N

N

Deformation Grammars: Hierarchical Constraint
Preservation Under Deformation

Ulysse Vimont, Damien Rohmer, Antoine Begault, Marie-Paule Cani

» To cite this version:

Ulysse Vimont, Damien Rohmer, Antoine Begault, Marie-Paule Cani. Deformation Grammars: Hi-
erarchical Constraint Preservation Under Deformation. Computer Graphics Forum, 2017, 36 (8),
pp.429-443. 10.1111/cgf.13090 . hal-01518534

HAL Id: hal-01518534
https://inria.hal.science/hal-01518534
Submitted on 5 May 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01518534
https://hal.archives-ouvertes.fr

Volume XX (2017), Number XX pp. 1-14 COMPUTER GRAPHICS forum

Deformation Grammars:
Hierarchical Constraint Preservation under Deformation

Ulysse Vimont 1, Damien Rohmerl’z, Antoine Begaultl, and Marie-Paule Cani'

nria, Univ. Grenoble Alpes, Grenoble INP & CNRS (LJK), 2CPE Lyon

Figure 1: Deformation grammars allow to freely deform complex objects or object assemblies, while preserving their consistency. Top
row: Original hierarchical objects (tree, house, bird flock, scene with mixed elements). The tree and the bird flock are made of parts of the
same type, while the other objects are hetegogeneous hierarchies. Bottom row: Deformed objects, where the interpretation of user-controled
deformations through deformation grammars is used to automatically maintain consistency constraints.

Abstract

Deformation grammars are a novel procedural framework enabling to sculpt hierarchical 3D models in an object-dependent
manner. They process object deformations as symbols thanks to user-defined interpretation rules. We use them to define hier-
archical deformation behaviors tailored for each model, and enabling any sculpting gesture to be interpreted as some adapted
constraint-preserving deformation. A variety of object-specific constraints can be enforced using this framework, such as main-
taining distributions of sub-parts, avoiding self-penetrations, or meeting semantic-based user-defined rules. The operations
used to maintain constraints are kept transparent to the user, enabling them to focus on their design. We demonstrate the
feasibility and the versatility of this approach on a variety of examples, implemented within an interactive sculpting system.

Categories and Subject Descriptors (according to ACM CCS):
1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Hierarchy and geometric transformations

1. Introduction

Modeling and editing complex objects or shape assemblies is one
of the bottlenecks of the virtual content production pipeline, despite

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

a large body of work in the last two decades. While recent techni-
cal improvements enabled to model complex and detailed shapes,
their creation and editing are still very tedious, and the quantity and
quality of new 3D content produced fails at matching the increasing
expectations of users.

Ideally, once a given 3D object or shape assembly is modeled,
artists should be able to reuse it in different scenes after the ap-

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

propriate modifications. To achieve this, digital artists should be
able to deform complex objects efficiently and in an intuitive way.
For instance, stretching the model of a tree should either elongate
branches or grow more of them depending on the user’s intent,
while insuring in both cases that the deformed object is still a valid
model of a tree (e.g. branches are not intersecting).

This problem is made even more challenging when dealing with
complex 3D models made of heterogeneous components. These
models can be seen as a hierarchical organization of different sub-
parts, each part (or sub-sets of parts) possibly needing to be de-
formed in a specific way. For instance, if the aforementioned tree
model includes leaves and fruits, the latter may only be scaled in
a uniform way, although branches can also be scaled along their
main axis. Houses with doors, windows, and walls made of bricks,
or animals with scales and appendices, are other examples of such
hierarchical heterogeneous shapes. Dealing with the deformation
of these complex models is currently tedious as each type of sub-
part may require the use of a specific deformation tool in order to
remain consistent. Moreover, deforming each part independently
is not sufficient for maintaining the consistency of the whole: the
user needs to manually ensure that inter-part dependencies are re-
spected.

Our work addresses consistent deformation of complex objects.
More precisely, we propose a unified framework to handle artist-
driven deformation set-up for hierarchical heterogeneous objects.
We claim that the following features are essential for an artist-
driven deformation tool, and address them specifically:

e The validity, or consistency, of the whole model should be main-
tained throughout the deformation. The user should be able to
select the consistency criteria for each type of element and at
different scales, in order to fully express their intent.

e A hierarchical model should be editable at different scales, rang-
ing from local to global ones.

e The artist should be able to apply the edits in the order they wish,
not only from coarse to fine scales.

Our solution is based on the new concept of deformation grammars.
The latter enable to define deformation interpretation rules and al-
low to freely deform a complex object while maintaining its con-
sistency. Our contributions include formal definitions for the no-
tions of complex object, deformations and consistency (Section 3),
the description of a general formalism for deformation grammars
(Section 4), and their extension enabling to freely interleave local
and global editing (Section 5). We present a variety of applications
and results produced within an interactive sculpting software (Sec-
tion 6), and discuss the advantages and limitations of our deforma-
tion framework (Section 7) before concluding.

2. Previous Work

Being able to create and edit shapes in an intuitive way has been a
major goal of computer graphics research for many years.

Interactive and Procedural methods are the most usual ways to
create geometric content. While standard 3D mesh editing tools
enable to interactively model any desired shape, they may require

tremendous efforts in the case of complex objects, defined as a hi-
erarchy of many interdependent parts. Procedural modeling tech-
niques have been very efficient to design complex structured ob-
jects from a set of parameters. However, they are usually dedicated
to a specific type of objects, such as cities and buildings model-
ing [Cit, LSWW11, SKK* 14, EBP*12, IMAW15], or trees mod-
eling [PBPS99, FP99, BPF*22]. These methods require unfortu-
nately a large amount of parameter tuning and only provide indi-
rect control - through trials and errors - on the results. Interactive
approaches have been proposed to bring global control over ob-
jects defined procedurally, but each approach requires a dedicated
system without always providing direct local and global control on
the object [BBP13,KW11,LRBP12].

Standard deformation methods aim at deforming a mono-
resolution shape while maintaining some of its properties. In the
context of virtual sculpting of triangular meshes, this includes pre-
serving volume while applying free-form deformations to a shape
[ACWKO04,vFTS06]; or enabling a mesh to maintain quasi-uniform
sampling while undergoing free-form deformation that includes
changes of topological genus [SCCI11]. In Sorkine and Alexa’s
seminal work [SAOQ7], the authors introduce a deformation scheme
that preserves co-rotated distance vectors and tends to maintain lo-
cal shape features under deformations.

In the above methods, the geometric property to be maintained
during the deformation cannot be selected locally on the model. In
consequence, objects are deformed as if they were made of some
uniform elastic or plastic material. Moreover, the property which is
preserved through deformation is not chosen by the user, and not
fitted to every type of object.

