encodes geometry and quantized colors, and is 17 lev-
els deep, which corresponds to a voxel resolution of 131, 0723. Despite containing 18.4 billion
colored nodes, it is stored entirely on the GPU, requiring 7.63GB of memory using our compres-
sion schemes. Note that only at the scale shown in the bottom right image, the voxels become

apparent.

Most 3D computer applications today make use of the standard rendering pipeline,
in which scenes are represented as triangle meshes; collections of triangles that repre-
sent the surface of objects. Triangle meshes are rendered using triangle rasterization,
a technique which determines for every pixel which triangle should be drawn on it
(occupies the pixel and is closest). This means that, in practice, the number of triangles
has a direct influence on the rendering performance, effectively limiting the amount
of detail in a scene. Most application add detail to the triangle meshes by introducing
textures, allowing for color variations on the surface of a single triangle.

In recent years, programmable shaders have allowed the use of textures for many
more attributes, such as how light interacts with the surface (normal maps, bump
maps, specularity maps), or even how the surface deforms (displacement maps [SKU08]).
Although this makes scenes look more detailed, it increases the complexity of both the
scene representation and how it is rendered.

Furthermore, the standard rendering pipeline does not allow for efficient ray-casting.
Having this ability would enable advanced lighting effects, such as indirect illumina-
tion, (specular) scene reflections and ambient occlusion.

With the increase of complexity in virtual scenes and the rising importance of ad-
vanced lighting techniques, alternative representations, which are able to represent
small details efficiently and enable efficient ray casting have received a renewed in-
terest in computer graphics [LK10].

One alternative consists in voxels, which represent a scene in the form of a high-
resolution grid. While voxels can represent complicated structures, the memory cost
grows quickly. Fortunately, most scenes are sparse – i.e., many voxels are empty. For

1

Chapter 1. Introduction 2

instance, Figure 1.1 uses a grid of 2 quadrillion voxels (817 = 2 251 799 813 685 248), but
99.9994% are actually empty. This sparsity can be exploited using hierarchical represen-
tations, such as sparse voxel octrees (SVOs) [JT80; Mea82]. In addition to being more
memory-efficient, SVOs can also be used to accelerate ray casting. However, they can
only be moderately successful; a large volume like the previous example, still contains
over 13 billion (i.e., around 811) filled voxels. Thus, specialized out-of-core and com-
pression mechanisms are needed, such as those surveyed by [BR+14], but they cause
additional performance costs.

Recently, Kämpe et al. [KSA13] used directed acyclic graphs (DAGs) to achieve high
compression while keeping an in-core SVO representation with a single bit of informa-
tion per leaf node. The idea is to merge equal subtrees, which is particularly successful
if scenes exhibit repetition. Unfortunately, extending the information beyond a single
bit (e.g., to store material properties) is challenging, as it would reduce the amount of
equal subtrees drastically.

The goal of this thesis is to extent the DAG compression to allow for the inclusion
of material information, while still maintaining significant compression rates. To this
extent, we have developed and experimented with several compression schemes. The
most effective scheme uses a mapping that decouples the topology from other voxel
attributes. Hereby, we can apply the full DAG compression on geometry and include
a special pointer reduction. The voxel attribute data can now be compressed using a
specialized palette-based approach on quantized information, which greatly reduces
the memory footprint.

With our method, a perceptually almost indistinguishable full-color voxel grid re-
quires on average less than one byte per voxel (Figure 1.1). Additionally, attributes
like normals or reflectance, can be compressed as well. Our representation has a low
query cost, enabling complex rendering effects, such as specular reflections of the envi-
ronment. Our approach displays, in full HD, a colored 817-voxel scene in real time on
commodity hardware, keeping all data in core.

In order to explain our methods, Chapter 2 will provide a more detailed explana-
tion of the SVO and DAG data-structures, as well as the most related work. Chapter 3
describes the four steps required for our compression algorithms: DAG conversion,
efficient tree storage, attribute quantization, and attribute data compression. In Chap-
ter 4, implementation details and caveats will be explained, as well as how we convert
triangle meshes to voxel grids, and how we render our final data structure. Chap-
ter 5 contains a discussion of the compression ratios and rendering performance of
our algorithms. It also provides an insight in the quality of the quantization, as well
as the time required by our current implementation for converting a triangle mesh to
our compressed data structure. In Chapter 6, we will provide a final discussion on the
effectiveness of our algorithms, and we will report future work.

Chapter 2

Background

This chapter focuses on the background of this thesis work. The most related literature
is discussed in Section 2.1. The terms and definitions used throughout the rest of the
paper are presented in Section 2.2.

2.1 Related Work

Here, we focus on the most related methods, but refer to other compression techniques,
particularly for GPU-based volume rendering, to the recent survey by Rodríguez et al.
[BR+14].

Streaming is a possibility to handle large data sets and recent approaches are able
to adapt a reduced representation on the GPU taking into account the ray traversals
through the voxel grid [EGG08; Cra+09]. Nonetheless, transfer and potential disk ac-
cess make these methods less suited for high-performance applications. Here, it is
advantageous to keep a full representation in GPU memory, for which compact data
representation is of high importance.

Dense volume compression has received wide attention in several areas, e.g., in
medical visualization [Gut+02]. These solutions exploit mostly local coherence in the
data. While we also rely on this insight for data compression, such solutions are less
suitable for sparse environments. In this context, besides SVOs [JT80; Mea82], perfect
spatial hashing can render a voxel dataset by means of a hash and offset tables [LH06].
While these solutions support efficient random access, exploiting sparsity alone is in-
sufficient to compress high-resolution scenes.

Efficient sparse voxel octrees (ESVOs) observe that scene geometry can generally be
well represented using a contour encoding [LK11]. This, combined with block-based
compression based on DXT1, allows for reasonably efficient storage of SVOs. Nonethe-
less, due to subtree culling where the contour error is below a certain threshold, this
representation does not retain the original precision of the stored attributes (e.g., color).
While it is possible to account for colors when a subtree is culled, this choice reduces
the compression effectiveness drastically.

Recently, Kämpe et al. observed that besides sparsity, geometric redundancy in bi-
nary voxel scenes is common, and they proposed a scheme to merge equal subtrees in
an SVO, resulting in a compressed directed acyclic graph (DAG) [KSA13]. The com-
pression rates are significant and the method even found applications in shadow map-
ping [Sin+14; KSA15]. Nonetheless, the employed node pointers to encode the struc-
ture of the DAG can become a critical bottleneck.

Pointerless SVOs [SK06] are well-suited for offline storage, but have slow runtime
access. While some efficient suggestions were made [LK11; LH07], these methods are
typically not applicable to the DAG, since they are usually based on the assumption
that pointers can be replaced by small offsets. In case of the DAG, this can lead to large

3

Chapter 2. Background 4

Original SVO
15 nodes

First step
10 nodes

Second step
8 nodes

Final DAG
7 nodes

FIGURE 2.1: Illustration of the DAG conversion algorithm on a binary tree. Dangling pointers
illustrate empty nodes. In a bottom-up fashion, all equal nodes are merged.

values, as the node’s children are no longer in order, but potentially scattered across
different subtrees.

Increasing the data per voxel reduces the probability of equal subtrees, making
DAGs unsuitable for colored scenes. For attribute compression, specialized algorithms
exists for textures [SAM05; Nys+12], as well as colors (e.g., via an effective quantization
as in [Xia97]) or normals (e.g., via a octahedron-normal vectors (ONVs) as in [Mey+10]),
for which a careful quantization is necessary [Cig+14].

Recently, Williams proposed a mapping based on storing the number of empty
nodes in a subtree to connect material information to high resolution sparse voxel
DAGs [Wil15]. However, since by far the largest part of a sparse scene is empty, storing
the amount of empty nodes in a subtree can require very big integers, and thus a lot of
memory. For the scene in Figure 1.1, for example, one would require at least 48-bit inte-
gers to store the number of empty nodes correctly. Furthermore, attribute compression
is not explored.

2.2 Definitions

A voxel scene is a cubical 3D grid of size N3, with N a power of two. Each voxel is
either empty or contains some information, such as a bit indicating the presence of
geometry, normals, colors or other attribute data. SVOs encode these grids by group-
ing homogeneous regions; each node stores an 8-bit childmask denoting for every child
node if it exists – i.e., is not empty. A child pointer points to the children, which are or-
dered in memory. Hence, 8 bits are needed for the childmask, plus 32-bit for the child
pointer. Furthermore, for level-of-detail rendering, parent nodes usually contain data
representing that of the children (e.g., an average color). If only geometry is encoded,
testing the presence of a child pointer is sufficient and no data entries are needed.

The DAG algorithm is an elegant method to exploit redundancy in the SVO. It forms
the basis for all our proposed compression schemes. For ease of illustration, Figure 2.1
uses a binary tree, but the extension to more children is straightforward. On the left,
a sparse binary tree is shown. Dangling pointers refer to empty child nodes without
geometry. The DAG is constructed in a greedy bottom-up fashion; subtrees (starting
with the leaf nodes at the lowest level) are compared and identical ones are merged
by changing the parent pointers to point to a single common subtree. The final DAG
exhibits significantly less nodes (Figure 2.1 right).

Chapter 2. Background 5

One disadvantage of the DAG in comparison to an SVO, is that pointers need to
be stored for all children, because children can no longer be grouped consecutively
in memory (in which case, a single pointer to the first child is sufficient). In practice,
the 40 bits per node in an SVO (8-bit childmask and a 32-bit pointer), become around
8 + 4 × 32 = 136 bits in a DAG – an octree node on average has about four children,
when voxelizing surface models. The high gain of the DAG stems from the compres-
sion at low levels in the tree. In a typical SVO, these levels are the bottleneck, contain-
ing by far the most nodes. A DAG has at most 256 leaf-nodes; the number of unique
combinations. For higher levels, the number of combinations increase, which reduces
the number of possible merging operations. This also reflects the difficulty that arises
when trying to merge nodes containing data.

Chapter 3

Methods

It is possible to distinguish several steps for our compression algorithm aimed at voxel
scenes. The first step is converting from an SVO to a DAG. We distinguish several
schemes to maximize the number of equal subtrees, and in extension the effectiveness
of the DAG conversion. The second step consists of reducing the memory needed to
store the child pointers. The third step revolves around quantizing the voxel attributes,
which reduces the entropy and thus allows for more efficient storage. Although quan-
tization is by definition lossy, differences can be made sufficiently small so as not be
distinguishable by humans. The last step compresses voxel attributes further, by ex-
ploiting spatial and structural coherence, and is required for our geometry-material
decoupling to be effective.

3.1 Node count reduction

The DAG conversion algorithm as proposed by Kämpe et al. does not allow for storing
attribute data. Nonetheless, we aim to use the DAG compression as the basis of our
algorithm. In this section, we propose several modification to the DAG algorithm that
enable the storage of attributes.

3.1.1 Naive method

A naive approach to material SVO compression, is to simply extend the standard DAG
compression scheme to incorporate materials. In the standard DAG compression, nodes
are merged bottom-up if they have identical childmasks and pointers. This condition

Input SVO
15 nodes

Naive Colored DAG
12 nodes

FIGURE 3.1: Illustration of the DAG conversion algorithm when attribute information, such as
colors, are included. This is the naive way to include colors in the DAG compression algorithm.

6

Chapter 3. Methods 7

can be extended such that nodes can only be merged if they also have the same mate-
rials.

However, this additional condition has a significant negative influence on the amount
of merge opportunities, especially for scenes with diverse materials. An example of
this method is shown in Figure 3.1. In this example, only 3/15 nodes could be re-
moved, compared to the 8/15 nodes for the geometry DAG. Quantization techniques
(Section 3.3) help but are not sufficient.

3.1.2 Bittrees

To increase the number of merge opportunities compared to the naive approach, one
could opt to reduce the material information per node. This can be achieved by split-
ting the material information into several small parts (e.g. bits). Each part is stored in
a seperate SVO, or bittree. It is reasonable to assume that there is a big overlap between
these trees. Modifying the DAG algorithm to only store the same subtree once for all
bittrees can exploit this assumption.

If the original geometry DAG is stored sperately, we can ensure that only the voxels
that contain geometry are visited. This allows us to store arbitrary attribute information
for the position that do not contain geometry. Since the attributes in these positions are
essentially undefined, we can merge subtrees in bittrees if their only differences occur
in positions that do not contain geometry.

Allowing this, however, substantially increases the complexity of the DAG conver-
sion algorithm. The original DAG algorithm runs in O(N logN) and is guaranteed to
give an optimal solution. However, when there are multiple different nodes that can
be merged, as is the case when part of the scene is regarded as undefined, the problem
becomes much harder.

It is no longer possible to find a sorting of the nodes such that all nodes that should
be merged are adjacent. The trivial way to find all viable merges for a single node,
is to check all other nodes. This would increase the complexity to O(N2). Low level
trees already require millions of nodes, rendering an algorithm that runs in O(N2)
unfeasible. We have implemented an acceleration tree structure with 8 levels, one for
each child. Branching is based on the value of the child, which is either a pointer with
attribute data or undefined. Pseudocode for the algorithm to find all viable merge
opportunities is given in Algorithm Algorithm 1.

Secondly, a choice needs to be made which of the viable nodes should be merged.
Merging with one node might prevent the possibility to merge correctly with another,
and this selection could influence the efficiency of the DAG algorithm higher up in the
tree. This is a hard combinatorial problem. Our solution is a greedy algorithm, that
first merges nodes with the most parents (as these have a higher probability of leading
to more merge opportunities higher in the tree).

