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(a) Actual positions (b) Layout after overlap removal with PRISM (left) and

REARRANGE (right)

(c) Layout after order-preserving overlap removal with

PRISM+OR (left) and REARRANGE+OR (right)

Figure 1: Layout results after overlap removal with two methods without (b) and two methods with (c) order preservation. Rectangles are

colored by displacement with respect to their actual position (a). Both with and without order preservation REARRANGE results in a layout

with smaller displacement and better shape preservation than PRISM.

Abstract

Given a set of rectangles embedded in the plane, we consider the problem of adjusting the layout to remove all overlap while

preserving the orthogonal order of the rectangles. The objective is to minimize the displacement of the rectangles. We call

this problem MINIMUM-DISPLACEMENT OVERLAP REMOVAL (MDOR). Our interest in this problem is motivated by the

application of displaying metadata of archaeological sites. Because most existing overlap removal algorithms are not designed

to minimize displacement while preserving orthogonal order, we present and compare several approaches which are tailored

to our particular usecase. We introduce a new overlap removal heuristic which we call REARRANGE. Although conceptually

simple, it is very effective in removing the overlap while keeping the displacement small. Furthermore, we propose an additional

procedure to repair the orthogonal order after every iteration, with which we extend both our new heuristic and PRISM, a

widely used overlap removal algorithm. We compare the performance of both approaches with and without this order repair

method. The experimental results indicate that REARRANGE is very effective for heterogeneous input data where the overlap is

concentrated in few dense regions.

1. Introduction

In this paper we study the problem of removing overlap between la-

bels on a map while keeping the labels close to their actual positions

and in the same order. Our interest in this problem is motivated by

the archaeological application of displaying information about ex-

cavation or heritage sites on a map. The same principles, however,

can be applied to many other types of geo-referenced data.

1.1. Motivation

Archaeological data are often site data: a list of sites or features

at various geographical coordinates and some metadata about each

site. The most popular way of representing data of this kind is to use

a symbol map [CL06], where each site is represented by a symbol

that conveys (a selection of) the metadata about the site. These sym-

bols are placed on the map at the geographical coordinates of the
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corresponding sites. In proportional symbol maps [CL06], the size

of the symbols is also used to encode information about the sites.

Symbol maps may represent the geological distribution of lithics

sources in the research area [Mor15], site assemblages or occupa-

tion histories [GF15, Bri11], or the spatial distribution of features

within a site [HM15], to name but a few examples. The problem

with this approach is always the same: if sites or features are close

to each other, the symbols will overlap. To make all symbols visi-

ble, they have to be scaled down and/or moved farther apart. Many

GIS packages commonly used in archaeology do offer automated

map production, but when it comes to the arrangement and scaling

of objects they generally perform poorly [CL06].

The problem can be formulated as an instance of node overlap

removal. Each archaeological site is represented by a node that has

the geographical coordinates of the site as initial position. The node

sizes correspond to the sizes of the metadata symbols. The objec-

tive is to find new positions for the nodes such that no two sym-

bols overlap. Because the spatial relations and cardinal orientation

among sites are important aids in the interpretation of archaeologi-

cal data, we would like to keep these properties intact.

Misue et al. [MELS95] introduced three models for maintaining

the mental map after layout adjustment, based on orthogonal or-

der, proximity relations, and topology. Orthogonal order (the left-

to-right and top-to-bottom order of the nodes) is particularly im-

portant to us. Archaeological research is often concerned with mi-

gration and trade routes. Changing the orthogonal order of sites

changes the order in which they could be encountered on a partic-

ular route. In the context of a project on Caribbean archaeology,

we are especially interested in visualizing sites in island settings.

Since orthogonal order corresponds to cardinal orientation, chang-

ing the order of sites might even influence whether one place could

be reached from another at all, for example if sea travel under the

influence of wind and currents is involved. We therefore include

orthogonal order preservation as a constraint.