Analyze-and-edit approaches use a two-step approach for de-
forming man-made objects in a way that maintains their struc-
ture [MWZ*13]. This means either preserving or duplicating spe-
cific details when the model is stretched. The first step aims
at computing a set of features on an input model. In the sec-
ond step, the identified features are automatically preserved while
the user deforms the object. Features can be selected based on
local geometric criteria such as saliency [DK14, ML13], curva-
ture [KSSCOO08], or wires [GSMCO09]; as well as based on
higher-level properties such as linear arrangements [BWKSI11,
BWSKI12], detail patterns [AZL12], element type adjacency
matching [LVW*15], ergonomicity [ZLDM16], or 2D distributions
of sub-shapes [EVC™*15]. Yumer’s work [YCHK15] allows for con-
tinuously deforming an input object through handles that represent
semantic attributes. All these methods only consider two levels of
detail (an object and its main parts or features), so their applicabil-
ity to shape hierarchies is limited. More general hierarchy of defor-
mations were also studied for generic meshes [GPCP13] but with
limited consistency preservation.

Closer to our work, Zhen [ZFCO*11] computes specific con-
trollers for the components of complex 3D models, allowing the
user to deform the right degrees of freedom while maintaining
inter- and intra-parts consistency. Controllers can be grouped,
forming a hierarchy. Our method can be seen as a generalization
of this work. We provide a unified framework for deforming hier-
archical objects, enabling all the previous deformation modes to be

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(@ (b)

(c) (@

Figure 2: An initial complex object (a) is deformed by the user using a local tool applied at the top right. (b): The object is deformed without
any deformation interpretation; Note how branches geometry is degenerated. (c): The deformation grammar allows us to hierarchically
interpret the deformation in order to preserve the object consistency at each level of its hierarchy: branches remain cylindrical. (d): Changing
the rules of the grammar, such as stating that branches can change radius but not length, allows us to change the deformation behavior while

still respecting the object’s consistency.

used, possibly at the same time, on different parts of the model or
at different scales. Various deformation propagation schemes can
be used and several alternative deformation modes can be speci-
fied for a given part. The task of defining and assigning the desired
behavior, at the desired scale, to the components of a hierarchical
model is left under the user’s control, which allows for the creation
of varied and expressive behaviors. Doing so, we skip the analysis
step: Our method belongs to edit-only methods, described next.

Edit-only methods relax the analyze-and-edit paradigm, allow-
ing the use of consistency criteria which would be very hard to
analyze. For instance, Lipp [LWWOS] enables the visual editing
of shape grammar rules for modifying building appearance; Mil-
liez [MWCS13] allows the mutation and duplication of object
parts for structured shapes predefined using puzzle-grammars; Jor-
dao [JPCC14] extend the previous method to crowd-patches em-
bedding recomputed crowd animation data; Emilien [EPCV14]
maintains the consistency of a waterfall scene under vector-based
design; Longay [LRBPI12] allows us to manipulate a realistic
tree through sketching; and Stanculescu [SCCS13] extends quasi-
uniform meshes [SCC11] for accounting for feature lines, using a
taxonomy of possible behaviors.

Our method can be seen as a super-set of all these previous ones,
allowing them to interoperate on different parts of an object. Since
it also discards the analysis step, complex consistency criteria are
allowed, leading to expressive deformation modes.

3. Hierarchical approach to object deformation

This section defines the notion of complex object, and formalizes
the concepts of deformation and consistency on that type of object.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

3.1. Complex objects

In the context of this work, we call elements any object of the scene.
An element € can be either a simple or a complex object:

e A simple object is a geometric object in the classical sense, fully
defined by the set of internal parameters of its visual represen-
tation (such as a triangular mesh defined by the position of the
vertices and their indexing into faces).

o A complex object is defined recursively as a set of internal pa-
rameters, plus a set of hierarchical parameters which are refer-
ences to sub-objects. The sub-objects, are called the children of
the element €, and noted C(€). In return, an element is referred
to as the parent of its children.

Note that the internal parameters of a complex object do not always
correspond to a visual representation: For instance a heap of stones
may include internal parameters such as slope or number of stones,
while the visual representation may be only be stored in its children
- e.g. simple objects representing the individual stones.

In our formalism, an element € can only have a single parent,
noted p(€). Pairs of elements (€&, €;) are associated a relation type
t(€0,€1) that can be either child, parent, self (if €y = €1) or none in
all the other cases.

Lastly, a semantic type t(€) is associated with each element € :
for instance, the fact that the internal mesh represents a stone. A
complex object with children of the same semantic type (such as
the heap of stones we already described) is called homogeneous,
otherwise it is called heterogeneous.

Example: Let us consider a naive model of a tree, where cylindrical
trunk and branches subdivide at their extremity into a few smaller
branches, as can be seen in figure 2a. This tree can be represented as

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

/Rules: RoiAHB@C\
Ri:B— DOE
. A
Ry:C—FBG Object hierarchy:
. A
A
4)
Symbols: / \
N ={A,B,C} B C
£={D,E F,G} PR
D E F G)
4 7\
Axiom: A
o /

Figure 3: Standard use of grammars to define hierarchical shapes.

. ” Branch N +1
' "Internal [Hierarchical
V4 Branch N \ 'data: data: ¥
Internal Hierarchical ! - Ch%ld 0.-
data: data: ' branch -ch}ldl -
- child 0 * geometry |- child 1 - 4] —
branch |- child 1
geometry
Branch N +2
Internal |Hierarchical
ata: ata:
-childO - .
branch >
geometry

Figure 4: A tree model can be organized hierarchically into a com-
plex object. This allows to consider individually each level of the
hierarchy as well as the relationships between levels.

a complex object €, using a large cylinder (for the trunk) as inter-
nal representation — in this case this representation is also visual —
plus a set of references to main branches. Each branch is itself rep-
resented as a cylinder plus a set of references to children branches
(see Figure 4). The smallest branches at the extremities are simple
objects, with only a visual representation but no sub-branch. The
other ones are complex objects. Both are of the same semantic type
as €. Therefore, this object is a homogeneous object.

The hierarchy of a complex object can be described manually
by a user or may result from the use of a procedural modeling tool
to build the object, such as a shape grammar or a L-system for
a tree [PL12] (see figure 3, top-left). Alternatively, this hierarchy
could be retrieved from an input shape using hierarchical segmen-
tation [AFS06].

3.2. Deformation

A deformation is any function which maps the values of an object’s
parameters. For example, if the object is a mesh parameterized by a
list of the vertices and their arrangement into faces, an example of
deformation is a space deformation d : R — R3 used to change the
vertices positions. Classically, applying a deformation d to a com-
plex object G (which we call object deformation and noted using

the couple D = (G,d)) is performed by applying the deformation
independently to the visual representations of each of the object’s
sub-parts. In contrast, our formalism enables us to redefine the ap-
plication of a deformation in a hierarchical way, a first step for en-
abling us to preserve the consistency of complex objects through
deformations. The hierarchical decomposition is done as follows:

An element deformation is defined as the edit of the element’s
internal parameters, which we call the internal deformation, fol-
lowed by the element deformations applied to its children (if any),
which we call hierarchical deformation. Using the element formal-
ism for G, where G = € is the highest element in the hierarchy, this
enables us to rewrite the object deformation of G in a hierarchical
way, as follows:

D" = (eo,d)
Dl = (Sivd) = D;‘m‘emal @D;Liemrchical Ve: € E e
Dt. . — DJ !
hierarchical
€;€C(&)

where @ stands for the independent application of element defor-
mations on a set of elements. This operator also allows us to com-
bine any internal element deformation with other deformations.