Nonetheless, even with the acceleration tree, the algorithm is not feasible for large
trees, and the results for smaller trees do not encourage further optimization. There-
fore, despite the algorithm being implemented, we do not use it in practice.

Instead, we have implemented approximations that are much faster to execute and
lead to similar results: First of all, we fill the nodes above the leaf level with children
which have their bit value not set. This ensures that these nodes always have 8 chil-
dren, making the attributes of these children the only difference between them nodes.
This ensures that there can only be 256 different nodes in the level above the leafs, as
opposed to 256 · 256 = 65563. Secondly, we cull subtrees for which all nodes that exist
have the same bit value (e.g. all 1 or all 0). Finally, we store the bit value of each node

Chapter 3. Methods 8

Input SVO
15 nodes

110
101
100
011
010
001
000

Material
Library First bit

100
Second bit

010
Third bit

001

Construct bittrees
Combine in DAG

Bittree DAG
22 nodes

FIGURE 3.2: Illustration of the bittrees technique. A standard geometry DAG needs to be stored
in addition to the bittree DAG in order to render correctly. Because this example is relatively
small, the bittree DAG currently does not reduce the number of nodes, but this could happen

for a bigger SVO.

in their parent. This allows for merging nodes that have a different bit value, but the
same children and topology. It is also convenient for storage, as nodes need to be byte-
aligned in memory. The current implementation for bittrees is illustrated in Figure 3.2.

3.1.3 Geometry-material decoupling

A final approach to simplify the SVO structure is to decouple material and geometry
information. This allows for using a separate compression scheme specialized in com-
pressing either geometry or attribute information.

To achieve this decoupling, we assign data indices to all nodes in the initial SVO in
a depth-first order (numbers in the nodes of Figure 3.3). Next, for every child pointer,
we store an offset integer, such that adding all offsets along the way from the root to a
node results in the node’s data index (numbers next to the edges in Figure 3.3, right).
Since the first offset is always +1, it is stored implicitly. In this representation, the DAG
algorithm becomes significantly more efficient then storing the materials directly. In
fact, we obtain exactly the same compression as for geometry only, as depth-first in-
dexing automatically leads to identical offsets in identical subtrees. Still, our mapping
does introduce an overhead in the form of a 32-bit offset for every pointer. However, as
explained in Section 3.2, the number of bits used for these offsets can be easily reduced
in practice.

Note that this method requires the storage of the attribute of all nodes in the origi-
nal SVO in a separate node data table. However, due to the data indices being assigned

Chapter 3. Methods 9

Algorithm 1 Pseudocode to traverse the acceleration tree used during bittree construc-
tion. It is used to find all nodes viable for merging with a given node, taking undefined
space into account.
1: function TRAVERSE(children[8]) . children from the original node in the DAG
2: . Start at the root of the acceleration tree
3: return TRAVERSE(children, root, 0)
4: end function
5: function TRAVERSE(children[8], node, depth)
6: child← children[depth]
7: if child = undefined then . child lies in region that does not contain geometry
8: for all childNode in GETCHILDREN(node) do
9: yield TRAVERSE(children, childNode, depth + 1)

10: end for
11: else
12: . findChild returns the child from the acceleration tree node that represents the DAG node
13: childRepresentative← FINDCHILD(node, child)
14: undefinedRepresentative← FINDCHILD(node, undefined)
15: yield TRAVERSE(children, childRepresentative, depth + 1))
16: yield TRAVERSE(children, undefinedRepresentative, depth + 1))
17: end if
18: end function

Input SVO
15 nodes

0

1

2

3

4 5

6

7

8

0 1 2
3 4 5
6 87
9 10 11

12 13 14

Geometry
7 nodes

+1

+1

+1

+1 +2

+1

+6
0

1

2

3

4 5

6

7

8

9

+1

+1

+1

+1 +2

+6

+5

+1

+2+1+2+1

+1

+1

11

12

14131013 14

12

11

109

Materials +=

+5+1

FIGURE 3.3: Illustration of the geometry material decoupling technique. Each node gets as-
signed an index, which is reconstructed by summing the offsets from the root to the node. This
allows for full compression of the geometry DAG. A separate table stores the materials for each

node.

in a depth-first manner, the node data table preserves spatial coherence. This can be ex-
ploited by a specialized compression scheme that would not be possible if the attribute
data was stored directly in the tree structure, as explained in Section 3.4. Additional
material quantization (Section 3.3) can also be utilized to reduce the memory footprint.
By only assigning indices up to a user-defined level in the tree, we can reduce the reso-
lution of the attribute data, without losing geometry detail. This does not influence the
DAG compression and is a useful tool to balance between quality and memory usage.

3.1.4 Variations

We have experimented with several variations on the methods described above. The
first variation we tried was to store differences in materials, instead of storing materials
directly. Since the materials in a child node are often similar to those in a parent node,
these difference should be relatively small and predictable. Unfortunately, many nodes
did not follow this pattern due to high frequency content in the textures. This was

Chapter 3. Methods 10

especially apparent near the leaf nodes, where compression is most crucial. In none of
our experiments did storing differences result in a better compression.

We have also experimented with bittrees that only store information in the leaf
nodes, meaning that they are essentially equal to geometry trees. These allowed for
some added compression compared to standard bittrees. Nonetheless, the added com-
pression did not overcome the loss of the level-of-detail information present in the
SVO.

A final method we explored revolves around merging a naive DAG such that lo-
cations without geometry are allowed to contain any value. The algorithm for this is
similar to the one described in Section 3.1.2. Note that due to the algorithms complex-
ity, evaluation on big datasets was not attainable. For smaller datasets, it gave a slight
improvement over the naive method, but was still outperformed by our geometry-
material decoupling.

3.2 Efficient tree storage

This section presents several methods we have used to store DAG nodes as efficiently
as possible. We can distinguish four main methods: the naive approach (which is equal
to the original DAG paper), selecting pointer and offset sizes per level in the tree, using
entropy encoding to exploit repeating pointers, and using virtual nodes to exploit that
low levels in the tree are not compressed.

3.2.1 Naive method

The naive method is equal to what was presented in [KSA13]. Every pointer (as well
as the child mask) is stored in a word-aligned manner. This entails that both the child-
mask (of which only 8 bits are used), as well as the child pointers are stored as 32-bit
variables.

Having all data stored in a word-aligned manner is beneficial for performance, and
this method makes it trivial to find the location of a pointer in memory.

3.2.2 Pointer and offset sizes per level

A DAG usually contains few nodes in the lowest levels of the tree (i.e., near the leafs),
even though many pointers to these nodes are required. We exploit this by sorting the
nodes on the level they are in. We then store a pointer to the first node of each level.
This allows general child pointers to be replaced by pointers within each level. Taking
the log2 of the memory used by each level in the tree, we can calculate the minimal
amount of bits needed to store pointers to each level. For performance and simplicity
reasons, these numbers are rounded up to bytes, so that we can use byte-precise pointer
sizes. Experiments show that this makes little difference for the final size of the tree.

A similar technique can be applied to the offsets that are used for geometry-material
decoupling. Here the technique is even more effective as these offsets get smaller as
the node level increases. As a consequence, the levels with the most nodes, which are
located a few levels above the leaf nodes, have relatively small offset sizes.

Using this technique does imply a small performance cost, as information is no
longer word-aligned, and additional fetches are required to find the pointer and offset
sizes for the current level. However we can now store the child mask of each node
using 1 byte.

Chapter 3. Methods 11

3.2.3 Pointer entropy encoding

In a DAG, some nodes are reused many times (i.e. have many parents), while others
are used only once. For example, we found that for DAG representing a typical game
scene, 70% of pointers to the biggest level in the point to the first 10% of nodes in that
level. This property can be exploited using entropy encoding. The main idea is to use
less bits for pointers to nodes that are used often. We implemented this using a 1- or
2-bit mask preceding each pointer which indicates its size.

To make sure that often-used nodes require smaller pointers, we sort the nodes
per level on how many parents they have. As with pointer sizes per level, we replace
pointers by the offsets within each level. This ensures that the most used node in each
level will have 0 as its pointer, the second most used will have a pointer that is equal
to the size of the most used node in bytes, etc. This means that we only need 1 byte
(containing the mask and some 0’s) to encode a pointer to this most used node. For
each pointer, the minimum required size is used.

Since nodes have a size bigger than one, node pointers are not consecutive numbers.
To store them more efficiently, a lookup table is be created for each level. Nodes are
added to the lookup table in descending order of number of parents. We stop adding
nodes to the lookup table if one of the following conditions hold:
• The current node has only 1 parent.
• Storing the index of the current node requires as many bytes as a standard pointer

to this level.

3.2.4 Virtual nodes

The main difference between DAG and SVO nodes, is that DAG nodes need to store a
pointer to each of their children, whereas SVO nodes only need to store a single pointer
to the first of their children. This is required because a DAG reuses nodes, so a node’s
children cannot always be stored in order. However, many nodes are still used only
once, and these nodes can be ordered in the same way they would be in an SVO.

To allow for using a single pointer per DAG node, we introduce virtual nodes. We
order all nodes similarly to how they would appear in a standard SVO, making sure
that the children of a node are stored in order next to each other. Whenever a node is
reused, we replace the node by a virtual node, which is a pointer to the first occurrence
of this node. Near the leaf nodes, many nodes are reused, so that using standard DAG
storage, where the pointers are stored directly in the nodes, becomes beneficial. We
calculate the memory requirements of each level with and without enabling virtual
nodes, and use the method with the smallest memory requirement for each individual
level.

3.3 Data quantization

This section deals with quantization techniques. Quantization is the problem of re-
placing some set of values by a representative smaller set, where the goal is to mini-
mize both the number of samples and the error between the original values and their
quantized counterparts. Quantizing the materials in a scene not only allows us to use
fewer bits for each node, but also improves the effectiveness of other compression al-
gorithms. To this extent, we have implemented different techniques for colors, nor-
mals and fixed point values. Color quantization is based on a technique proposed by

Chapter 3. Methods 12

Full colors

4096 colors 1024 colors 256 colors 8 colors

Di�erence x10

FIGURE 3.4: Color quantization. Top row shows quantization result, bottom row shows the
difference to the ground truth, multiplied by 10. At 4096 colors, the result is perceptually almost
indistinguishable from the ground truth, as demonstrated by the difference image, which seems
nearly black even when multiplied by 10. For 1024 colors, the difference is noticeable, but high-
quality results are still obtained. For 256 colors, it is clearly visible that the colors have been
quantized, but the results are not uncomfortable. Only for 8 colors do we obtain unusable

results.

Xiang [Xia97]. Normal quantization is based on octrahedral normal compression, as
proposed by Meyer et al. [Mey+10].

3.3.1 Colors

Although humans can distinguish many different colors, often only a relatively small
subset of these occur in a single scene. In addition, the RGB space is not perceptu-
ally uniform, leading to subsets being indistinguishable to humans. This allows for
effective color quantization.

Our clustering method is based on a method proposed by Gonzalez et al. [Gon85],
which uses the minimal maximum intercluster distance as an error metric. Intuitively, it
attempts find clusters in which the entries are as close to each other as possible. Finding
optimal clusters is NP-hard, but the algorithm proposed by Gonzalez et al. [Gon85]
finds a 2-approximation in O(kn) time, where k is the number of clusters and n the
number of values.

Xiang [Xia97] first proposed using said algorithm on color quantization, by apply-
ing it to a scaled RGB space. We extend it by using the CIELAB color space [Cie],
which is designed to be perceptually uniform. This means that the Euclidean distance
between two points in this space can be used as a metric for the perceptual difference
between the two colors these points represent.

The original algorithm required the user to define a number of clusters k. We added
an alternative stop condition in the form of a maximum error ε. Effectively, this means
we stop splitting clusters if no cluster has a color that is further than a distance ε to
its cluster representative. Since CIELAB is perceptually uniform, this allows the user
to select a maximum perceptual difference between the original and quantized colors.
Picking a sufficiently small distance (e.g, 1.3) thus leads to a perceptually indistinguish-
able quantization.

3.3.2 Normals

As opposed to colors, a large subset of all possible normals usually appears within a
scene. For example, if there is a single sphere in the scene, all possible normals are
represented. Therefore, using an input specific quantization algorithm is not worth-
while for normals. Instead, we opt to use a standard method for quantization and
storing of unit vectors, in the form of octahedron normal vectors (ONVs). ONVs were

Chapter 3. Methods 13

Full precision normals

16-bit normals 12-bit normals 10-bit normals 8-bit normals

Di�erence x10

Including colors

Including colors

Di�erence x10

FIGURE 3.5: Normal quantization. Top row shows shaded result for quantized normals, with
the difference to the ground truth below, multiplied by 10. Third row shows the shaded result
for quantized normals and full colors, with the difference images below. 16-bit normals produce
results perceptually indistinguishable, and even 12-bit normals exhibit high-quality results, es-
pecially when colors are included. For 10-bit normals, the difference becomes noticeable, and

for 8-bit normals it is obvious, yet the colored result still looks reasonable.

FIGURE 3.6: Illustration of how octahedron normal vectors map a 2D unwrapping of an octa-
hedron to a sphere.