If we take into account only orthogonal order, however, one im-

portant property of the layout is not yet maintained: characteristic

whitespace. If the study area contains uninhabitable areas (such as

the ocean between islands, or a volcano in the middle of an island),

large empty spaces between groups of sites are meaningful, and

we do not want to ignore them and spread the sites out evenly. We

therefore aim to keep each vertex as close as possible to the actual

site coordinates, which translates to minimizing the total displace-

ment of the nodes. Maintaining the shape of the layout also makes

it easier to project a map in the background in such a way that one

can recognize which site belongs in which area. This again aids the

archaeologist in their interpretation.

Combining the objectives and constraints described here re-

sults in the problem of removing node overlap with minimum dis-

placement under orthogonal-ordering constraints, which we call

MINIMUM-DISPLACEMENT OVERLAP REMOVAL (MDOR).

1.2. Formal definition of MDOR

Given a set of n rectangles embedded in the Euclidian plane, we

consider the problem of modifying the layout to avoid intersections

of the rectangles. The objective is to minimize the total displace-

ment, under the additional constraint that the orthogonal order of

the rectangles must be preserved. Let (xi,yi) be the initial coordi-

nates of the center of rectangle ri, and let (x′i ,y
′

i) be the coordinates

of the center after the overlap has been removed. We define the

total displacement in the new layout as the sum of the Euclidian

distances between the initial and the final position of the centers of

all rectangles:

total displacement =
n

∑
i=1

√
(xi − x′i)

2 +(yi − y′i)
2

A layout adjustment is orthogonal-order preserving if the or-

der of the rectangles with respect to the x- and the y-axis does not

change. More formally, the order is preserved if and only if for any

pair of rectangles ri and r j it holds that xi ≤ x j ⇒ x′i ≤ x′j and that

yi ≤ y j ⇒ y′i ≤ y′j.

1.3. Contribution

In this paper we present a new heuristic algorithm for the MDOR

problem. This algorithm, which we call REARRANGE, treats the

pairs of overlapping rectangles one by one. For each pair, it resolves

the overlap with the smallest displacement possible while strictly

keeping their orthogonal order. Since moving the rectangles of one

pair might still introduce order violations with other rectangles, we

further introduce a method to detect and resolve order violations

in a modified layout. We extend both the popular overlap removal

algorithm PRISM and our heuristic with this order repair method.

In multiple experiments we then evaluate the performance of both

the original and the extended algorithms.

2. Related work

The overlap removal problem has been widely studied in a va-

riety of flavours for different applications. Two main variants of

the problem can be distinguished: minimum-area and minimum-

displacement overlap removal. In minimum-area overlap removal

(sometimes referred to as minimum-area layout adjustment), the

objective is to minimize the total drawing area needed for the new

layout. This can result in very compact drawings, but is not suitable

for our application on geo-referenced data where empty areas can

also be meaningful. We therefore focus on the second variant on

the problem, minimum-displacement overlap removal.

Minimum-area overlap removal was shown to be NP-hard

[HIMF98], minimum-displacement overlap removal unsurprisingly

is NP-hard as well. As a result of this, a vast amount of heuristic

overlap-removal algorithms have been developed. In the following

we review the main approaches for both variants of the problem,

since some algorithms that were designed for the minimum-area

version of the problem contain interesting ideas that could be used

for any kind of overlap removal.

Along with the concept of preserving the mental map of a layout,

Misue et al. [MELS95] presented the Force Scan (FS) algorithm to

remove the overlap of rectangular nodes by computing forces push-

ing overlapping labels away from each other while keeping the total

area of the drawing small. Variants that also use pulling forces to

424



reduce white space are resulting in very compact drawings, but are

not suitable for our application. Hayashi et al. [HIMF98] presented

a variant called FS’ which computes layouts with even smaller

area, obtained by solving the case of multiple overlaps more space-

efficiently. Both FS and FS’ resolve the overlap between a pair of

rectangles along a line through their centers, resulting in an unnec-

essarily large local displacement. The displacement is then propa-

gated to all nodes above and to the right of the overlapping pair,

which might introduce additional unnecessary displacement.