The hierarchical definition of deformations in Equation 1 is in-
strumental for allowing various sets of consistency constraints to
be maintained when deforming complex objects. Section 4 explains
how we express this deformation propagation process using defor-
mation grammars, and use it for preserving the consistency of the
object.

3.3. Consistency

We call element consistency the set of properties that an element
must satisfy to be considered as valid. Following our hierarchical
approach, this notion is split into two sub-concepts: internal con-
sistency and hierarchical consistency. Internal consistency of an
element is based on its internal parameters: for example its length
or curvature; It is therefore independent of any other element. Hi-
erarchical consistency of an element relies the relation the element
needs to maintain with its children, for example their relative posi-
tions or matching types.

We call object consistency the composition of the consistencies
of all the elements composing an object, i.e. the set of all internal
and hierarchical consistencies of the elements of the object.

Example: In the case of the simple tree model already discussed,
the internal consistency of a branch could be for instance the cylin-
drical aspect of the internal triangular mesh that represents it. The
hierarchical consistency can be the fact that the sub-branches all
depart from the extremity of their parent branch, in addition to the
fact that sub-branches are themselves consistent.

4. Deformation Grammars
This section introduces deformation grammars as an efficient tool

to setup consistency-preserving deformations for complex objects.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

4.1. Definition

Formal grammars are widely used in Computer Graphics for repre-
senting hierarchical processes. More specifically, shape grammars
such as the one in Figure 3 are often used to generate the static
geometry of complex objects [MWH*06, EBP*12, SM15]. In this
work, we extend the scope of formal grammars to handle the hier-
archical deformation of complex objects.

A deformation grammar models a deformation behavior for a
complex object under a set of deformations. It is defined as any
formal grammar by:

e a set of non terminal symbols N.
e a set of terminal symbols £

e anaxiomA € N

e a set of production rules P = {R;}

Symbols. A symbol is an element deformation D = (g,d), where
€ € E is the target of the arbitrary deformation d. A terminal sym-
bol is the deformation of the internal parameters of an element,
while a non-terminal symbol requires further interpretation. Sym-
bols can be assembled using the independent application opera-
tor @.

Symbols inherit the partial ordering of the elements: D} =
(€1,d;) is said to be lower than D, = (€3,d>) (noted D1 < Dj)
if &5 is an ancestor of €; in the object’s hierarchy.

Besides, symbols are typed according to the types of both the
target and the deformation:

1(e,d) = (t(e),1(d)) @)

Axiom. The axiom is a non terminal symbol created by the user.
Its target is the uppermost element of the hierarchy. It represents the
object deformation intent, such as a free-form deformation interac-
tively generated through a sculpting tool. It is the initial symbol
which will be decomposed into other symbols, until only terminal
symbols remain.

Example: In our example, the axiom is the deformation that the
user wants to apply to the tree model. It is processed as a defor-
mation of the highest element €g in the object’s hierarchy (i.e. the
trunk, see Equation (1)) and decomposed hierarchically using the
grammar rules.

Rules. A rule is the substitution of a symbol by a @ of other sym-
bols. In other words, it is the translation of an element deformation
into the deformations of its components. It is defined with respect
to a type of symbol:

R(t(D)): D+ D’ (3)

where D’ is an element deformation preserving the consistency of
elements of the type 7(€). Following Equation (1), we define D’ as
follows:

/
D = Dinternal EBDl’u’ertu‘cl’tical . (4)
Dinternai = (€,d’) is a terminal symbol; It is a deformation that ap-

plies to the internal parameters of the element € and preserve its

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

internal consistency. Dpjerarchical 1S @ non-terminal symbol; It calls
for the independent application of deformations of the children of
¢ that preserve the hierarchical consistency of €:

Dhjerarchical = @ D&e(e) ’ (&)
e€C(g)

where D¥¢ = (e,d,) is an element deformation that preserves the
hierarchical consistency between € and e. It will be further pro-
cessed for element e by the rule R(¢(e),#(d.)) for preserving the
consistency of e (see Equation (3)).

The rules, in the form of Equation (3), are defined by the user
for each type of symbol, by specifying Dfm ornal (€) and D% used
in Equations (4) and (5). They enable to control the behavior of a
complex object under arbitrary deformations, and in particular to
preserve the consistency of the object, as illustrated next.

4.2. Example

Let us come back to our example of the tree model and detail the
process of creating a deformation grammar. The structure of the
object has been described in section 3.1 and the associated consis-
tency constraints in section 3.3.

Let the user apply a free form space deformation d : R? - R? as
deformation intent. The corresponding axiom is A = (gp,d). The
naive deformation of the element’s internal parameters does not
preserve the consistency of the object, as can be seen in Figure 2b.

A consistency preserving deformation can be set by using
rules (3) and Equations (4) and (5) while defining:

® Diyernat = (€,d") where d’ is the affine transformation that
moves the two extremities cfj and c¢§ of a cylinder to their im-
ages d(cfy) and d(cf) respectively;

e D% = (e,d). This is used to apply the input space deformation
to e, which does not disconnect it from €.

Using those definitions, applying the grammar rules preserves the
cylindricity of the branches (internal consistency) as well as the ad-
jacency between a branch and its sub-branches (hierarchical consis-
tency), as shown in Figure 2c. Figure 2d shows that different rules
can also preserve the object consistency while offering another de-
formation behavior.

Appendix A fully describes the deformation grammar corre-
sponding to this example.

5. Bilateral Grammar Rules

As stated in Section 1, an object should be editable at different
scales (i.e. by editing parts at different levels of its hierarchy) in an
arbitrary order. But the deformation grammars defined so far start
from a deformation of the top level element €y and propagates down
to preserve the consistency. Figure 5b shows that applying the de-
formation on another element than € breaks the object consistency
at the parent level. This comes from the parent rule not interpreting
the deformation. This reduces a lot the amount of user control.

In order to maintain the object’s global consistency during the
deformation at any hierarchical level, deformation grammars needs

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(a) (b)

©) (d)

Figure 5: Bilateral grammar rules allow to deform a complex object at any level of the hierarchy. (a): An initial model has one of its elements
deformed. (b): Result when a local edit is applied to a sub-branch without the use of bilateral grammar rules. (c): Using our bilateral grammar
rules maintains consistency, here by ensuring that the edited branch stays in contact with its parent. (d): An alternative rule is used to

automatically split elongated branches and generate new sub-branches.

to handle upward consistency management. This section presents
bilateral grammars as an extension of descending grammars (pre-
sented in Section 4) allowing to solve this problem.

5.1. Closed-loop problem

Let us consider a tree model with two branches €| and €, such that
€ € C(g1). Now, g, receives a deformation d from the user.