Chapter 3. Methods 14

first proposed by Meyer et al. [Mey+10], and a recent survey by Cigolle et al. [Cig+14]
confirmed their effectiveness. ONVs encode unit vectors by mapping them to an oc-
tahedron using the L1-norm (Manhattan distance). The location on the octahedron’s
surface is stored as a (u, v) coordinate on an unwrapping of the octahedron to a square,
as shown in Figure 3.6. This method distributes samples on the sphere in an almost
uniform manner, where the maximum angle between a sample and the correct normal
was shown by Meyer et al. to be:

∆max = arccos

√
2

2 + 9ε2
=

√
2

2
3ε+O(ε3). (3.1)

Where ε is the sample spacing.

3.3.3 Fixed point values

Some values, such as the opacity or reflectivity of a voxel, are usually in the range [0, 1).
We quantize these values by storing them as an unsigned integer:

vq = bv · vmaxc (3.2)

Where v is the original value, vq is the quantized value, and vmax is the number of
samples. Usually vmax is a power of two. This allows for full utilization of log2 vmax

number of bits.

3.4 Data compression

This section deals with compression of the node data table, which is required to store
materials after the geometry-material decoupling. The compression techniques pro-
posed in this chapter exploit several properties of this table. First, there are generally
relatively few unique attributes/materials in a scene, especially after quantization. Sec-
ond, we assume a high spatial coherence to be present in a regular scene (remember
that spatial coherence in the original scene is mostly preserved in the node data table).

We define N to be the length of the node data table and M to be the number of
unique materials.

3.4.1 Tight packing

Tight packing is a trivial method to exploit that there are usually few unique values.
To make sure that we can index all unique values by subsequent indices, we create an
array that contains them exactly once, the material library. We then replace all materials
by pointers to this material library. These pointers thus require only log2M bits.

3.4.2 Repeated-block compression

Repeated-block compression exploits repeated patterns in the scene. The algorithm
works by splitting the node data table into blocks of a fixed size P . All unique blocks
are stored in a dataset, the block library. The node data table is now stored as dN/P e
indices to the block library. For additional compression, tight packing can be used on
the block library.

Chapter 3. Methods 15

+1 +2

+1

DAG SUBTREE BLOCK ARRAY

MATERIAL TABLE

NODE DATA TABLE

PALETTE ARRAY

....

....

o�set

node data o�set

palette o�set

palette pointer

material pointer

N

block pointer

....

combined o�set

o�set

FIGURE 3.7: Illustration of the palette compression data structure and how an entry can be
queried.

3.4.3 Bittree based compression

For standard bittrees, as explained in Section 3.1.2, the geometry information is mostly
duplicated throughout the trees. This is inefficient. When the geometry and materials
are decoupled, however, this redundancy is not present. We therefore hypothesize that
using bittrees to compress the node data table will result in a smaller memory footprint.
For our implementation of bittrees for the node data table, information is only stored
in the leaf-nodes, where the existence of a leaf nodes indicates a 1 or a 0 for the bit
represented by this position. To calculate which child of a node at level L in some
bittree represents the value corresponding to some index i in the node data table, we
use the bits of i located at position:

(D − L) · 3 for the x coordinate of the child.
(D − L) · 3 + 1 for the y coordinate of the child.
(D − L) · 3 + 2 for the z coordinate of the child.

Here, D is the depth of the tree, defined as:

D = log2(N/8) =
log2N

log2 8
=

log2N

3
(3.3)

This preserves some spatial coherency, and is relatively easy to calculate.
We have also experimented with using a dense material DAG to store the node data

table, but this was not worthwhile.

3.4.4 Palette compression

This method aims at exploiting spatial coherence in the scene. We do this by finding
large variably-sized consecutive blocks of data with few unique materials. For each
of these blocks, we create a palette containing its unique materials. The data is stored
as indices into this palette. As the palette is small, these indices use very few bits.
Note that the palette itself is in turn stored as indices to the material library, using tight
packing (Section 3.4.1) for efficiency.

In order to query random entries of the node data table, we use a set of headers.
These headers contain, for each block, the index of the start of the block in the original
node data table, a pointer to the palette for this block, a pointer to the start of this block
in the compressed node data table, and the size of entries in the current block (propor-
tional to the log2 of the palette size). To find the block in which some entry resides, a

Chapter 3. Methods 16

binary search is applied on the headers, using the node table indices (O(logN)). An im-
age summarizing the storage and fetching from our palette compression data structure
is shown in Figure 3.7.

The problem is now to find a set of blocks that covers the whole texture and uses the
smallest amount of memory possible. This, however, is a hard combinatorial problem,
and finding an exact (optimal) solution is not feasible. Instead, we use a two-step algo-
rithm to find an approximation of the optimal solution. Both steps are greedy on the
average size per entry in a block (including palette and header), but build the blocks to
compare in a different manner.

The first step considers all maximum-sized blocks that can be made with palettes
of size 1, 2, 4, and 8 respectively, corresponding to 0, 1, 2 and 3 bits per entry. A
block is maximum-sized if its current palette contains the maximum number of allowed
materials, and adding another entry to the block (either left or right) would require
adding a material to the palette. Finalizing a block means that this block will be reserved
for the final compressed data structure. Therefore, once a section of the node data
table is covered by a finalized block, it cannot be claimed by another block later in the
algorithms execution.

The algorithm starts by finding all maximum-sized blocks with 1 material. These
are finalized in order of descending size, until the following condition no longer holds,
with B the number of bits per entry (0 for blocks with 1 material), and N the number
of entries in the block:

N ·B + [header size] + 2B · [material size] < N · (B + 1). (3.4)

It then continues combining previously found, non-finalized, maximum-sized blocks
with 1 material to find all maximum-sized blocks with 2 materials. These are, again,
finalized in order of descending size until the condition in ?? (with B = 1) no longer
holds, skipping blocks that overlap an already finalized block. The algorithm continues
this pattern for palettes of sizes 4 and 8, corresponding with B = 2 and B = 3 bits.

For added clarity, pseudocode that resolves to the same solution is presented in
the function PROCESSSTEPONE of Algorithm Algorithm 2. Note that the actual imple-
mentation combines found blocks to find bigger maximum-sized blocks, in parallel on
multiple CPU cores. This is much faster than implementing the algorithm in a recursive
manner as shown in the pseudocode.

The second step is more rigorous. It starts at the first entry that is not part of a final-
ized block in the node data table, and finds all maximum sized blocks starting at that
position using 0-8 bits per entry (palette sizes up to 256). Note that these blocks cannot
overlap finalized sections of the node data table. For each of these blocks, it calculates
the average size per entry:

Average size per entry =
N ·B + [header size] + 2B · [material size]

N
. (3.5)

If the average size per entry is bigger than the size of a material, the algorithm is al-
lowed to make blocks that use the full material library (and thus do not have a palette).
These blocks do not require a block-specific palette to be stored, as they use the main
material library, leading to less overhead. The block with the lowest average size per
entry is finalized. This process is repeated until the entire node data table is covered.

Chapter 3. Methods 17

Pseudocode of this step is shown in the function PROCESSSTEPTWO of Algorithm Al-
gorithm 2.

Algorithm 2 Pseudocode for step 1 and 2 of the palette compression algorithm. Note
that the actual implementation is more efficient, but has the same results.
1: function PROCESSSTEPONE(data[i1 · · · i2])
2: if i1 ≥ i2 then return . Empty block
3: end if
4: B ← 0
5: while B ≤ 3 do
6: data[j1 · · · j2]← largest block representable with 2n colors in data[i1 · · · i2]
7: . Heuristically test memory cost to decide if larger palette is beneficial
8: N ← j2 − j1
9: if N ·B+paletteMemoryOverhead(2B) ≤ N · (B + 1) then

10: . Keep this block and apply algorithm recursively
11: FINALIZE(data[j1 · · · j2]) . Finalize creates the palette and entries
12: PROCESSSTEPONE(data[i1 · · · j1 − 1])
13: PROCESSSTEPONE(data[j2 + 1 · · · i2])
14: return
15: else . Expand palette, hence, increase B
16: B++
17: end if
18: end while
19: . If no viable block is claimed this way, use a more rigorous approach: step two
20: return PROCESSSTEPTWO(data[i1 · · · i2])
21: end function
22: function PROCESSSTEPTWO(data[i1 · · · i2])
23: s← i1
24: while i1 ≤ i2 do
25: for B = {0, 1, · · · , 8} do
26: . Find the maximum-sized block with entries that take B bits
27: potentialBlocks[B]← FINDMAXIMUMSIZEDFROMSTART(data[i1, i2], B)
28: end for
29: . Select which block has the minimum average size per entry.
30: bestBlock, avgSize←MINIMUMAVERAGESIZE(potentialBlocks)
31: . If the average entry takes more space then the full material, use that.
32: . Otherwise, finalize the block with the minimum average size per entry.
33: if avgSize < materialCost then
34: e←END(bestBlock) . End returns the position after the last entry
35: FINALIZEPALETTEFORBLOCK(data[i1, e)
36: i1 ← e
37: else
38: e←END(potentialBlocks[8]) . End returns the position after the last entry
39: FINALIZEFULLMATERIAL(data[i1, e])
40: i1 ← e
41: end if
42: end while
43: end function

Chapter 4

Implementation

We have implemented the methods described in Chapter 3 using C++ with OpenGL
and GLSL. This section discusses implementation details, including how the DAG con-
struction works, memory optimizations and rendering.

4.1 DAG/Octree

The elements involved in the compression, such as the octree structure, the quantiza-
tion, the data compression, the voxelization algorithms, and the methods for efficient
tree storage are implemented in a modular fashion. This is realized using the factory
and adapter design patterns ([Gam+94]). Users can use a single string to specify the oc-
tree type, quantization parameters and data compression algorithm. A second string is
used to specify what type of tree storage (naive, pointer sizes per level, pointer entropy
encoding or virtual nodes) should be used.

4.1.1 Construction

The octree can be built from either a triangle mesh or a 3D grid (e.g. medical data).
Construction from a triangle mesh is implemented using depth peeling ([Eve01]),

where the standard extension proposed by [HTG03] is applied. To do this, we first
render the scene normally using an orthogonal projection. This gives us an image with
triangle attributes (e.g., colors, normals) and a depth map. Using the depth map and
the knowledge of the current view (direction, near- and far plane positions), we can
reconstruct a voxel position in the grid. The next time the scene is rendered, a fragment
(i.e., some pixel for some triangle) is discarded if its depth is smaller than or equal to
the depth of the corresponding pixel in the last rendered depth map. This process is
repeated until all fragments in a scene are discarded, and the resulting image is empty.
The first three steps of the depth peeling are illustrated in Figure 4.1. This way, all

FIGURE 4.1: Example showing 3 steps of the depth peeling algorithm (from left to right), and a
screenshot of the final 3D model.

18

Chapter 4. Implementation 19

overlapping triangles get rendered to an image, and consequently converted to voxel
grid coordinates.

To make sure that planes parallel to the view direction are voxelized correctly,
depth-peeling is executed in a forward fashion in the x, y and z direction (i.e., for view
directions {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. If some voxel appears in multiple view directions,
its color is taken from the view in which the normal of triangle from which it originates
has the smallest angle with the current view direction. This is done because triangles
with normals that have a larger angle with the view direction, might sample the color
from a lower resolution mipmap, leading to aliasing artifacts.

Construction from a 3D grid (e.g. medical data) is trivial. We use a transfer function
to convert from data values to materials (color and opacity). When the opacity of a
voxel is below some user-defined threshold, it is not added to the final tree. The octree
is always built at the same resolution as the source grid. If the requested resolution is
lower, the bottom levels of the tree are culled.

To allow for constructing high-resolution trees, for which the original octree does
not fit into RAM, multiple steps are used. In each step, a subtree of the main SVO
is constructed, compressed using the currently selected algorithm, stored on the hard
drive, and cleared from RAM. This allows each subtree to be constructed with all sys-
tem memory available. When all steps are completed, the subtrees are merged into the
final octree.

The merging process is optimized so that if some subtree exists in the original and
the merged tree, it is not copied to the merged tree. Instead, pointers to this equal
subtree are updated when the parent nodes containing them are copied to the merged
tree. This ensures that if the trees to be merged are optimal DAGs, the final tree is also
an optimal DAG, improving performance and reducing memory consumption. Similar
optimizations are applied to the data structures in Section 3.4, where equal palettes (for
palette compression), blocks (for repeated-block compression) or subtrees (for bittree
based compression) are not copied when trees are merged.

4.1.2 Memory storage

Even when using stepped construction, memory usage is an issue, especially during
the final step where all subtrees are merged. We found that often, even 32GB of RAM
is not enough to store the data structure. To this extent, we have implemented several
optimizations that reduce the memory footprint of SVO/DAG nodes.

We found that nodes in a SVO on average have about 4 of the possible 8 children.
Therefore, by using a dynamic array, we save the equivalent of storing 4 pointers each
node, at the expense of storing a pointer to the dynamic array (as it cannot be part of
the fixed-size object).

In order to use all available memory, we compile to a 64-bit architecture. However,
we assume that there are never more than 232 nodes at once in a DAG. Storing all nodes
of a DAG consecutively in memory in a node pool, this assumption allows us to use 32-
bit unsigned integers as child pointers, saving 4 bytes each pointer, for an average of
16 bytes each node. Whenever a node is no longer needed, for example during DAG
compression, it is marked as unused in the node pool. After all nodes that are no longer
needed are marked, the unmarked nodes are moved so that they appear consecutively
from the start of the node pool, occupying the space earlier held by marked nodes. The
node pool is then shrunk to the minimum size required to contain all unmarked nodes,
freeing up resources. Each node stores its index, which is required to reconstruct the
child pointers when the node pool is shuffled, sorted or shifted.