The Force Transfer (FT) algorithm [HL03] improves on both of

these issues. Overlap is removed by horizontal or vertical move-

ment to obtain local minimum displacement, and the displacement

is propagated only to neighbors in what the authors call a cluster

sub-graph of rectangles connected by a chain of overlaps. However,

since the horizontal and vertical direction are processed one after

the other, some nodes in the cluster sub-graph still are moved un-

necessarily. Many other improvements to the original FS algorithm

have been proposed, a survey of those and other spring methods to

remove overlap can be found in [LEN05].

The Voronoi Cluster Buster algorithm by Lyons [Lyo92] re-

moves overlap by iteratively moving each node toward the center

of its Voronoi cell. This approach values an even distribution of the

nodes more than layout similarity, making it unsuitable for our ap-

plication. The Wordle layout algorithm by Viegas et al. [VWF09]

searches a new position for an overlapping node along an outward

spiral from the original position. Some improvements to this heuris-

tic have been proposed [KLKS10, SSS∗12], but none of them per-

form well regarding orthogonal order preservation.

Some cartogram algorithms also include removing overlap be-

tween objects. The widely used algorithm by Dorling [Dor96] de-

fines and then moves circles in the size of values they represent. Re-

pulsive forces push overlapping circles away from each other and

attraction forces tie the circles to their original position. The iter-

ative approach removes overlap and keeps the displacement small,

but it does not preserve the orthogonal order of the circle centers.

Another branch of overlap removal algorithms is based on con-

strained optimization [HM97,MSTH03]. In these algorithms, sep-

aration constraints are defined between the rectangles and quadratic

programming is used to solve a constrained optimization problem.

Orthogonal order constraints can be added to preserve the struc-

ture, but since this method does not take proximity relations into

account the shape of the layout might be changed significantly.

Dwyer et al. [DMS06] apply this idea to solve the 1-dimensional

version of the problem, which they call Variable Placement with

Separation Constraints (VPSC). To achieve better runtime for the

2-dimensional problem, they simply solve it in one dimension after

the other. This results in a strong distortion into the direction that

was addressed first, making this method unsuitable for our applica-

tion. Hirono et al. have demonstrated that constrained optimization

can also be used to remove occlusion from 3D-maps [HWAT13].

The PRISM algorithm by Gansner and Hu [GH09] minimizes

proximity stress. It is the most commonly used overlap removal al-

gorithm and also seems most promising for our application. Unlike

most of the alternatives, it aims to maintain the shape of the pointset

while removing the overlap. However, it does not maintain the or-

thogonal order and loses much of the relative positioning when

spreading out dense areas. The approach is based on a proximity

graph: a graph in which nodes that are close to each other share an

edge. For each edge in the proximity graph the algorithm calculates

a factor fs by which it should be stretched to remove possible over-

lap. This stretch factor is then used, along with measures for layout

similarity and compactness of the drawing, in a stress-function that

should be minimized when the layout is recalculated. The compu-

tation of fs takes into account whether the overlap is smaller in x- or

y-direction and what factor would remove the overlap in this direc-

tion. However, the movement takes place by stretching the prox-

imity edges. Multiple edges might be influencing the same node,

and the other components in the stress-function also influence the

movement. As a result of this, fs has to be adapted to resolve over-

lap in the actual rather than the optimal movement direction. This

can lead to an unnecessarily large displacement, similar to the Force

Scan variants mentioned above. Since the new layout is computed

based on stretching the edges in the proximity graph only, order vi-

olations might occur, either among nodes that do not share an edge

or along edges with close to horizontal or vertical orientations.

None of the algorithms described above exactly match our objec-

tives, so we introduce a new heuristic that is tailored to our version

of the problem.

3. Heuristic REARRANGE

Our heuristic algorithm REARRANGE takes as input a set R =
{r1, . . . ,rn} of n rectangles, where rectangle ri = (xi,yi,wi,hi) is

centered at position (xi,yi) and has size wi × hi. The algorithm

changes the coordinates of the rectangles such that, in the new

layout, no two rectangles intersect. We aim to keep the total dis-

placement of the rectangles and the number of orthogonal order

violations small.