A naive solution to allow for upward consistency management
consists in creating an ascending grammar rule R(t(€3),t(d))
generating a deformation of €. For example, we could have
Ruscending (1(€2),1(d)) : D = (g2,d) — D' = (g1,d), where D' is
a non terminal symbol. But D’ would be translated into a defor-
mation of €, following Equation 5. This results in a loop creating
non-terminal symbols, and never converging to terminal ones. The
deformation operation does not terminate in this case.

5.2. Symbol specification

Our solution to the closed loop problem requires two additions to
the symbols definition: a source and a direction. Rules can make
use of this new data to avoid the closed-loop problem, as explained
in the next Section (5.3).

A bilateral symbol is defined as:
D= (g,d,S,8) e LUN 6)

where € € E is the interpreting element, d the deformation, S € E
is the original target of the deformation that we call the source, and
8 ={7,{} is the direction of the symbol (ascending or descending).

The distinction between the target of the deformation and the el-
ement interpreting it allows to manage higher-than-source consis-
tencies while keeping track of the element to deform. An ascending
symbol indicates a deformation needing higher-level interpretation.
Therefore, the axiom is set to have S = € and 6 =1.

The type of bilateral symbols account for its direction as well
as for the types of its component (interpreting and target element,
deformation) and for the relationship between the target and the
interpreting element.

The next section describes how a symbol source and direction
are accounted for in the rules.

5.3. Bilateral grammar rules

Depending on the object we consider, a symbol might need to be
translated to the parent, the grand-parent, or any other ancestor of
the target element, up to the highest element of the hierarchy. This
is achieved by the generic ascending rule:

Rup : (&,d,S,1) — (p(e),d,S, 1) (O]

This rule translates the symbol by changing the interpreting ele-
ment (setting it to be the parent of the current one) without modi-
fying the other parameters of the symbol.

The appropriate level for interpreting the deformation depends
on the object, and is characterized by the user using bilateral sym-
bol types. Once Ryp creates a symbol with the appropriate type,
another rule will stop the ascent:

Rinterp : (€7d7S7T) — (C(&S)ydinlerpvsv ~L) oK (8)

where C(g,S) is the child of € which is an ancestor of S, and K
is a @ of descending symbol targetted at the children of € except
C(g,S), and which deformation aims at preserving the hierarchical
consistency of €. Unlike Rup, Rinrerp is object-specific.

The descent takes place in two phases: The first one concerns
symbols which interpreting element is higher than the source; The
second one concern symbols which interpreting element is lower
than the source, and is identical to the regular interpretation of a
mono-lateral grammar.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

The first phase of the descent is achieved using the generic de-
scending rule:

Rduwn : (87d7S7¢) — (C(87S)7dinf€rp7s>\L) (9)

Once reached the level where € = S, the symbol is interpreted down
as with a descending grammar. Any rule Ry : (&;,d;) — (€,d;)
of a descending grammar can be formulated into a bilateral rule
Ry : (€i7di7S7\L) - (ej’djﬁSv\L)

In order to prevent any interpretation loop, we state the following
descending monotony principle: A descending symbol shall never
be translated into an ascending one.

5.4. Example

Let us now extend the example of Section 4.2 in order to allow
for bilateral deformation interpretation. We consider an affine de-
formation d applied on a branch €, # € of a tree. According to
Section 5.2, the axiom is A = (g€;,d,€;,7). It is processed by the
rules Ryp into A} = (p(€2),d, €2, 7).

We define Rjperp such that:

Rinlerp : (p(82)7d7827T) — (827d17827¢) (10)

We define d’ as the affine transformation which displaces one
extremity of S while preserving the other:

{d/ (pﬁlzart) = d(pitzart) (11)
! € €2
d (pend) = Pena

On Figure Sc, we can see that the interpreted deformation keeps
€1 and &, connected, which respects the consistency of the tree.
Figure 5d shows an alternative rule which splits elongated branches
and generates new sub-branches. For that, we define Rjjerp as:

Rinterp : (P(Ez),d:€27T) ad (827d/a827\l’) @ (EZaSplil7823\I/) (12)

where split is a splitting deformation which occurs whenever a
branch is too long.

The deformation grammar for this example is fully described in
Appendix B.

5.5. Persistent editing

Enabling to apply deformations at different levels of the hierarchy
greatly increases the user’s freedom. With this method, small scale
edits may, however, be overwritten by subsequent higher level mod-
ification, leading to the loss of specific user changes.

Bilateral deformation grammars allow to seamlessly solve this
issue by keeping track of previously locally edited elements. Once
an element ¢ is locally edited by the user, it can be tagged as per-
sistent. Grammar rules can then take this tag into account for pre-
serving such elements.

Therefore any global deformation applied later on the object will
not modify the previously edited element enabling the user to iter-
ate between global and local deformations as desired.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

6. Applications and results

This section develops several possible applications, inspired by
state of the art deformation methods, to demonstrate the versatil-
ity of our framework. All the examples were implemented using
different deformation grammar rules, within the same interactive
sculpting software. We also refer the reader to the video accompa-
nying this work.

6.1. Grammar creation

Whatever the category of complex object to be deformed, the cre-
ation of a new deformation grammar proceeds as follows:

1. Design the hierarchy of the object, or use the hierarchy inherited
from a previous procedural generation method;

2. For each type of element in the object, identify its internal and
hierarchical consistency rules;

3. Based on steps 1 and 2, identify the deformation types applica-
ble to each type of element;

4. Create a set of downward rules for each pair of element types
and associated deformation type;

5. Optionally enrich the set of rules with upward rules allowing to
maintain upward hierarchical consistency.

Since a rule is needed for every tuple
(t(element),t(deformation),t(relation)), the number of rules to
design is directly correlated to: the number of element types; for
each element type, the number of possible deformation types; for
each element type, the number of possible children types.

The example grammars presented in this section contain between
two and ten rules.

6.2. Implementation

Results using deformation grammars were implemented as a C++
sculpting software. Details about the implementation are given in
Appendix C, including an example UML class diagram in Fig-
ure 13.

Each element type corresponds to a class; Each class implements
aprocess () function per deformation type it can handle. Gram-
mar rules are implemented inside these functions, and the symbol
to be processed is passed as argument.

A process () function can be called either from the event
manager (in which case the source of the symbol is 0), or from an-
other process () function (e.g. issuing from the element’s parent
during hierarchical interpretation).

Note that unlike shape grammars, deformation grammar symbols
should be translated at interactive rates inside the sculpting frame-
work. C++ hard-coded grammar rules are compiled along with the
sculpting framework, which allows for fast symbol translation. Fi-
nally, rules are parameterized at run time using state variables en-
abling to switch of deformation behavior at run time. This is for
example used for enabling/disabling the grammar interpretation in
the examples illustrated in Figures 2 and 5.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Spatial complexity Recurrent function calls have a memory cost
which increases linearly with the depth of recursion. Let us con-
sider a complex object described by a hierarchy of depth d. The
worst case scenario of recurrent call depth -i.e. the deepest element
of the hierarchy calls the highest one through successive up-ward
rules - entails at most 2 d recursive function calls.