Chapter 4. Implementation 20

Nodes are allowed to insert new items into the node pool. Inserting a node requires
the node pool to be resized, which could require a move operation on the entire node
pool. If an object is moved while it is executing a method, it can no longer safely access
its members, leading to errors. Furthermore, a very large empty block of memory is
not always available, in which case a bad_alloc exception is thrown. To prevent
this and make sure that adding nodes to the node pool never requires moving the
node pool, we created a new type of container, the block vector. The block vector
uses fixed-size blocks of memory that are created once and never moved. Whenever
more memory is required, a new block is assigned. The block vector keeps track of all
assigned blocks. Although this structure is inefficient for many small vectors, it works
well for applications where a single very large vector, such as the node pool, is needed.

In conclusion, a node now takes an average of 32 bytes plus additional payload (e.g.
colors, normals, other attributes):

• 0-32 bytes for child pointers (4 bytes per child, 0-8 children). Nodes have 4 chil-
dren on average, leading to an average size of 16 bytes.
• 8 bytes for the pointer to the child pointer dynamic array. For high-resolution

trees, we often need more than 4GB of memory for storing all child pointers, the
maximum that can be indexed with 32 bits. Therefore, a 64 bit architecture and
pointers of this size are required.
• 4 bytes for the original node index. This is required to restore node pointers when

the node order is changed.
• 2 bytes to indicate which tree this node is a part of. Remember that multiple trees

can be in memory at the same time (for example during merging).
• 1 byte for the childmask.
• 1 byte for the level on which the node resides.

4.2 Renderer

The rendering is implemented using a real-time raycasting algorithm similar to Laine
and Karras [LK10]. A difference with their implementation is that beam optimization
and contour checking are omitted, as these are not relevant to the goal of this thesis.
We use a (triangle-mesh based) skybox to simulate the surrounding environment and
atmosphere. We implemented the algorithm in GLSL, using 3D textures with 1 byte of
information per texel to store the tree structure. The width and height of the textures
are chosen to be a power of two, as this allows the use of simple bitwise operators to
convert a 1D pointer to a 3D texture coordinate. Since some of the required textures are
bigger than 4GB, we need to use pointers larger than 32 bits. This was implemented
using GLSL extension GL_NV_gpu_shader5, which adds support for 64 bit unsigned
integers. Since not all GPUs support 3D texture sizes of over 1024 (for all dimensions),
we split the texture into blocks of size 1024× 1024× 1024 (1GB), which are stored in a
sampler array.

In order to allow a single shader to render all our compression methods, we use the
#define and #ifdef keywords. When the shader is loaded, the correct defines are
set for the current type of tree, making sure that only the appropriate code is executed.

The main lighting features of our renderer are:

• Hard shadows, which are rendered by casting a ray from the hit voxel to the light
source. If this ray intersects geometry, the pixel is in shadow.

• Diffuse lighting for scenes with normals.

Chapter 4. Implementation 21

• Ambient occlusion in two variations:

– Screen-Space Ambient Occlusion (SSAO), which is a relatively cheap post-
processing effect. It works by sampling depth values around each pixel.
These values are compared to the depth of the current pixel. Samples with
a smaller depth (i.e. are closer to the camera), contribute to the occlusion of
the pixel.

– Ray-traced Ambient Occlusion, which is has fewer artifacts, but is more re-
source heavy. From the primary ray-voxel intersection point, a secondary
ray is shot in a direction sampled from a stratified uniform random distri-
bution along a hemisphere around the normal of the intersected voxel. The
rays contribute to the occlusion if they hit another voxel before some set
threshold time. Note that more efficient ambient occlusion approaches and
optimization can be applied, but our implementation is purely for demon-
stration purposes.

• Indirect illumination, which works similarly to ray-traced ambient occlusion.
The main difference being that the voxels hit by secondary rays contribute to the
color of the voxel, instead of the occlusion.

• Reflections. These are calculated by shooting a reflection ray, where the angle
of incidence with the normal is equal to the angle of the reflected ray with the
normal. The (shaded) color of the voxel that the reflected ray hits is combined
with the original voxel color based on the reflectivity of the voxel.

Chapter 5

Results

Our methods are primarily aimed at scenes containing non-solid geometry, which means
that the inside of objects is generally empty. In this context, we obtain datasets by vox-
elizing existing triangle meshes, as explained in Section 4.1.1, which results in sparse
voxel octrees. While our compression schemes are capable of handling any kind of spa-
tially coherent voxel data, in practice, we evaluate our method using color and normal
information, which are crucial for many realistic lighting techniques.

For all graphs shown in this chapter, the original data is available as tables in Ap-
pendix A.

5.1 Compression

In this section, we compare the data usage of our techniques against naive approaches
and existing state-of-the-art techniques. We often report the memory usage per voxel,
where the number of voxels is equal to the number of nodes in an SVO representing
some scene at some specific resolution after our voxelization. Even when comparing to
other techniques, for fairness, we use our obtained number of nodes in the SVO.

The reported compression ratios are calculated as

Compression ratio =
Compressed size

Uncompressed size
. (5.1)

This means that a compression ratio smaller than 1 or 100% means that compression is
achieved.

We compare our results to existing state-of-the-art techniques in Figure 5.1, and
more detailed results are available in Table 5.1, for which we voxelize four different
scenes at multiple resolutions. We consider the citadel scene, which locally contains
detailed geometry; the city scene, that has a more uniform distribution of detail; the San
Miguel scene, which contains highly detailed geometry (the tree and plant foliage); and
the arena scene, which is obtained from real world photographs of the Parisian Arène
de Lutèce using floating scale surface reconstruction [FG14]. This is a representative set
of different navigable scenes, which is the target application of our methods.

The memory usage shown here is for color data. In the top figure, we have applied
our scene-specific quantization (Section 3.3.1) to obtain 12-bit values (4096 colors). This
means that for the standard SVO implementation we have an 8-bit childmask, a 32-bit
pointer, and a 12-bit or 24-bit color value (depending on if quantization is enabled) for
every node – note that the leaf nodes have no pointer. The pointerless SVO contains
only a childmask and the color value per node (20 bits for quantized, 32 bits for full
colors). ESVOs store the same information as a standard colored SVO, with additional

22

Chapter 5. Results 23

0

10

20

30

40

50

60

B
it

s
p

e
r

vo
xe

l

Citadel City

1K3 2K3 4K3 8K3 16K3 32K3 64K3

SVO resolution

0

10

20

30

40

50

60

B
it

s
p

e
r

vo
xe

l

San Miguel

1K3 2K3 4K3 8K3 16K3 32K3 64K3

SVO resolution

Arena

SVO PSVO ESVO Naive Bittrees Decoupled

0

10

20

30

40

50

60

70

80

Bi
ts

 p
er

 v
ox

el

Citadel City

1K3 2K3 4K3 8K3 16K3 32K3 64K3

SVO resolution

0

10

20

30

40

50

60

70

80

Bi
ts

 p
er

 v
ox

el

San Miguel

1K3 2K3 4K3 8K3 16K3 32K3 64K3

SVO resolution

Arena

SVO PSVO Naive Bittrees Decoupled

FIGURE 5.1: Memory usage comparison for several colored scenes at different resolutions.
The top graph shows results for quantized colors (lossy compression), while the bottom graph
shows results for lossless compression. We compare our approach to a standard colored SVO
implementation, pointerless SVOs [SK06] (PSVO) and ESVOs [LK11]. Note that the ESVO im-
plementation was unable to load the arena scene. The naive approach is a standard colored
DAG (Section 3.1.1). Bittrees are implemented as explained in Section 3.1.2. The bittree data is
incomplete due to the trees not fitting into memory. Decoupling corresponds with geometry-
material decoupling of the tree (Section 3.1.3), using palette compression for the attribute data

(Section 3.4.4).

Chapter 5. Results 24

Scene Type Number of voxels
4096 colors Full colors

Size in MB Bits/vox Size in MB Bits/vox

Topology Attributes Topology Attributes

Citadel SVO 4 760 302 085 2669.37 6809.67 2.92643 663.85 3371.94 4.43258
PSVO 4 760 302 085 1295.14 6809.67 1.78529 322.04 3371.94 3.28652
ESVO 4 760 302 085 8174.22 2.28507 - - -
Naive 4 760 302 085 4335.00 0.95754 3859.00 3.44401

Decoupled 4 760 302 085 348.00 2609.01 0.65136 123.00 2824.00 2.62193
City SVO 10 487 130 645 5231.79 15001.96 2.79625 1305.97 7495.34 4.29587

PSVO 10 487 130 645 2592.83 15001.96 1.75925 647.53 7495.34 3.25917
ESVO 10 487 130 645 18505.80 1.85034 - - -
Naive 10 487 130 645 9847.00 0.98485 8018.00 3.21039

Decoupled 10 487 130 645 186.00 5703.01 0.58882 69.00 6280.00 2.54118
San Miguel SVO 14 787 936 227 7219.71 21154.31 2.77403 1800.64 10560.78 4.27347

PSVO 14 787 936 227 3593.51 21154.31 1.75481 896.59 10560.78 3.25469
ESVO 14 787 936 227 10373.70 0.57961 - - -
Naive 14 787 936 227 3896.00 0.27709 3931.0 1.12009

Decoupled 14 787 936 227 316.00 3099.01 0.24215 104.00 3050.00 0.89596
Arena SVO 3 263 192 560 2037.85 4668.03 3.05913 242.63 2332.72 4.56019

PSVO 3 263 192 560 970.41 4668.03 1.81183 509.73 2332.72 3.31204
Naive 3 263 192 560 1920.00 0.61793 2434.00 3.14568

Decoupled 3 263 192 560 591.00 438.01 0.33066 195.00 804.00 1.28477

TABLE 5.1: A table corresponding with the high level data in Figure 5.1. Data for 4096 colors
is at 64K3 resolution, data for full colors is at 32K3 resolution. Bittrees are omitted as high level

data is missing.

contour data. However, as discussed in Section 2.1, to achieve results of a similar qual-
ity to regular colored SVOs, they can not cut off traversal as quickly as for geometry
only.

The naive method refers to the material DAG as proposed in Section 3.1.1. Bittrees
are implemented as explained in Section 3.1.2. This means that, above the leaf nodes,
only exactly matching subtrees are merged. Decoupling refers to a DAG in which the
geometry and material information are decoupled, as proposed in Section 3.1.3. For
compression of the node data table, we applied palette compression, as it works best in
all tested scenes. For all our methods, we have used entropy encoding on the pointers.

Decoupling outperforms all other methods for the tested scenes, specifically in high
resolutions. When comparing to a standard SVO, using 4096 quantized colors we ob-
tain compression ratios of 23.7%, 21.1%, 8.8% and 11.4% for a 64K3 resolution in the
citadel, city, San Miguel and arena scenes respectively. For full colors, we also obtain
significant compression ratios of 51.0%, 59.1%, 21.0% and 28.2% for a 32K3 resolution.
For this reason, we will evaluate this method in more detail.

5.1.1 Efficient tree storage

To evaluate the usefulness of our techniques to store the same tree more efficiently, as
proposed in Section 3.2, we compare the memory consumption per voxel for a standard
geometry DAG, and for a DAG that includes our offsets, enabling geometry-material
decoupling. We compare the original approach by Kämpe et al., which uses 32 bits per
pointer, to the techniques proposed by us; level precise pointer (and offset) sizes, using
entropy encoding on the pointers, and using virtual nodes. Figure 5.2 shows these
comparisons for the same four scenes. A table summarizing the compression ratio’s
at 64K3 resolution when comparing to the original DAG implementation is shown in
Table 5.2.

We can conclude that our approach for topology encoding is efficient, reducing the
memory requirements by 25-50% compared to the original DAG, depending on the
resolution and method used. Moreover, despite the overhead that is caused by our ge-
ometry decoupling, using entropy encoding, we are able to encode the topology of vox-
elized scenes including offsets with a compression ratio of 91.1% (citadel), 89.9% (city),

Chapter 5. Results 25

4K3 8K3 16K3 32K3 64K3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Bi
ts

 p
er

 v
ox

el
Citadel

4K3 8K3 16K3 32K3 64K3
0.0

0.2

0.4

0.6

0.8

1.0 City

4K3 8K3 16K3 32K3 64K3

SVO resolution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bi
ts

 p
er

 v
ox

el

San Miguel

4K3 8K3 16K3 32K3 64K3

SVO resolution

0

1

2

3

4

5

6

7
Arena

Original Per level Entropy Virtual

(A) Memory usage for a geometry DAG

4K3 8K3 16K3 32K3 64K3
0

1

2

3

4

5

6

Bi
ts

 p
er

 v
ox

el

Citadel

4K3 8K3 16K3 32K3 64K3
0.0

0.5

1.0

1.5
City

4K3 8K3 16K3 32K3 64K3

SVO resolution

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Bi
ts

 p
er

 v
ox

el

San Miguel

4K3 8K3 16K3 32K3 64K3

SVO resolution

0

2

4

6

8

10

12

Arena

Geometry With offsets Per level Entropy Virtual

(B) Memory usage for a geometry DAG includ-
ing offsets

FIGURE 5.2: Memory usage comparison for the pointer compression schemes, used for efficient
tree storage, at different resolutions. Original refers to the naive method of using 32 bytes for
offsets and pointers (Section 3.2.1). Per level refers to adapting the pointer and offset sizes to
the level the node is in (Section 3.2.2). Entropy refers to using entropy encoding on the pointers
(Section 3.2.3). Virtual refers to using virtual nodes to reduce the number of pointers in higher
levels in the tree (Section 3.2.4). For both entropy encoding and virtual nodes, offset sizes are

defined per level.