The orthogonal order of the input for both the x- and the y-

dimension is determined in an initialization step in the main al-

gorithm (lines 1-3). The order can be weak: if multiple rectangles

are on the same x- or y-coordinate, they get the same rank in the

order for this dimension.

Algorithm 1: REARRANGE

input : Set R = {r1, . . . ,rn} of rectangles, where

ri = (xi,yi,wi,hi) is centered at coordinates (xi,yi)
and has size wi ×hi, overlap threshold value t0

output: The same set of rectangles with adjusted coordinates

1 forall ri ∈ R do

2 x-rank(ri) ← rank of ri in weak order of x-coordinates;

3 y-rank(ri) ← rank of ri in weak order of y-coordinates;

4 P ← DETECTOVERLAP(R);

5 while P �= ∅ do

6 SHUFFLE P;

7 foreach pair {ri,r j} ∈ P do

8 REMOVEOVERLAP(ri,r j);

9 P ← DETECTOVERLAP(R);
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We use a line-sweep [BW80] approach to find overlapping rect-

angles (line 4 and 9). For each overlapping pair, we remove the

overlap with local minimum displacement while taking the orthog-

onal order into account (lines 6-8).

The overlap removal method is based on the overlap size of the

given pair of rectangles. Let the x-overlap of a pair of rectangles

{ri,r j} be the minimum displacement needed to remove their over-

lap in the x-dimension while taking the orthogonal order into ac-

count. Figure 2 shows two overlapping rectangles ri and r j. If they

are already in the correct order with respect to the x-dimension, the

x-overlap is simply the distance between the right border of ri and

the left border of r j , as illustrated in Figure 2a. If the rectangles are

currently reversed with respect to their original order, the x-overlap

is the distance between the left border of ri and the right border of

r j, as illustrated in Figure 2b. If two rectangles have the same rank

in the x-dimension we cannot remove the overlap in this dimen-

sion without violating the order. In this case the x-overlap is set to

infinity. The y-overlap is defined analogously.

We define the overlap size of a pair of rectangles as the minimum

of their x-overlap and y-overlap. For rectangles that do not overlap,

the overlap size is 0. If the overlap size is greater than 0 but less

than the overlap threshold t0, we set the size to t0. This is to prevent

an infinite loop in which the movements keep getting smaller with

every iteration but never reach 0. Note that for rectangles that have

the same rank in both dimensions, which means they are at the same

initial position, the overlap size is positive infinity. Moving such

rectangles apart always violates the order in at least one dimension,

so this is not allowed to occur in the input.

The REMOVEOVERLAP routine takes a pair of rectangles {ri,r j}
as input and changes their coordinates to remove the overlap be-

tween them. It consists of two steps:

1. Compute the overlap size as described above, and the corre-

sponding dimension (x or y).

2. If the overlap size is greater than 0 (meaning there is an overlap)

and less than infinity (meaning the overlap can be removed),

move the lower ranked rectangle to the left or down (depending

on the dimension) by half the overlap size, and move the higher

ranked rectangle to the right or up by half the overlap size.

The thick grey rectangles in Figure 2 show the new positions after

overlap removal.

Moving two rectangles apart to resolve their overlap might intro-

duce new overlap with other rectangles, so we iteratively repeat the

overlap detection and removal steps until there are no more over-

lapping pairs. This will happen eventually because all overlaps are

resolved by moving both rectangles in opposing directions. This

will broadcast overlaps toward outer rectangles of a cluttered area

or even the whole input set and terminate when those can be moved

into empty drawing area. The theoretical runtime of an iteration is

dominated by finding the k intersecting pairs, which can be done in

O(|V | · log |V |+ k) [BW80].