6.3. Organic shapes

We start by demonstrating our deformation grammar on complex
objects representing organic shapes.

Figure 6 shows three steps of an interactive tree modeling ses-
sion. In this example, we use the rules given in Section 4.2 to
ensure that branches remain cylindrical and adjacent. We added
a bilateral grammar rules enabling to prevent self-intersection be-
tween the different object parts. This rule applies the initial defor-
mation to the uppermost branch of the hierarchy gy with the ini-
tial target branch as source. The deformation is propagated down
the hierarchy only if it does not generate intersections between the
sub-branches. Branches longer than a threshold are split and new
branches appear at the junction between consecutive branches at the
same hierarchical level, using a call to a local L-system generation.
Note that our interface makes possible to dynamically change the
deformation behavior by activating or deactivating specific rules at
run time: This is used, for instance, for interpreting a subsequent
free-form deformation as a radius change only in Figure (2d). Per-
formances for this example are reported in Section 6.9.

(a) (b)

Figure 6: Deformation grammars allow to freely deform organic
shapes such as trees. (a): Initial tree; (b): Deformed tree. Note that
the geometry of the branches is non degenerated and that junctions
are evenly distributed.

6.4. Man-made objects

In order to show the versatility of the application of our deforma-
tion grammars, we set-up rules to model a deformable house. The
house is a hierarchical heterogeneous object whose hierarchy is the
following. A house object is composed of floors and a roof. Each
floor is composed itself of walls and windows. In this example,
the consistency properties are the following: adjacent walls must
be orthogonal, the maximum height of each floor is bounded, and

(@) (b)

Figure 7: An initial house (a) is deformed by the user while preserv-
ing properties typical of man made objects such as wall orthogonal-
ity and floor linear arrangement (b).

the roof is positioned at the top of the last floor. See figure 7 and 1
(second column).

This example also illustrates the possibility of element specific
deformation interpretation, i.e. rules depending on the nature of
the deformation: For example, a vertical translation of the roof is
propagated to the house object and translated as a global vertical
scaling, which allows the roof to be supported by the walls at every
time. A translation of a wall piece is translated as a horizontal wall
extrusion, which also results in a re-generation of the roof thanks
to our bilateral grammar rules.

6.5. Object distributions

Objects distributions are hard to deform because of the inter-
object constraints, such as non penetration and relative positions
(see [EVC™15]). They can be represented as complex objects. Usu-
ally, the parent element in the hierarchy does not have any visual
representation, but stores the distribution parameters to be main-
tained as internal parameters. The objects in the distribution are
its children. We implemented three different examples in order to
illustrate the ability of deformation grammars to maintain the con-
sistency in the case of distributions.

The first example, shown in Figure (8), is a forest, i.e. a distri-
bution of trees. Naively applying a user-defined deformation to this
forest would either create empty regions between adjacent trees, or
make some of them too close to each other. We aim at preserving
the visual density of trees. This requires to merge trees that are too
close, and to create new ones in large empty spaces.

Let us consider that the initial trees are associated to an under-
lying Delaunay triangular mesh whose vertices are the tree po-
sitions. Displacing the trees is expressed as the deformation of
the mesh. Our solution for maintaining the visual appearance of
the distribution is based on quasi-uniform meshes [SCC11], which
are re-expressed as a specific case of our deformation grammar,
a follows: Mesh vertices are maintained at a distance d such that
% < d < dgeair (Where dgeq; is a constant learned from the
input distribution). The edge collapse and split operations used to
maintain the distribution’s consistency trigger the elements merg-
ing and splitting respectively, which are new types of deformations.

We also show a similar example in Figure 9, where houses can

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(@ (b)

Figure 8: (a) Initial 2D distribution of trees. (b) Deformed distribu-
tion with newly inserted trees in the stretched regions.

split or merge based on the same rules. But this time, splitting a
large house results in creating several smaller ones, while merging
has the opposite effect. Such effect could be used, for instance, for
compacting a village while preserving the number of inhabitants it
can house.

The third example (Figure (1), 3rd column), is a volumetric dis-
tribution. Elements are merged when they come close to each other
(using an element-specific merge transformation), therefore avoid-
ing any intersection. In this case, a grid-based acceleration structure
was used to compute element neighborhood.

(c) (@

Figure 10: An initial city (left column) is deformed by the user
using affine and free-form deformations for creating another city
(right column). Here, the city element dispatches deformations to
its sub-elements, i.e. the houses presented in Section 6.4.

The last example is shown in Figure 10. It represents a city gener-
ated from GIS data of the town of Moscow. Footprints are used for
generating buildings of the same type as the house of Section 6.4.
Performances for this example are reported in Section 6.9.

6.6. Color transformation

Deformation grammars are not limited to geometrical transforma-
tion interpretation: As an illustration, we used the deformation
grammar framework to implement a tool for painting an object dis-
tribution as shown in Figure (11).

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

(a) (b)

Figure 11: The user can paint an original set of trees (a) using a
paining tool (in white). The change of color is interpreted by the
rule such that only the foliage is affected, not the trunk (b).

6.7. Heterogeneous distributions

On of the main advantage of our deformation grammar is its ability
to seamlessly handle heterogeneous distributions. Therefore, once
a deformation behavior is described in our framework, it can be
further reused as a sub-elements of a larger scene, and interact with
other elements. For instance, outdoor scene such as the one illus-
trated in Figure 1, 4th column, is defined in assembling the de-
formation behavior of the tree distribution, bird flock, and house
deformation where the root element is the entire scene. Each el-
ement can be either globally deformed, or individually while still
preserving the individual and global consistency.

6.8. Persistent editing

Figure (12) illustrates persistent editing. In this case, a forest tree
is locally deformed by the user (Figure 12b). Next, a global defor-
mation is applied on every tree. If the persistent edit is not applied,
the trees may be re-dispatched for maintaining tree density, there-
fore destroying all previous manual editing operations (Figure 12c).
Instead, using our persistent editing method on a similar global de-
formation enables us to preserve the local aspect of the tree while
still allowing it to be translated, and other trees to be deformed (see
Figure 12d).

6.9. Performance

Tables 1 and 2 report performances of symbol translation for affine
and free-form deformations respectively. The measures were made
throughout the production of examples presented in previous Sec-
tions (6.3 and 6.5).

In both of these tables, the first row represents the number of in-
teractors in the scene for the given deformation type (i.e. the num-
ber of elements able to interpret this deformation). The second row
represents the number of deformations generated by the user during
the sculpting session (i.e. the number of axiom symbols). The third
row represents the number of symbol generated in total (including
those of the second row, plus all the symbols generated internally
by the grammar). Finally, the last row gives the average time spent
for processing an axiom and all its subsequent symbols.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Figure 12: (a): Initial set of trees. (b): Local editing of a single
tree. (c): Global deformation without persistent editing leads to a
loss of the previous user edits. (d): Global deformation with our
persistent editing method enables to preserve the local aspect of
the previously deformed tree.