79.8% (San Miguel), and 80.0% (arena) when compared to the original DAG without
offsets. In other words, our efficient tree storage can amortize the extra data required
for geometry-material decoupling.

5.1.2 Data quantization

To empirically evaluate the quality of our quantization algorithms, we assert the mean
and maximum errors. Since our color quantization is scene-dependent, we evaluate
the introduced error on several voxel scenes with a 32K3 resolution. The results are
presented in Table 5.3 in both RGB-space and as ∆E values. The ∆E values are calcu-
lated in accordance with the 1994 standard as formed by the CIE institute [Cie], using
kL = 1, K1 = 0.045 and K2 = 0.015 and D65 as the reference white. These are standard
values for the graphics industry [KM10].

By definition, a ∆E value smaller than 1 cannot be perceived by a human observer.
A value smaller than 2 corresponds to a minimal color difference. From the table, we
see that using 16K colors leads to an average error that is not perceivable to human
observers, and a maximum error that is hardly observable. Using 4096 colors does
introduce perceivable errors in some areas, but it is still hardly noticeable to a human
observer.

Chapter 5. Results 26

Scene
Original Per level Entropy Virtual

Bits/Voxel Bits Compr. Bits Compr. Bits Compr.

Citadel 0.6732 0.5181 77.0% 0.4071 60.5% 0.4793 71.2%
City 0.1656 0.1288 77.8% 0.0976 58.9% 0.1192 72.0%

San Miguel 0.2246 0.1696 75.5% 0.1174 52.3% 0.1543 68.7%
Arena 1.8972 1.5990 84.2% 1.0848 57.2% 1.4781 77.9%

Citadel (+Offsets) 1.2217 0.7648 62.6% 0.6132 50.2% 0.7859 64.3%
City (+Offsets) 0.2995 0.1800 60.1% 0.1488 49.7% 0.1864 62.2%

San Miguel (+Offsets) 0.4077 0.2314 56.8% 0.1793 44.0% 0.2343 57.5%
Arena (+Offsets) 3.4497 2.0359 59.0% 1.5193 44.0% 2.0385 59.1%

TABLE 5.2: Table showing the average bits used per voxel when storing the topology in a DAG,
and the compression ratio’s comparing the original storage method proposed by Kämpe et al.
to our proposed methods. All numbers are for the scenes at 64K3 resolution. The last four rows

show the bits per voxel if offsets are included.

It should be noted, however, that banding might occur in some cases: although
the maximum color difference between the original and quantized color is too small
to be visible, the difference between different quantized colors is not. Therefore, if the
original colors are smoothly varying in the scene, two noticeably different quantized
colors might appear next to each other, which could cause banding artifacts. In practice,
however, we found that using 4K colors is generally enough to prevent this.

The theoretical error for the normals is presented in ??. To verify this result, we pick
random samples uniformly on the surface of a unit sphere. These values are then stored
as octahedral normal vector, and their stored value is compared to the original random
sample. This yields the following mean/maximum errors (in degrees): 5.499/15.191
(10-bit), 2.711/7.471 (12-bit), 0.672/1.879 (16-bit), 0.041/0.117 (24-bit) and 0.007/0.044
(32-bit). Depending on the application, one might choose different bit depths for the
normals. For diffuse lighting, 10-12 bits should be sufficient, especially for a scene
with diverse colors. However, for smooth reflections or specularities, more detail is
required.

5.1.3 Data compression

To evaluate our data compression techniques, a comparison is shown in Figure 5.3.
We see that bittree-based compression is not beneficial: it never outperforms a trivial
method such as tight packing. Repeated-block compression appears to be converging
towards palette-based compression, but never outperforms it. Tight-packing is fast and
has a constant performance, which is beneficial. However, this scheme does not exploit
spatial coherence in any way. We conclude that palette based compression gives the
best compression in all tested scenario’s. Therefore, the remainder of this section will
focus on the performance of the palette compression in different scenario’s.

We evaluate the effectiveness of the palette compression technique when the voxels
store normals rather than color data. In Figure 5.4, the memory usage when encoding
normals is compared to that for colors for the citadel scene. We can conclude that even
16-bit normals require less memory than the colors, even though the colors need only
12 bits. This is due to the fact that often normals exhibit even more spatial coherence
than colors. For the 16K3 resolution, we obtain memory usage for normals of 61.4% (16
bits), 42.6% (12 bits), 34.9% (10 bits) and 33.2% (8 bits) of the colors’ memory usage (12
bits). We can conclude that it is relatively cheap to store normals.

Chapter 5. Results 27

Scene # of colors
RGB error ∆E

Mean Max Mean Max

Citadel

256 (7.476, 6.229, 7.584) (36, 28, 30) 3.5516 10.5425
1024 (4.520, 3.726, 4.709) (13, 11, 37) 2.1288 6.8747
4096 (2.735, 2.230, 2.899) (8, 7, 24) 1.2960 3.6978

16384 (1.628, 1.307, 1.749) (4, 4, 19) 0.7785 2.2813

City

256 (7.261, 5.800, 6.702) (28, 20, 25) 3.6826 9.9246
1024 (4.367, 3.476, 4.051) (18, 15, 16) 2.2292 6.0236
4096 (2.633, 2.080, 2.434) (13, 9, 9) 1.3503 3.9748

16384 (1.577, 1.231, 1.459) (13, 2, 3) 0.8119 2.1581

San Miguel

256 (9.203, 7.840, 9.044) (36, 27, 40) 4.4027 12.4536
1024 (5.546, 4.641, 5.399) (23, 18, 24) 2.6400 7.8288
4096 (3.393, 2.805, 3.290) (16, 12, 14) 1.6054 4.8918

16384 (2.066, 1.694, 2.001) (7, 7, 12) 0.9817 2.6535

Arena

256 (8.659, 6.873, 7.891) (61, 14, 29) 4.1277 11.5306
1024 (5.167, 4.091, 4.719) (52, 10, 6) 2.4712 7.2108
4096 (3.084, 2.414, 2.793) (37, 2, 2) 1.4746 3.9748

16384 (1.838, 1.421, 1.657) (16, 3, 4) 0.8846 2.3797

TABLE 5.3: Differences between original and quantized values as a result of our color quantiza-
tion, presented as the absolute errors in RGB-space and as ∆E values for a set of voxel scenes

at 32K3 resolution.

0

5

10

15

20

25

30

Bi
ts

 p
er

 v
ox

el

Citadel City

1K3 2K3 4K3 8K3 16K3 32K3

SVO resolution

0

5

10

15

20

25

30

Bi
ts

 p
er

 v
ox

el

San Miguel

1K3 2K3 4K3 8K3 16K3 32K3

SVO resolution

Arena

Tight packing Repeated-block Bittree-based Palette

FIGURE 5.3: Comparison of the amount of data required to store the node data table when
the techniques proposed in Section 3.4 are applied to our scenes with 4096 quantized colors.
For repeated-block compression, blocks of size 8 are used, as empirical testing shows that this
is optimal. Missing data is caused by faulty implementations for stepped construction. These
problems were not resolved, as palette-based compression clearly outperforms the faulty meth-

ods.

Chapter 5. Results 28

1K3 2K3 4K3 8K3 16K3

SVO resolution

0

5

10

15

20

25

30

Bi
ts

 p
er

 v
ox

el

12-bit colors
16-bit normals
12-bit normals
10-bit normals
8-bit normals

FIGURE 5.4: Memory usage comparison for normal and color encoding in the citadel scene at
multiple resolutions. We consider 16-bit, 12-bit, 10-bit and 8-bit normals.

1K3 2K3 4K3
8K3 16K3 32K3 64K3

SVO resolution

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%
120.0%
140.0%
160.0%
180.0%

Co
m

pr
es

si
on

 ra
tio

Citadel
City

San Miguel
Arena

1K3 2K3 4K3
8K3 16K3 32K3 64K3

SVO resolution

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Co
m

pr
es

si
on

 ra
tio

Citadel
City

San Miguel
Arena

FIGURE 5.5: Compression ratios using our palette approach at different resolutions, using full
colors (left) and 4096 quantized colors (right).

As it is interesting to see how our method behaves for larger voxel data, we also
encode colors, normals, and reflectance information together for a special night-time
version of the city scene. Using 4096 colors (12 bits), 10-bit normals, and 2 bits of
reflectance information, we obtain a total memory footprint of 1492MB, compared to
1186MB for just encoding 4096 colors. This means that storing all this additional infor-
mation generates a 25.8% overhead, while the initial voxel data is 250% larger. We can
attribute this to the fact that a material consisting of similar colors often has the same
reflectance value, and the normal and color values also correlate in many cases (e.g., a
nearly uniformly colored wall).

The effectiveness of our palette compression scheme on color data for the same four
scenes can be assessed in Figure 5.5. This data is based solely on the attribute data (i.e.
the size of the node data table). Geometry is not included.

For quantized colors, the palette compression is always worthwhile, leading to
compression ratios between 5% and 90%, depending on the scene and resolution. When
using full colors, the palette compression successfully reduces the required size if the
scene resolution is sufficiently high. We can conclude that for all scenes, using palettes
is worthwhile. Using quantization to 12-bit colors, we achieve compression ratios of
19.2% (citadel), 19.0% (city), 7.3% (San Miguel), and 4.7% (arena) for 64K3 resolutions.
Without quantization, we get compression ratios of 83.8% (citadel), 83.8% (city), 28.9%
(San Miguel) and 34.5% (arena) for 32K3 resolutions. Remember that this does not yet
include the compression achieved the DAG conversion of the geometry.

Chapter 5. Results 29

100

101

102

103

104

Bu
ild

 ti
m

e
(s

ec
on

ds
) Citadel City

5123 1K3 2K3 4K3
8K3 16K3

SVO resolution

100

101

102

103

104

Bu
ild

 ti
m

e
(s

ec
on

ds
) San Miguel

5123 1K3 2K3 4K3
8K3 16K3

SVO resolution

Arena

Colored DAG Bittree Decoupled with palette compression Decoupled with tight packing

FIGURE 5.6: Complete construction times for the citadel, city, San Miguel and arena scenes
at different resolutions and using different compression methods. All scenes were build us-
ing level-precise pointers, and color quantization to 4096 colors. The presented times are for
complete construction, and thus include triangle scene loading and voxelization, DAG com-

pression, color quantization, node data table compression

5.2 Construction times

Our techniques are aimed at offline construction. Therefore construction times are of
lesser importance. With this in mind, we only optimized the code far enough so that
high-resolution trees (e.g. 128K3) can be generated in a day on commodity hardware.
Further optimization is possible, but was deemed unnecessary for this research. Build
times up to 16K3 are presented in Figure 5.6.

As can be seen, buildtimes scale approximately linearly to the number of nodes in
the tree (note the logarithmic axis). A discontinuity in the linearity of the construction
times is visible going from 8K3 to 16K3, as this is where construction starts happening
in steps, which requires storing and retrieving trees from disk. There is a lot of varia-
tion in the build times. In general, a standard colored DAG is quickest to build, while
decoupling with palette compression takes the longest. A colored DAG representing
the citadel scene at a resolution of 16K3 takes 10.8 minutes to construct, whereas con-
structing this scene using palette compression takes 64.5 minutes, or little over an hour.

Also notice that the difference between using tight packing and palette compression
for the node data table is significant. At 14 levels for the city scene, for example, using
palette compression took 5.43 times as long as using tight packing. Most of this time
is required for the algorithm that finds maximum-sized blocks, which has a theoretical
complexity of O(N2). Although this complexity is never reached in practice, it does
illustrate the cost of this algorithm. The runtime is roughly proportional to the number
and length of maximum sized blocks, which is significantly different per scene. The
city scene, for example, has a large amount of water, which contains just a few shades
of blue, allowing for many, large, maximum-sized blocks to be created with relatively
small palettes; in fact, the current implementation finds a maximum sized block for
every discontinuity in the node data table. This means that for every change in color in

Chapter 5. Results 30

500 1000 1500 2000 2500

Frame number

0

20

40

60

80

100

120

140

Fr
am

et
im

e
(m

s)

Colored DAG Decoupled Level-Precise pointers Pointer entropy encoding

FIGURE 5.7: FPS while navigating through the citadel scene at a 32K3 resolution. Timings were
obtained by raycasting in full HD.

the water, a new maximum-sized block containing the rest of the water is constructed.
In contrast, the arena scene has a wider range of varying colors, which often appear in
relative large blocks with the same color. This causes many blocks with 1 or 2 colors
to be finalized early on, leaving much less data for analysis later on in the algorithm
execution, and even making palette compression faster than tight packing.

5.3 Rendering performance

Since our main contributions lie within the realm of SVO compression, our rendering
algorithm is not highly optimized; we simply cast rays from the camera and traverse
the SVO using a standard stack-based approach to find the intersection with the first
voxel that projects to an area smaller than a single pixel. Still, to demonstrate that our
data structure is capable of real-time performance, we show the frame times for nav-
igating through the citadel scene in full HD, at a 32K3 SVO resolution, in Figure 5.7.
The timings were obtained using an NVIDIA Titan. We further assess the performance
impact of our compression schemes by comparing the frame times when palette com-
pression, pointer and offset sizes per level or pointer entropy encoding are enabled.
We can conclude that pointer and offset sizes per level only have a small impact on the
performance, while yielding significant compression rates. The entropy encoding on
the other hand has a bigger influence; still, with a more optimized rendering algorithm
it may be useful to reduce the memory footprint. Finally, our palettes also have little
impact on the rendering performance, yet greatly improve the compression.

Chapter 5. Results 31

FIGURE 5.8: Several applications of our compressed SVO. From left to right: color bleeding in
the CrySponza scene, at an SVO resolution of 4K3, using 16 samples per pixel, and secondary
and tertiary ray tracing at a 5123 resolution; encoding reflectance information in materials for
the city scene, rendered at a resolution of 32K3; rendering of a dense volumetric dataset of a

bonsai tree at a 5123 resolution.

5.4 Applications

To demonstrate the usefulness of our approach, and using SVOs in general for storing
3D scenes, we showcase several applications. Like in the original DAG, we are able
to obtain high-resolution hard shadows for the whole scene. For this, we shoot a sec-
ondary ray from a surface point hit by a primary ray, to the light source, resolving the
visibility by traversing the SVO.

Now that we have colors and normals, however, we can look into more interesting
applications. As showcased in the left image of Figure 5.8, we have implemented a
simple approach to color bleeding through single-bounce global illumination. We shoot
multiple secondary rays from a surface point hit by a primary ray and obtain the color
of the first intersecting voxels. We then shoot a tertiary ray from this voxel towards
the light source to determine if it is in shadow. The secondary rays are obtained by
stratified sampling of the hemisphere, which means they are uniformly distributed,
but contain a random offset. We further trace the secondary and tertiary rays at a
lower SVO resolution, both to increase performance and decrease noise. While at full
HD, we lose real-time performance, we still attain interactive rates for the setup shown
in Figure 5.8. Note that our implementation is highly unoptimized and only serves to
showcase an application of our SVO.

Besides colors and normals, we can also store more advanced material information
in the SVO. As mentioned before, we have also included reflectance information for
a night-time version of the city scene, results of which are shown in the center image
of Figure 5.8. Besides the shadow rays, we now also shoot a secondary ray from the
hit surface point in the reflected direction of the primary ray, and obtain the color of
the first intersection voxel. In the case of Figure 5.8, we have added reflectance to the
water, as well as to the roads, to make them look wet. As the performance overhead of
shooting a single secondary ray is relatively small, we maintain real-time frame rates
in full HD for the setup shown in Figure 5.8.

Since our method, like the DAG, exploits similarity as well as sparsity, we can po-
tentially compress a greater variety of data. We aim at sparse navigable scenes, but
as shown in the right image in Figure 5.8, our approach is also able to handle dense
data. These datasets, however, are often available at a relatively low resolution (5123

in this case) which decreases the compressibility. Still, for this data, we are able to
obtain a compression rate of 68.4% without data quantization. Note that the density
values in the data are first modulated by a transfer function, as is often done in med-
ical visualization. As a result, our compression roughly corresponds to, for instance,

Chapter 5. Results 32

FIGURE 5.9: Encoding geometry at a different precision than colors. Left: SVO with 16 levels.
Right: geometry is stored with 17 levels, of which only the first 16 are colored.

lossless compression of medical data as reported by Guthe et al. We have also applied
our compression scheme, with a transfer function that removes the air and converts
every opacity value to a unique color, to the christmas tree dataset presented in Guthe
et al. [Gut+02], and obtain a compression ratio of about 10%.

As mentioned earlier, our geometry-material decoupling method allows us to use a
different precision for the separate parts. This is useful for when the voxel data can be
more coarsely encoded than the topology itself. Taking for instance the citadel scene of
Figure 1.1, we can encode the geometry up to 17 SVO levels (voxel resolution 131, 0723),
while keeping the same resolution for the colors. This results in 19.2 billion nodes, 5.48
billion of which are colored, which corresponds to a total memory footprint of 3.75GB,
which still allows for GPU storage. A visual comparison is shown in Figure 5.9.

Chapter 6

Conclusions

In this thesis, we present several techniques that allow for compression of SVOs. These
techniques are all based on the DAG compression by Kämpe et al., yet allow for storing
voxel attribute data. We apply our methods to color, normal, and reflectance informa-
tion, but they are in no way limited to these attributes.

In short, we have three main compression schemes. The naive approach takes the
standard DAG algorithm, but only allows merging subtrees when their attribute data
and topology are identical. The bittree approach splits the material information in sev-
eral parts (bits). For each of these bits we create an SVO. These SVOs are then merged
into a single DAG, leading to compression. The decoupling approach stores the topol-
ogy and attribute information separately. The topology is stored as a DAG in which
offsets are added to all edges in the DAG. Summing these offsets from the root to a
node allows us to find a unique index for each node in the original SVO, while main-
taining the full DAG compression for the geometry. A separate node data table then
stores the attribute information.

In addition to these schemes, we present several methods to reduce the data used
to store pointers in the DAG. The most successful method is the use of entropy encod-
ing on the pointers, achieving compression ratios of around 50% for all tested scenes. A
downside of entropy encoding is that some additional operations are necessary to fetch
a specific pointer, slowing down the rendering process. If, besides compression, per-
formance is important, we recommend a simpler method, such as level-precise point-
ers. This effectively means that smaller pointers are used for levels that contain fewer
nodes. We find that level-precise pointers lead to a compression ratio of about 75%
compared to a standard DAG with 32-bit pointers, while only having a minor impact
on rendering performance.

To allow for much better, but lossy compression, we introduce specialized quanti-
zation schemes for colors and normals. Our color quantization is scene specific, and is
done in CIELAB-space. Using a perceptually (almost) uniform color space allows us
to find quantized values with a minimal perceptual difference to their original values.
This allows us to use 12 or 14-bit colors for most scenes without introducing disturbing
quantization artefacts.

Arguably the most important element for our decoupling scheme is the method
used for compression of the node data table. To this extent, we propose several al-
gorithms, the most fruitful being palette compression. It uses variably-sized blocks,
where each block only uses a small subset of all available materials. This allows the
content of the block to be stored with very few bits per entry, leading to a significant
compression.

All our methods provide compression compared to a standard SVO, and most
techniques also improve over a pointerless SVO, especially for high resolution scenes.
In general, using geometry-material decoupling with palette compression on a set of

33

Chapter 6. Conclusions 34

quantized materials is most optimal, leading to compression ratios of between 8% and
25% for high resolution scenes. We obtain a minimal impact on rendering performance
when using per-level pointer sizes.

Our compression schemes, for the first time, allow resolutions high enough for nav-
igable voxel scenes, where voxels are not clearly visible, to be stored entirely in-core.
Furthermore, rendering is possible in real-time, even allowing secondary rays to be cast
for visibility queries. Complex lighting simulations, such as global illumination and re-
flections, can be performed in our DAG representation on commodity hardware at in-
teractive framerates. The rendering performance of SVOs (and in extension DAGs) is,
as opposed to triangle meshes, only minimally influenced by scene complexity. These
properties all cater towards recent strides in the graphics industry for more detailed
scenes and realistic lighting.

As the memory and speed of GPUs keep increasing, we believe that the use of voxel-
based scene representations will increase. The techniques presented in this thesis will
help accommodate with the memory requirements inherently present in these scenes.
This, combined with novelty and effectiveness of our approaches should make them a
valuable contribution to computer graphics research and the graphics industry.

6.0.1 Future work

For future work, it will be interesting to look at more advanced materials properties,
like BRDFs encoded by spherical harmonics or transparency values. Furthermore, a
lossy compression scheme that acts directly on the node data table could improve com-
pression and reduce the need for prior quantization.

In addition, we believe that bittrees have not been fully explored. It might be pos-
sible to find a fast(er) approximation algorithm for merging subtrees when geometry
is the only difference between them. It is also possible to merge subtrees on different
levels, or even in a cyclic manner, losing the directionality of the DAG.

Finally, it might be interesting to explore real-time modifications to the compressed
scene representation, allowing the user to add or remove voxels at will. This opens up
possibilities for more applications, such as games with destructible environments or
Minecraft-like gameplay.

On a more direct note, the performance can be improved for both the construction
and rendering. For construction, a more efficient voxelization algorithm and caching
mechanics can be used. In addition, memory assignment could be improved so that
nodes do not have to move their child pointer array when a child is added or removed.
For palette compression, it might be possible to detect regions with low and high varia-
tions, and finalize or discard those early on. This would reduce the amount of potential
blocks that need to be analyzed. For rendering, one could incorporate beam optimiza-
tion as proposed by Laine and Karras [LK10], experiment with aligning the nodes more
optimally for caching purposes, use a short stack approach for SVO raycasting, exploit
temporal coherency, and apply more general code optimizations.

In terms of applications, we think that current voxel-based games could benefit
from a ray-casting approach. To this extent, it might be interesting to see the reactions of
the Minecraft community if an “infinite” view distance renderer for their voxel worlds
exists. This can be achieved by making the scene more sparse by culling invisible parts
of the geometry (e.g. blocks that are not adjacent to see-through voxels), compressing
this using our algorithms, and storing the entire world in-core.

Appendix A

Graph data tables

This appendix contains tables with the data as they are plotted in the graphs in Chap-
ter 5.

A.1 Figure 5.1

2563 5123 1K3 2K3 4K3 8K3 16K3 32K3 64K3

Citadel 61 993 267 364 1 097 845 4 466 097 18 074 432 72 882 754 337 682 491 1 178 579 026 4 760 302 085
City 126 057 585 902 2 439 153 9 991 421 40 475 047 172 606 633 653 865 387 2 619 812 415 10 487 130 645

San Miguel 170 011 804 984 3 354 047 13 811 437 56 116 758 227 236 444 918 640 807 3 691 260 389 14 787 936 227
Arena 43 853 185 620 768 481 3 130 882 12 641 095 50 791 525 203 605 274 815 345 488 3 263 192 560

TABLE A.1: Table showing the number of voxels in our scenes at different resolutions.

A.1.1 4096 Quantized colors

SVO PSVO ESVO Naive Bittrees Decoupled

2563 2.91242 1.78248 17.70729 6.54213 50.94149
5123 2.90404 1.78081 11.18697 4.10574 5.98574 11.81167
1K3 2.91681 1.78336 10.27110 3.04445 6.38433 3.83168
2K3 2.92334 1.78467 8.05190 2.62667 6.01026 1.88104
4K3 2.92872 1.78574 6.82250 2.24806 5.32228 1.33501
8K3 2.93123 1.78625 6.02758 1.92428 4.68001 1.16553

16K3 2.82673 1.76535 4.38263 1.34145 3.24461 0.87571
32K3 2.93258 1.78652 3.67990 1.21443 3.20329 0.81052
64K3 2.92643 1.78529 2.28507 0.95754 0.65136

TABLE A.2: Table showing the number of bytes per voxel used to store the citadel scene using
4096 quantized colors at different resolutions.

SVO PSVO ESVO Naive Bittrees Decoupled

2563 2.76748 1.75350 9.74220 8.70819 3.70963 25.05229
5123 2.73617 1.74723 9.08613 2.12524 3.18045 5.39001
1K3 2.76780 1.75356 7.16826 1.80018 3.92757 2.15451
2K3 2.78235 1.75647 5.77169 1.54798 3.46486 1.15565
4K3 2.78897 1.75779 5.11713 1.36658 3.09647 1.01067
8K3 2.75715 1.75143 4.42716 1.06160 2.57695 0.75944

16K3 2.79467 1.75893 4.18338 0.96540 2.57999 0.74572
32K3 2.79587 1.75917 3.14205 0.84653 2.20658 0.66243
64K3 2.79625 1.75925 1.85034 0.98485 0.58882

TABLE A.3: Table showing the number of bytes per voxel used to store the city scene using 4096
quantized colors at different resolutions.

35

Appendix A. Graph data tables 36

SVO PSVO ESVO Naive Bittrees Decoupled

2563 2.65863 1.73173 9.56425 6.45681 2.43077 18.57536
5123 2.71091 1.74218 9.06342 1.36366 1.90636 3.92308
1K3 2.75232 1.75046 7.38110 0.99651 1.99660 1.25418
2K3 2.77142 1.75428 3.57334 0.81615 1.93742 0.53234
4K3 2.77420 1.75484 2.21780 0.68670 1.66380 0.48604
8K3 2.77081 1.75416 1.53016 0.53989 1.55527 0.38306

16K3 2.77262 1.75452 1.10972 0.43147 1.27142 0.31167
32K3 2.77347 1.75469 0.80886 0.27782 0.79104 0.29232
64K3 2.77403 1.75481 0.57961 0.27709 0.24215

TABLE A.4: Table showing the number of bytes per voxel used to store the San Miguel scene
using 4096 quantized colors at different resolutions.