Tree Example City Example
interactors 599 4740
axioms 515 903
symbols 125430 33223
mean interpretation time (s) 0.005 0.008

Table 1: Performance evaluations in the case of affine deformations

interpretation.

Tree Example City Example
interactors 599 4740
axioms 31 21
symbols 13855 1116690
mean interpretation time (s) 0.13 0.43

Table 2: Performance evaluations in the case of free-form defor-
mations interpretation.

The tree example has a deep hierarchy, which explains the big
number of symbol generated in total compared to the number of
axioms: Each affine symbol is interpreted through the hierarchy,
which creates new symbols. The hierarchy of the city example is
more shallow, which explains the lower ratio.

Both examples yield interactive computation times with affine
deformations, which is adequate for sculpting. On the other hand,
the free-form deformations require more time, due to the deforma-
tion field evaluation and the increased complexity of the interpre-
tation. Improvements have to be made on this side, for example by
using the independence of downward symbol translation on non-
hierarchically-connected elements with a parallel implementation.

User perspective. Using deformation grammars is easy: they of-
fer a front-end interface to deformation interpretation. On the other
end, creating a deformation grammar can prove to be a non trivial
task. It requires to identify the design needs in terms of deformation
behavior and consistency, possibly through discussion with an end-
user artist; The deformation behavior has to be formalized into de-
formation interpretation rules; Finally those rules have to be coded
into a programming language (following the process described in
Section 6.2).

This whole process, although very generic, intrinsically couples
the object definition with the deformation interpretation and may
therefore not be non trivial to define or code. The total time to de-
fine a fully functional deformation grammar may range between
some hours to days depending on the complexity of the object with
respect to its hierarchy and consistency.

7. Discussion

Two methods aiming at deforming complex objects can be rele-
vantly compared to ours in terms of results: WorldBrush [EVC™*15]
and TreeSketch [LRBP12]. Each of these methods focuses on a
particular type of complex object: distributions of elements and
trees, respectively. Although we do not provide in our implemen-
tation the specific user interfaces dedicated to trees and elements
distributions, enabling to achieve the high quality interaction pro-
vided in these prior works, our deformation grammar would en-
able to capture similar deformation behaviors: Indeed, all the sub-
elements used in these two works only require to me moved, built,
and deleted while maintaining specific rules. On the one hand, inte-
grating the histogram preservation as a consistency criteria would
enable to interactively deform a 2D distribution of elements sim-
ilarly to WorldBrush. On the other hand, implementing new de-
formation types such as element painting, and new branch behav-
ior for trees, would enable to model the deformation behavior of
TreeSketch. One of the advantages of using our deformation gram-
mar in such cases would be to fully integrate these two different
behaviors within a single framework. Then, within the same scene,
the user could seamlessly design the distribution of trees of a for-
est, while being able to control each of the trees similarly to the
approach in TreeSketch.

7.1. Advantages and drawbacks of our approach

Suitability for deforming procedurally generated objects. As
seen in Section 6.3, deformation grammars are particularly well
suited to interact with shapes defined using shape grammars. These
objects are hierarchical by nature and they can be generated dy-
namically, enabling us to easily set rules that add or delete parts of
the object when the latter is deformed.

Faithfulness trade-off. We call faithfulness of a deformation in-
terpretation the difference between the non interpreted and the in-
terpreted deformation.

The faithfulness is positively correlated with the predictability
of the deformation behavior, and therefore to the intuitiveness of
the deformation tool: The more the interpreted deformation corre-
sponds to the input deformation (i.e. the deformation interpretation

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

is faithful), the more the object will behave in the way the user
expects it to. On the other hand, a perfectly faithful deformation in-
terpretation will probably not respect the consistency of the object,
losing all interest. A compromise is to be found between consis-
tency preservation and interpretation faithfulness.

Over-constrained consistency. Related to the faithfulness, an ob-
ject with many constrains may not provide enough degrees of free-
dom to be deformed as expected. As interpreted deformation will
fall inside some very limited deformation space, which may result
into a deformation behavior of little interest. For instance, a cube
constrained to stay cubic will only allow uniform scaling deforma-
tions which may be considered too restrictive by the user.

Note, however, that even with restrictive individual behaviors,
the deformation of complex heterogeneous objects combining dif-
ferent types of elements at different levels of a hierarchy will still
look rich and expressive.

Stochasticity. Stochasticity allows grammars to choose which
of several applicable rules to use according to a random
law [RMGH15]. This property is heavily used with shape gener-
ation grammars for allowing various shapes to be generated from
a single input. In the case of deformation grammars, the variation
of the deformation behavior is not desirable because the intuitive-
ness of the deformation interpretation relies on its predictability.
Therefore, we did not explore this track.

8. Conclusion

We presented the first general method for specifying the deforma-
tion behavior of complex hierarchical heterogeneous objects. Our
method relies on the concept of deformation grammar, which is a
special case of formal grammars, where symbols are deformations
of elements. We showed that this method allows us to expressively
deform a large variety of complex objects, from individual shapes
to object assemblies and to a composite 3D scene, while main-
taining specific properties of the elements composing this object
as well as their hierarchical relations.

There are several avenues for future work. Inferring rules of our
deformation grammar from a set of input deformed objects using
inverse procedural modeling could be an interesting extension of
this work. Ensuring time-continuous deformations even when new
elements appear or disappear could enable deformation grammars
to generate animations. Finally, complex objects could also be com-
posed of animated elements leading to a wider variety of consis-
tency preservation.

9. Acknowledgments

This work was funded by the advanced grant no. 291184 EX-
PRESSIVE from the European Research Council (ERC-2011-
ADG 20110209).

Appendix A: Simple tree deformation grammar
This appendix describes the deformation grammar used in the ex-

ample of Section 4.2.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Object. For this example, we consider a hierarchical tree model,
as described in Figure 4:

e Internal data are representing a branch geometry, in this case we
consider a cylinder;
e Hierarchical data are junction points to the branch children.

In this case, the tree is a homogeneous object, all elements are of
the same type 7(€) = branch.

Consistency. The branch consistency is defined as follows :

e [nternal consistency: The branch’s geometry is cylindrical;
e Hierarchical consistency: The children’s geometry starts where
the branch’s geometry ends.

Deformation. We consider a sculpting deformation behavior using
a free-form deformation d : x € R? — d(x) € R? controlled by the
user’s mouse displacement applying a weighted local translation in
the view plane.

Grammar Rule. Defining a grammar rule boils down to define
Dinternat @nd Dijerarchicar (€€ Equations (3, 4)).

Let us start with Dj0nq1, Which preserves the internal consis-
tency of a branch. We call pgqrr and p,,q the extremities of the
branch geometry. In order to preserve the cylindrical geometry of
the branch, D;,ernq to be an affine transformation whose matrix M
can be expressed as:

M=TxRxS
where:

o T = trans (d(pstart) — pstart)

d(Pend) =d(Pstart) Pend — Pstart)
e R=rot
(Hd(Pend) *d(P.\-mn) H ’ ”Pemi — Dstart ”

o S = scale [Ped—Pstart
Hpend — Dstart H ’

”d(PenU*d(men) ”)

Hpend — Pstart H

and:

e trans(x) is the translation of vector x;
e rot(a,b) is the rotation from vector a to vector b;
e scale(a,s) is the scaling of axis a and magnitude s

In the current case, Dy ernar does not disconnect a branch from
its initially connected children. However, in the general case, one
can define Dyjorarchicar 10 SUch a way that it re-connects a branch
with its children. According to Equation 5, it only requires to define
the deformation from a branch € to its child e:

€,e e €
Dhiemrchical = trans (pSlllfl - pend)

Appendix B: Bilateral tree deformation grammar

This appendix describes the bilateral deformation grammar used in
the example of Section 5.4.

Here the axiom A = (g;,d,¢€;,7) only need to go up one level
in the hierarchy in order to maintain the object’s consistency (the
connection between branches). This is performed by Ryp, as ex-
plained in Section 5.3. The following rules that comes into play is
Rinterp» which translates the ascending symbol (p(e;),d, €5, 1) into

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

a descending symbol deforming € itself using the modified affine
transformation d’. We define d’ as the transformation which pre-
serves pt2,., while deforming pii o as follows:

d=TxRxSxT !
where:

e T =trans (pﬁtzart)

82 _ E2 d 92 _ 82 ”
° S — Scale pe;rd Psiart H Pend — Psiart
(”pi;,d_Pjtzan ” ’ Hpiﬁd—piza,, ”
£ £ € 3
e R =rot (Pgi,d — Dsiart s AP opg — pstzart)

The new symbol (&;,d’,€;,.) will in turn be translated into a ter-
minal symbol (directly modifying the visual representation of €;)
and a composition of non terminal symbols deforming the children
of €5 (while maintaining the connection with the latter).

Appendix C: Implementation Details

Generative grammars implementations usually fall into one of the
two following categories: formal translation and recurrent function
calls. Formal translation allows to write grammar rules in a dedi-
cated language (such as CGA++ [SM15] for architectural design);
Rules are interpreted at run time, which allows for flexible rule edit-
ing; Each rule process a symbol from a symbol pool and generates
other symbols into it, there is no recursion. Recurrent function calls
on the other hand uses hard-coded rules inside function; Chained
rule application corresponds to recurrent calls to the corresponding
functions.

As stated in section 6.2, we used the second paradigm; Our
choice was driven by rapidity of execution and ease of design.

Interactors A given element can be deformed using different de-
formation types, it will therefore implement several interpretation
functions. Besides, deformation interpretation might require from
an element to know which deformation types are applicable to its
children. For this reasons, we introduce the interactor pattern.

Figure 13 shows the architecture of the deformation grammar
implementation we used for creating the examples of this work. It
shows the general classes used for representing elements, deforma-
tions, symbols, and grammar rules; Concrete examples are given
for one deformable complex object (a tree) and two deformation
types (affine and free-form).

The Ob ject class represent an abstract complex object element
and stores generic data: a name, a visual representation, a parent,
and a list of children; The last three attributes may be empty de-
pending on the element. Specialized classes inherit the Object
class for defining concrete objects: For example, the Tree class
models a tree, its generate () method uses an L-system for cre-
ating the mesh of the branch, and calls for the generation sub-
branches.

Interactor classes are associated to a type of symbol (i.e.
a type of deformation); They act as interfaces for an object able
to process the corresponding deformation. Deformation interpreta-
tion procedures (i.e. grammar rules) are coded inside process ()

method of the concrete class (inherited from the interactor). For
example, instances of the Tree class can interpret AffineDe-
formations since Tree inherits from AffineInteractor.
Applying an Af fineDeformation to a Tree instance is done
by calling its process () method inherited from AffineIn-
teractor with the corresponding Af fineSymbol.

Section 4.1 tells that a symbol contains the deformation target. In
this implementation, it is not explicitly required: The target of the
deformation is the object having its process () method called.

The interactor paradigm allows to implement interpretation of
different deformation types inside a single element type. It also
gives an easy way to query the interpretability of a deformation
type by an element, by casting the element into the corresponding
interactor.

Sculpting framework We used a standard sculpting software
largely developed independently of our grammar framework. El-
ements constituting complex objects are nodes of a scene graph
stored into a scene management object. User actions (mouse clicks,
cursor or wheel movements, key pressed) are received by an event
management object. The latter infer from the user action and the
system state the desired deformation, and instantiates the corre-
sponding symbol (using () as source). It then calls the appropriate
process () methods of the currently selected elements.

Each user action creates a grammar symbol which is fully pro-
cessed before the next user action is carried. Mouse gestures must
be processed at around 10 fps for the deformation to be smooth and
sculpture-like. This motivates the use of recursive function calls for
implementing deformation grammars: The latter are faster to exe-
cute than the more generic formal interpreter.

References

[ACWKO04] ANGELIDIS A., CANI M.-P.,, WyviLL G., KING S.:
Swirling-sweepers: Constant-volume modeling. In Graphical Models,
proc. of Pacific Graphics (2004). 2

[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hierarchical
mesh segmentation based on fitting primitives. The Visual Computer
(20006). 4

[AZL12] ALHASHIM I., ZHANG H., L1U L.: Detail-replicating shape
stretching. In The Visual Computer (2012). 2

[BBP13] BARROSO S., BESUIEVSKY G., PATOW G.: Visual copy and
paste for procedurally modeled buildings by ruleset rewriting. Comput-
ers and Graphics (2013). 2

[BPF*22] BOUDON F., PRUSINKIEWICZ P., FEDERL P., GODIN C.,
KARWOWSKI R.: Interactive design of bonsai tree models. Computer
Graphics Forum, Proc. Eurographics (22). 2

[BWKS11] BOKELOH M., WAND M., KOLTUN V., SEIDEL H.-P.:
Pattern-aware shape deformation using sliding dockers. In ACM TOG,
proc. of SIGGRAPH (2011). 2

[BWSK12] BOKELOH M., WAND M., SEIDEL H.-P., KOLTUN V.: An
algebraic model for parameterized shape editing. In ACM TOG, proc. of
SIGGRAPH (2012). 2

[Cit] CITYENGINE: Esri, http://www.esri.com/software/cityengine. 2

[DK14] DEKKERS E., KOBBELT L.: Geometry seam carving. In
Computer-Aided Design (2014). 2

[EBP*12] EMILIEN A., BERNHARDT A., PEYTAVIE A., CANI M.-P.,
GALIN E.: Procedural generation of villages on arbitrary terrains. The
Visual Computer (2012). 2,5

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

(__ Deformation N\

A

(~ AffineDeformation)

tlal : Matrix

(~ FreeFormDeformation)