SVO PSVO Naive Bittrees Decoupled

2563 3.11711 1.82342 25.03199 7.79662 72.01368
5123 3.09759 1.81952 6.70824 6.76482 17.01334
1K3 3.08159 1.81632 5.11680 6.28396 4.10943
2K3 3.07290 1.81458 3.26541 5.10847 2.01341
4K3 3.06805 1.81361 2.21891 3.57748 1.24522
8K3 3.06471 1.81294 1.61029 2.28451 0.88796

16K3 3.06198 1.81240 1.13816 1.45057 0.62322
32K3 3.06019 1.81204 0.81407 0.87598 0.46561
64K3 3.05913 1.81183 0.61793 0.33066

TABLE A.5: Table showing the number of bytes per voxel used to store the arena scene using
4096 quantized colors at different resolutions.

A.1.2 Full colors

SVO PSVO Naive Bittrees Decoupled

2563 4.41242 3.28248 17.70729 7.40003 51.53614
5123 4.40404 3.28081 4.10574 7.25186 11.94955
1K3 4.41681 3.28336 3.99957 8.45897 3.99957
2K3 4.42334 3.28467 3.69788 8.74189 2.99352
4K3 4.42872 3.28574 3.46636 8.46970 2.88621
8K3 4.43123 3.28625 3.48169 8.01566 2.89182

16K3 4.32673 3.26535 3.10832 6.86636 2.48417
32K3 4.43258 3.28652 3.44401 2.62193
64K3 4.42643 3.28529 2.30672

TABLE A.6: Table showing the number of bytes per voxel used to store the citadel scene using
the original colors (lossless compression) at different resolutions.

Appendix A. Graph data tables 37

SVO PSVO Naive Bittrees Decoupled

2563 4.26748 3.25350 8.70819 4.92509 25.34473
5123 4.23617 3.24723 3.91492 4.94244 5.70460
1K3 4.26780 3.25356 2.23007 5.89901 2.65997
2K3 4.28235 3.25647 2.38756 6.01353 2.17766
4K3 4.28897 3.25779 2.32513 5.46139 2.11787
8K3 4.25715 3.25143 2.42998 4.77169 2.15053

16K3 4.29467 3.25893 2.76310 2.45520
32K3 4.29587 3.25917 3.21039 2.54118
64K3 4.29625 3.25925

TABLE A.7: Table showing the number of bytes per voxel used to store the city scene using the
original colors (lossless compression) at different resolutions.

SVO PSVO Naive Bittrees Decoupled

2563 4.15863 3.23173 6.45681 3.55514 18.79220
5123 4.21091 3.24218 2.84945 3.94573 4.15205
1K3 4.25232 3.25046 2.11025 4.72368 1.79762
2K3 4.27142 3.25428 1.72720 5.32426 1.19575
4K3 4.27420 3.25484 1.49485 4.95197 1.06508
8K3 4.27081 3.25416 1.27359 4.21279 0.96904

16K3 4.27262 3.25452 1.18025 0.95767
32K3 4.27347 3.25469 1.12009 0.89596
64K3 4.27403 3.25481

TABLE A.8: Table showing the number of bytes per voxel used to store the San Miguel scene
using the original colors (lossless compression) at different resolutions.

SVO PSVO Naive Bittrees Decoupled

2563 4.61711 3.32342 28.39450 14.23348 76.21682
5123 4.59759 3.31952 15.53488 13.84110 21.18392
1K3 4.58159 3.31632 6.48127 11.43029 6.48127
2K3 4.57290 3.31458 6.02845 10.98383 4.35388
4K3 4.56805 3.31361 4.81109 9.10832 3.06914
8K3 4.56471 3.31294 4.19087 7.36167 2.31221

16K3 4.56198 3.31240 3.69773 5.48944 1.70466
32K3 4.56019 3.31204 3.14568 1.28477
64K3 4.55913 3.31183 0.90327

TABLE A.9: Table showing the number of bytes per voxel used to store the arena scene using
the original colors (lossless compression) at different resolutions.

Appendix A. Graph data tables 38

A.2 Figure 5.2

A.2.1 Geometry DAG

Original Per level Entropy Virtual

2563 135.31541 135.31541 135.31541 135.31541
5123 31.37523 31.37523 31.37523 31.37523
1K3 7.64098 7.64098 7.64098 7.64098
2K3 5.63486 3.75657 1.87829 3.75657
4K3 3.24880 1.85646 1.39234 1.85646
8K3 2.18685 1.38117 1.15097 1.26607

16K3 1.66439 1.11788 0.91914 1.04335
32K3 1.03205 0.75446 0.59076 0.70464
64K3 0.67316 0.51809 0.40707 0.47932

TABLE A.10: Table showing the number of bits required per voxel to store a geometry dag of
the citadel scene at different resolutions.

Original Per level Entropy Virtual

2563 66.54615 66.54615 66.54615 66.54615
5123 14.31743 14.31743 14.31743 14.31743
1K3 3.43915 3.43915 3.43915 3.43915
2K3 1.67916 1.67916 0.83958 0.83958
4K3 1.03627 0.62176 0.41451 0.62176
8K3 0.72899 0.48600 0.38880 0.43740

16K3 0.39771 0.25659 0.20527 0.24376
32K3 0.25936 0.19212 0.14409 0.17931
64K3 0.16558 0.12878 0.09759 0.11918

TABLE A.11: Table showing the number of bits required per voxel to store a geometry dag of
the city scene at different resolutions.

Original Per level Entropy Virtual

2563 49.34156 49.34156 49.34156 49.34156
5123 10.42084 10.42084 10.42084 10.42084
1K3 2.50104 2.50104 2.50104 2.50104
2K3 1.21473 0.60737 0.60737 0.60737
4K3 0.74742 0.44845 0.29897 0.44845
8K3 0.59065 0.33224 0.25841 0.29533

16K3 0.42005 0.23742 0.20089 0.21916
32K3 0.30907 0.22044 0.15453 0.19771
64K3 0.22464 0.16961 0.11742 0.15429

TABLE A.12: Table showing the number of bits required per voxel to store a geometry dag of
the San Miguel scene at different resolutions.

Appendix A. Graph data tables 39

Original Per level Entropy Virtual

2563 191.28926 191.28926 191.28926 191.28926
5123 45.19237 45.19237 45.19237 45.19237
1K3 10.91583 10.91583 10.91583 10.91583
2K3 10.71725 5.35862 5.35862 5.35862
4K3 6.63598 3.98159 2.65439 3.31799
8K3 4.62441 2.80768 2.31221 2.47736

16K3 3.50203 2.30722 1.85402 2.01882
32K3 2.66470 1.87249 1.45067 1.64615
64K3 1.89716 1.59896 1.08482 1.47814

TABLE A.13: Table showing the number of bits required per voxel to store a geometry dag of
the arena scene at different resolutions.

A.2.2 Topology and offsets

Geometry With offsets Per level Entropy Virtual

2563 135.31541 15.97342 135.31541 135.31541 135.31541
5123 31.37523 12.55086 31.37523 31.37523 31.37523
1K3 7.64098 9.91242 7.64098 7.64098 7.64098
2K3 5.63486 7.59701 3.75657 3.75657 3.75657
4K3 3.24880 5.48600 2.78469 2.32057 2.78469
8K3 2.18685 3.91757 1.95665 1.72646 2.07175

16K3 1.66439 3.02290 1.31661 1.11788 1.34145
32K3 1.03205 1.86289 1.07475 0.90393 1.10322
64K3 0.67316 1.22166 0.76480 0.61325 0.78594

TABLE A.14: Table showing the number of bits required per voxel to store a geometry dag of
the citadel scene at different resolutions.

Geometry With offsets Per level Entropy Virtual

2563 66.54615 7.86539 66.54615 66.54615 66.54615
5123 14.31743 5.55861 14.31743 14.31743 14.31743
1K3 3.43915 4.01425 3.43915 3.43915 3.43915
2K3 1.67916 2.69491 1.67916 1.67916 1.67916
4K3 1.03627 1.72944 1.03627 0.82902 1.03627
8K3 0.72899 1.31422 0.53460 0.48600 0.58319

16K3 0.39771 0.71360 0.34639 0.30790 0.35922
32K3 0.25936 0.46445 0.26897 0.22094 0.27857
64K3 0.16558 0.29948 0.17998 0.14878 0.18638

TABLE A.15: Table showing the number of bits required per voxel to store a geometry dag of
the city scene at different resolutions.

Appendix A. Graph data tables 40

Geometry With offsets Per level Entropy Virtual

1K3 2.50104 1.66681 2.50104 2.50104 2.50104
2K3 1.21473 1.55170 1.21473 0.60737 1.21473
4K3 0.74742 1.29350 0.59794 0.59794 0.59794
8K3 0.59065 1.01968 0.47990 0.40607 0.47990

16K3 0.42005 0.75158 0.33787 0.31047 0.36526
32K3 0.30907 0.55741 0.29998 0.23407 0.30225
64K3 0.22464 0.40773 0.23144 0.17925 0.23428

TABLE A.16: Table showing the number of bits required per voxel to store a geometry dag of
the San Miguel scene at different resolutions.

Geometry With offsets Per level Entropy Virtual

1K3 10.91583 18.15159 10.91583 10.91583 10.91583
2K3 10.71725 15.04213 8.03793 5.35862 8.03793
4K3 6.63598 11.29106 5.30879 4.64519 5.30879
8K3 4.62441 8.33278 3.96378 3.46831 4.12894

16K3 3.50203 6.35514 3.04883 2.51322 2.92522
32K3 2.66470 4.84278 2.43835 2.00624 2.68527
64K3 1.89716 3.44972 2.03597 1.51927 2.03855

TABLE A.17: Table showing the number of bits required per voxel to store a geometry dag of
the arena scene at different resolutions.

A.3 Figure 5.3

Tight packing Repeated-block Bittree-based Palette

1K3 12.00000 11.82913 24.09327 23.01247
2K3 12.00000 14.72126 26.80287 11.29173
4K3 12.00000 14.66422 28.20785 8.35950
8K3 12.00000 14.21759 27.38106 7.59777

16K3 12.00000 10.48365 5.88777
32K3 12.00000 5.58025
64K3 12.00000 4.59760

TABLE A.18: Table showing the memory usage in bits per voxel for the node data table us-
ing different compression techniques. The data is evaluated for the Citadel scene at several

resolutions.

Tight packing Repeated-block Bittree-based Palette

1K3 12.00000 10.15926 23.70504 13.79689
2K3 12.00000 10.66054 26.51454 7.56607
4K3 12.00000 11.21711 27.46825 7.25631
8K3 12.00000 9.11949 23.93246 5.58952

16K3 12.00000 8.50278 5.65785
32K3 12.00000 5.07850
64K3 12.00000 4.56181

TABLE A.19: Table showing the memory usage in bits per voxel for the node data table using
different compression techniques. The data is evaluated for the City scene at several resolu-

tions.

Appendix A. Graph data tables 41

Tight packing Repeated-block Bittree-based Palette

1K3 12.00000 5.10995 12.95816 7.53243
2K3 12.00000 5.27423 19.12393 3.65132
4K3 12.00000 4.95091 18.54717 3.29042
8K3 12.00000 4.64368 16.65547 2.65837

16K3 12.00000 4.62050 2.18287
32K3 12.00000 2.10450
64K3 12.00000 1.75795

TABLE A.20: Table showing the memory usage in bits per voxel for the node data table using
different compression techniques. The data is evaluated for the San Miguel scene at several

resolutions.

Tight packing Repeated-block Bittree-based Palette

1K3 12.00000 11.36765 22.58227 21.95958
2K3 12.00000 12.08067 22.54342 10.74864
4K3 12.00000 10.65085 22.15036 5.31656
8K3 12.00000 8.07248 18.31277 3.63540

16K3 12.00000 5.85539 13.33009 2.47250
32K3 12.00000 1.71865
64K3 12.00000 1.12599

TABLE A.21: Table showing the memory usage in bits per voxel for the node data table using
different compression techniques. The data is evaluated for the Arena scene at several resolu-

tions.

A.4 Figure 5.4

12-bit colors 16-bit normals 12-bit normals 10-bit normals 8-bit normals

2563 34.12459 36.64129 34.06097 33.96555 33.43279
5123 9.16420 9.98860 9.14888 8.80896 8.33500
1K3 3.28137 3.38956 2.70470 2.55197 2.31342
2K3 1.83535 1.86195 1.31654 1.09798 0.98603
4K3 1.44097 1.24855 0.82850 0.68500 0.62742
8K3 1.25253 0.91709 0.61584 0.50928 0.45273

16K3 0.92815 0.57007 0.39496 0.32403 0.30844

TABLE A.22: Table showing the number of bytes required per voxel for storing the citadel scene.
Comparisons are made between 12-bit colors, and several qunatization levels for normals.