Uef : Function

‘
1 Symbol
| emitter : Object

\def : DeformationType

FreeFormDeformation

AffineDeformation i

/4 AffineSymbol 2\ (~ FreeFormSymbol N\
ch: AffineDeformation) ch: FreeFormDeformation

N /N
, -
SymbolType : Class '
14 Interactor > - - - - _ _ . p

| |
| |
| process(SymbolType) : Bool |
| L J !
| |

A a
SymbolType = L LI * SymbolType = \
AffineSymbol ' FreeFormSymbol
/4 Affinelnteractor N\ (~ FreeFormlInteractor \

process(AffineSymbol) : Bool

Qrocess(FreeFonnSymbol) : Bool J

\

Object N\
ame : String
representation: Mesh

parent: Object
children: Object[]

T

/4 TreeModel 2\

Eenemte() : Void)

—rel

(DeformableTreeModel \

Figure 13: UML class diagram of our C++ implementation of de-
formation grammars through interactors. According to standard
UML notations: —> stands for inheritance; - - - > stands for de-
pendencys; - - - - stands for realization; And —> stands for aggre-
gation.

[EPCV14] EMILIEN A., POULIN P., CANI M.-P., VIMONT U.: Interac-
tive procedural modelling of coherent waterfall scenes. In CGE, proc. of
Eurographics (2014). 3

[EVC*15] EMILIEN A., VIMONT U., CANI M.-P., POULIN P., BENES
B.: Worldbrush: Interactive example-based synthesis of procedural vir-
tual worlds. In ACM TOG, proc. of SIGGRAPH (2015). 2, 8, 10

[FP99] FEDERL P., PRUSINKIEWICZ P.: Virtual laboratory: an interac-

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

tive software environment for computer graphics. Computer Graphics
International (1999). 2

[GPCP13] GONZzALEZ F., PARADINAS T., CoLL N., PaTtow G.:
*cages: : A multi-level, multi-cage based system for mesh deformation.
ACM Transactions on Graphics (2013). 2

[GSMCO09] GAL R., SORKINE O., MITRA N. J., COHEN-OR D.:
iwires: an analyze-and-edit approach to shape manipulation. In ACM
TOG, proc. of SSIGGRAPH (2009). 2

[IMAW15] ILCIK M., MUSIALSKI P., AUZINGER T., WIMMER M.:
Layer-based procedural design of facades. Computer Graphics Forum
(2015). 2

[JPCC14] JORDAO K., PETTRE J., CHRISTIE M., CANI M.-P.: Crowd
sculpting: A space-time sculpting method for populating virtual environ-
ments. In CGE proc. of Eurographics (2014). 3

[KSSCO08] KRAEVOY V., SHEFFER A., SHAMIR A., COHEN-OR D.:
Non-homogeneous resizing of complex models. In ACM TOG, proc. of
SIGGRAPH (2008). 2

[KW11] KELLY T., WONKA P.: Interactive architectural modeling with
procedural extrusions. ACM Transactions on Graphics (2011). 2

[LRBP12] LONGAY S., RUNIONS A., BOUDON F., PRUSINKIEWICZ P.:
Treesketch: interactive procedural modeling of trees on a tablet. In proc.
of the international symposium on sketch-based interfaces and modeling
(2012). 2,3, 10

[LSWWI11] Lipp M., SCHERZER D., WONKA P., WIMMER M.: Inter-
active modeling of city layouts using layers of procedural content. Com-
puter Graphics Forum (2011). 2

[LVW*15] Liu H., VIMONT U., WAND M., CANI M.-P., HAHMANN
S., ROHMER D., MITRA N. J.: Replaceable substructures for efficient
part-based modeling. In CGE proc. of Eurographics (2015). 2

[LWWO08] Lipp M., WONKA P., WIMMER M.: Interactive visual editing
of grammars for procedural architecture. In ACM TOG, proc. of SIG-
GRAPH (2008). 3

[ML13] MIAO Y., LIN H.: Visual saliency guided global and local resiz-
ing for 3d models. In Computer-Aided Design and Computer Graphics
(CAD/Graphics) (2013). 2

[MWCS13] MILLIEZ A., WAND M., CANI M.-P., SEIDEL H.-P.: Mu-
table elastic models for sculpting structured shapes. In CGE proc. of
Eurographics (2013). 3

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. In ACM TOG, proc.
of SIGGRAPH (2006). 5

[MWZ*13] MITRA N. J., WAND M., ZHANG H., COHEN-OR D.,
BOKELOH M.: Structure-aware shape processing. In Eurographics -
State of the Art Reports (2013). 2

[PBPS99] POWERIJ. L., BRUSH A. J. B., PRUSINKEIWICZ P., SALESIN
D. H.: Interactive arrangement of botanical l-system models. Symposium
on Interactive 3D Graphics (1999). 2

[PL12] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants. Springer Science & Business Media, 2012. 4

[RMGHI15] RITCHIE D., MILDENHALL B., GOODMAN N. D.,
HANRAHAN P.: Controlling procedural modeling programs with
stochastically-ordered sequential monte carlo. 11

[SAO7] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Symposium on Geometry Processing (2007). 2

[SCC11] STANCULESCU L., CHAINE R., CANI M.-P.: Freestyle:
Sculpting meshes with self-adaptive topology. In Computers & Graphics
(2011). 2,3, 8

[SCCS13] STANCULESCU L., CHAINE R., CANI M.-P., SINGH K.:
Sculpting multi-dimensional nested structures. In Computers & Graph-
ics (2013). 3

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

[SKK*14] STEINBERGER M., KENZEL M., KAINZ B., MUELLER J.,
WONKA P., SCHMALSTIEG D.: On-the-fly generation and rendering of
infinite cities on the gpu. Computer Graphics Forum, Proc. Eurographics
(2014). 2

[SM15] SCHWARZ M., MULLER P.: Advanced procedural modeling of
architecture. 5, 12

[VFTS06] VvON FuNCcK W., THEISEL H., SEIDEL H.-P.: Vector field
based shape deformations. In ACM TOG, proc. of SSIGGRAPH (2006). 2

[YCHK15] YUMER M. E., CHAUDHURI S., HODGINS J. K., KARA
L. B.: Semantic shape editing using deformation handles. In ACM TOG,
proc. of SSIGGRAPH (2015). 2

[ZFCO*11] ZHENG Y., Fu H., COHEN-OR D., AU O. K.-C., TAa1 C.-

L.: Component-wise controllers for structure-preserving shape manipu-
lation. In CGE proc. of Eurographics (2011). 2

[ZLDM16] ZHENG Y., L1U H., DORSEY J., MITRA N. J.: Ergonomics-
inspired reshaping and exploration of collections of models. /[EEE Trans-
actions on Visualization and Computer Graphics (2016). 2

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

U. Vimont et al. / Deformation Grammars: Hierarchical Constraint Preservation under Deformation

Figure 9: An initial distribution of houses (in left) is interactively deformed by the user using space deformation (middle and right figures).
Closed-by houses are merged into larger ones to model the increased density.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