Appendix A. Graph data tables 42

A.5 Figure 5.5

A.5.1 Lossy compression

Res.
Citadel City San Miguel Arena

Uncomp. Comp. Ratio Uncomp. Comp. Ratio Uncomp. Comp. Ratio Uncomp. Comp. Ratio

2563 0.18 2.01 10.92030 0.38 2.01 5.31114 0.50 2.01 4.02433 0.13 2.01 16.03418

5123 0.76 2.01 2.62992 1.68 2.01 1.20011 2.30 2.01 0.87349 0.53 2.01 3.78810

1K3 3.14 3.01 0.95885 6.98 4.01 0.57487 9.60 3.01 0.31385 2.20 2.01 0.91498

2K3 12.78 6.01 0.47049 28.59 9.01 0.31525 39.51 6.01 0.15214 8.96 4.01 0.44786

4K3 51.71 18.01 0.34831 115.80 35.01 0.30235 160.55 22.01 0.13710 36.17 8.01 0.22152

8K3 208.52 66.01 0.31657 466.12 115.01 0.24674 650.13 72.01 0.11077 145.32 22.01 0.15148

16K3 838.96 237.01 0.28251 1870.72 441.01 0.23574 2628.26 239.05 0.09095 582.52 60.01 0.10302

32K3 3371.94 784.01 0.23251 7495.34 1586.05 0.21160 10560.77 926.05 0.08769 2332.72 167.05 0.07161

64K3 13619.33 2609.01 0.19157 30003.92 5703.01 0.19008 42308.60 3099.01 0.07325 9336.07 438.01 0.04692

TABLE A.23: Table showing the compression ratio’s using palette compression on several
scenes and resolutions. Both the compressed and uncompressed sizes are reported (in MB).

The compression ratio is also reported, and is defined as Ratio = Comp/Uncomp.

A.5.2 Lossless compression

Res.
Citadel City San Miguel Arena

Uncomp. Comp. Ratio Uncomp. Comp. Ratio Uncomp. Comp. Ratio Uncomp. Comp. Ratio

2563 0.18 2.05 11.11116 0.38 2.05 5.40397 0.50 2.05 4.09467 0.13 2.19 17.43522

5123 0.76 2.05 2.67589 1.68 2.19 1.30497 2.30 2.19 0.94982 0.53 2.75 5.17829

1K3 3.14 3.19 1.01482 6.98 5.19 0.74336 9.60 4.75 0.49500 2.20 3.75 1.70560

2K3 12.78 10.75 0.84132 28.59 18.75 0.65592 39.51 14.75 0.37328 8.96 11.00 1.22802

4K3 51.71 44.75 0.86538 115.80 77.75 0.67142 160.55 53.00 0.33011 36.17 30.00 0.82950

8K3 208.52 186.00 0.89200 466.12 344.00 0.73801 650.13 199.00 0.30609 145.32 91.00 0.62622

16K3 838.96 755.00 0.89992 1870.72 1507.00 0.80557 2628.26 805.00 0.30629 582.52 270.00 0.46350

32K3 3371.94 2824.00 0.83750 7495.34 6280.00 0.83785 10560.77 3050.00 0.28880 2332.72 804.00 0.34466

64K3 13619.33 10124.00 0.74336 9336.07 2220.00 0.23779

TABLE A.24: Table showing the compression ratio’s using palette compression on several
scenes and resolutions. Both the compressed and uncompressed sizes are reported (in MB).

The compression ratio is also reported, and is defined as Ratio = Comp/Uncomp.

A.6 Figure 5.6

Colored DAG Bittree Decoupled, palette compression Decoupled, tight packing

2563 0.50200 0.73400 0.49400
5123 0.90400 2.36900 1.67800 0.93600
1K3 7.98400 6.47700 3.11200
2K3 10.25500 28.31900 24.99700 10.16800
4K3 36.03800 115.99300 154.93400 40.94400
8K3 158.73200 601.13100 1025.35000 210.74700

16K3 649.09400 2247.11000 3867.31000 1911.68000

TABLE A.25: Table showing the buildtimes (in seconds) of the citadel scene for different types
of trees.

Appendix A. Graph data tables 43

Colored DAG Bittree Decoupled, palette compression Decoupled, tight packing
2563 0.58100 1.36300 0.97600
5123 1.41100 3.71300 5.01500 1.69400
1K3 4.27200 11.15000 13.86900 4.66700
2K3 12.28400 38.35600 54.32500 15.79500
4K3 44.79700 151.18000 360.35100 66.87000
8K3 175.72400 771.09700 1815.36000 305.54800

16K3 791.33700 4851.45000 13003.30000 2393.16000

TABLE A.26: Table showing the buildtimes (in seconds) of the city scene for different types of
trees.

Colored DAG Bittree Decoupled, palette compression Decoupled, tight packing

2563 2.03600 2.62500
5123 3.23500 5.43600 4.69900 2.67500
1K3 8.28200 15.07100 15.20300 8.70900
2K3 25.22000 48.85400 72.84500 32.02500
4K3 83.86900 163.82800 318.78200 107.73700
8K3 354.13900 747.99100 1321.49000 472.57300

16K3 1198.12000 4234.69000 9391.90000 3173.02000

TABLE A.27: Table showing the buildtimes (in seconds) of the San Miguel scene for different
types of trees.

Colored DAG Bittree Decoupled, palette compression Decoupled, tight packing

2563 3.17800 2.24400 2.14800
5123 6.56000 10.85600 6.78200 5.08200
1K3 16.45400 23.31500 17.27100 12.70600
2K3 33.75900 48.34000 38.77700 27.94600
4K3 65.04700 114.98100 109.92200 65.29600
8K3 187.77100 419.72700 441.08400 223.02900

16K3 599.99300 1989.85000 1280.90000 1551.76000

TABLE A.28: Table showing the buildtimes (in seconds) of the arena scene for different types
of trees.

Bibliography

[BR+14] M. Balsa Rodríguez et al. “State-of-the-Art in Compressed GPU-Based Di-
rect Volume Rendering”. In: Computer Graphics Forum 33.6 (2014), pp. 77–
100. DOI: 10.1111/cgf.12280.

[Cie] Commission Internationale de l’Eclairage (CIE). http://www.cie.co.at/.
Accessed: 2015-12-08.

[Cig+14] Zina H. Cigolle et al. “A Survey of Efficient Representations for Indepen-
dent Unit Vectors”. In: Journal of Computer Graphics Techniques 3.2 (2014),
pp. 1–30.

[Cra+09] Cyril Crassin et al. “Gigavoxels: Ray-guided streaming for efficient and
detailed voxel rendering”. In: Proc. of I3D. 2009, pp. 15–22. DOI: 10.1145/
1507149.1507152.

[EGG08] Fabio Marton Enrico Gobbetti and José Antonio Iglesias Guitián. “A Single-
pass GPU Ray Casting Framework for Interactive Out-of-core Rendering
of Massive Volumetric Datasets”. In: The Visual Computer 24.7 (2008), pp. 797–
806. DOI: 10.1007/s00371-008-0261-9.

[Eve01] Cass Everitt. Interactive order-independent transparency. Tech. rep. NVIDIA
Corporation, 2001.

[FG14] Simon Fuhrmann and Michael Goesele. “Floating Scale Surface Recon-
struction”. In: Trans. on Graphics 33.4 (2014), p. 46. DOI: 10.1145/2601097.
2601163.

[Gam+94] Erich Gamma et al. Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education, 1994.

[Gon85] Teofilo F Gonzalez. “Clustering to minimize the maximum intercluster dis-
tance”. In: Theoretical Computer Science 38 (1985), pp. 293–306. DOI: 10.
1016/0304-3975(85)90224-5.

[Gut+02] Stefan Guthe et al. “Interactive rendering of large volume data sets”. In:
Proc. of VIS. 2002, pp. 53–60. DOI: 10.1109/VISUAL.2002.1183757.

[HTG03] Bruno Heidelberger, Matthias Teschner, and Markus H Gross. “Real-Time
Volumetric Intersections of Deforming Objects”. In: Proc. of VMV. 2003,
pp. 461–468.

[JT80] Chris L Jackins and Steven L Tanimoto. “Oct-trees and their use in rep-
resenting three-dimensional objects”. In: Computer Graphics and Image Pro-
cessing 14.3 (1980), pp. 249–270. DOI: 10.1016/0146-664X(80)90055-
6.

[KM10] Georg A Klein and Todd Meyrath. Industrial color physics. Vol. 154. Springer,
2010.

[KSA13] Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. “High Resolution Sparse
Voxel DAGs”. In: Trans. on Graphics 32.4 (2013), p. 101. DOI: 10.1145/
2461912.2462024.

44

http://dx.doi.org/10.1111/cgf.12280
http://www.cie.co.at/
http://dx.doi.org/10.1145/1507149.1507152
http://dx.doi.org/10.1145/1507149.1507152
http://dx.doi.org/10.1007/s00371-008-0261-9
http://dx.doi.org/10.1145/2601097.2601163
http://dx.doi.org/10.1145/2601097.2601163
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1109/VISUAL.2002.1183757
http://dx.doi.org/10.1016/0146-664X(80)90055-6
http://dx.doi.org/10.1016/0146-664X(80)90055-6
http://dx.doi.org/10.1145/2461912.2462024
http://dx.doi.org/10.1145/2461912.2462024

BIBLIOGRAPHY 45

[KSA15] Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. “Fast, memory-efficient
construction of voxelized shadows”. In: Proc. of I3D. 2015, pp. 25–30. DOI:
10.1145/2699276.2699284.

[LH06] Sylvain Lefebvre and Hugues Hoppe. “Perfect spatial hashing”. In: Trans.
on Graphics 25.3 (2006), pp. 579–588. DOI: 10.1145/1141911.1141926.

[LH07] Sylvain Lefebvre and Hugues Hoppe. “Compressed random-access trees
for spatially coherent data”. In: Proc. of EGSR. 2007, pp. 339–349. DOI: 10.
2312/EGWR/EGSR07/339-349.

[LK10] Samuli Laine and Tero Karras. Efficient sparse voxel octrees – Analysis, Exten-
sions, and Implementation. Tech. rep. NVIDIA Corporation, 2010.

[LK11] Samuli Laine and Tero Karras. “Efficient sparse voxel octrees”. In: Trans.
on Visualization and Computer Graphics 17.8 (2011), pp. 1048–1059. DOI: 10.
1109/TVCG.2010.240.

[Mea82] Donald Meagher. “Geometric modeling using octree encoding”. In: Com-
puter Graphics and Image Processing 19.2 (1982), pp. 129–147. DOI: 10.1016/
0146-664X(82)90104-6.

[Mey+10] Quirin Meyer et al. “On Floating-Point Normal Vectors”. In: Computer Graph-
ics Forum 29.4 (2010), pp. 1405–1409. DOI: 10.1111/j.1467- 8659.
2010.01737.x.

[Nys+12] J. Nystad et al. “Adaptive Scalable Texture Compression”. In: Proc. of HPG.
2012, pp. 105–114.

[SAM05] Jacob Ström and Tomas Akenine-Möller. “iPACKMAN: High-quality, Low-
complexity Texture Compression for Mobile Phones”. In: Proc. of HWWS.
2005, pp. 63–70. DOI: 10.1145/1071866.1071877.

[Sin+14] Erik Sintorn et al. “Compact Precomputed Voxelized Shadows”. In: Trans.
on Graphics 33.4 (2014), p. 150. DOI: 10.1145/2601097.2601221.

[SK06] Ruwen Schnabel and Reinhard Klein. “Octree-based Point-Cloud Com-
pression”. In: Proc. of SPBG. 2006, pp. 111–120. DOI: 10.2312/SPBG/
SPBG06/111-120.

[SKU08] László Szirmay-Kalos and Tamás Umenhoffer. “Displacement Mapping on
the GPU—State of the Art”. In: Computer graphics forum. Vol. 27. 6. Wiley
Online Library. 2008, pp. 1567–1592.

[Wil15] Brent Robert Williams. “Moxel DAGs: Connecting Material Information to
High Resolution Sparse Voxel DAGs”. In: (2015).

[Xia97] Zhigang Xiang. “Color image quantization by minimizing the maximum
intercluster distance”. In: ACM Transactions on Graphics (TOG) 16.3 (1997),
pp. 260–276. DOI: 10.1145/256157.256159.

http://dx.doi.org/10.1145/2699276.2699284
http://dx.doi.org/10.1145/1141911.1141926
http://dx.doi.org/10.2312/EGWR/EGSR07/339-349
http://dx.doi.org/10.2312/EGWR/EGSR07/339-349
http://dx.doi.org/10.1109/TVCG.2010.240
http://dx.doi.org/10.1109/TVCG.2010.240
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://dx.doi.org/10.1111/j.1467-8659.2010.01737.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01737.x
http://dx.doi.org/10.1145/1071866.1071877
http://dx.doi.org/10.1145/2601097.2601221
http://dx.doi.org/10.2312/SPBG/SPBG06/111-120
http://dx.doi.org/10.2312/SPBG/SPBG06/111-120
http://dx.doi.org/10.1145/256157.256159

	Abstract
	Acknowledgements
	Introduction
	Background
	Related Work
	Definitions

	Methods
	Node count reduction
	Naive method
	Bittrees
	Geometry-material decoupling
	Variations

	Efficient tree storage
	Naive method
	Pointer and offset sizes per level
	Pointer entropy encoding
	Virtual nodes

	Data quantization
	Colors
	Normals
	Fixed point values

	Data compression
	Tight packing
	Repeated-block compression
	Bittree based compression
	Palette compression

	Implementation
	DAG/Octree
	Construction
	Memory storage

	Renderer

	Results
	Compression
	Efficient tree storage
	Data quantization
	Data compression

	Construction times
	Rendering performance
	Applications

	Conclusions
	Future work

	Graph data tables
	fig:compare
	4096 Quantized colors
	Full colors

	fig:pointercompression
	Geometry DAG
	Topology and offsets

	fig:datacompressioncompare
	fig:normalcompare
	fig:palettecompressiongraph
	Lossy compression
	Lossless compression

	fig:buildtimes

	Bibliography