Identical ranks In the current implementation the algorithm ter-

minates with an error message if it encounters two rectangles with

identical ranks, because in this case the overlap cannot be removed

without violating the orthogonal order. Rectangles get the same

(a) rank(ri) < rank(r j) (b) rank(ri) > rank(r j)

Figure 2: Overlap computation for correct (a) and reversed (b)

orthogonal order in the x-dimension

ranks if they have the same coordinates. In practice, this would cor-

respond to multiple items of metadata that belong to the exact same

geographical location. One way to deal with this problem is to ag-

gregate such rectangles to a single, larger one, possibly containing

several sub-rectangles. In our application this would make sense,

since they are all describing the same site. An alternative and more

general solution would be to apply a very small random displace-

ment to the input data, to remove any occurrence of identical co-

ordinates. The datasets we used for our evaluation did not contain

duplicate coordinates, so neither of these methods were used.

4. Method REPAIRORDER

Although REARRANGE considers the orthogonal order when it re-

moves the overlap between a pair of rectangles, it can still introduce

order violations. The rectangles from the pair under consideration

can be pushed past other rectangles in the layout. Therefore, we in-

troduce a method to repair the orthogonal order after each iteration.

The REPAIRORDER method is a modified version of MERGE-

SORT. Our strategy is similar to the project procedure Dwyer et al.

added to stress majorization in [DKM06], but finds and resolves

the inversions while sorting. It takes as input a list L = (r1, . . . ,rn)

of vertices, dimension d ∈ {x,y} for which the order should be re-

paired, and the markers left and right for the sublist that should be

considered in the current call. In the initial call the rectangles in L

are sorted by their current coordinate in dimension d. The algorithm

performs MERGESORT on this list of vertices, with two additions

when merging a left with a right list:

• Whenever an element er in the right list has a lower rank than an

element el in the left list, we do not only swap the vertices in the

list, we also recompute their coordinates to satisfy the orthogonal

order constraints: We compute the average of their coordinates

(in dimension d) and place both of them on this coordinate.

• If in the merging step we encounter two vertices with the same

rank, we collect all vertices of this rank, compute the average

of their coordinates (in dimension d), and place them all on this

average coordinate.

We extend both REARRANGE and the popular overlap removal

algorithm PRISM with the REPAIRORDER method to resolve order

violations after each iteration. Repairing the order might introduce

new overlaps, which will be treated in the next iteration.

The runtime of a REPAIRORDER iteration is dominated by re-

solving the inversions while sorting, which is the runtime of
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Algorithm 2: REPAIRORDER

input : List L = (r1, . . . ,rn) of rectangles, dimension

d ∈ {x,y} for which the order has to be repaired,

markers left and right defining the sublist that should

be considered.

output: The same list of vertices with adjusted coordinates.

1 Let ci be the coordinate and rank(ri) the rank of rectangle

R[i] = ri in the given dimension d;

2 if left < right then

3 mid ← �(left+ right−1)/2	;

4 REPAIRORDER(L,d, left,mid);

5 REPAIRORDER(L,d,mid+1,right);

6 i ← left; j ← mid+1; k ← left;

7 while i ≤ mid and j ≤ right do

8 if rank(ri)< rank(r j) then

9 ri is first in the order, no action required;

10 L′[k]← L[i]; i++; k++;

11 else

12 cr ← rank(ri); group ←∅;

13 while i ≤ mid do

14 group.add(ri);

15 i++;

16 while rank(r j) = cr do

17 group.add(r j);

18 L′[k]← L[ j]; j++; k++;

19 cavg ← average cg of all rg ∈ group;

20 forall rg ∈ group do

21 cg ← cavg;

22 for h ← i, . . . ,mid do

23 L[k+h− i]← L[h];

24 for h ← left, . . . ,k−1 do

25 L[h]← L′[h];

MERGESORT plus the number i of inversions that have to be re-

solved, hence O(n logn+ i).

To verify that the algorithm still terminates we have to take a

closer look at what happens when an inversion is repaired. When

an overlap removal step caused an order violation, repairing this

violation will at most push the rectangle back to its previous posi-

tion. This might re-introduce some overlap, but since the overlap

was removed by moving both rectangles, it is now smaller than be-

fore. Again, the overlap is propagated to the outer borders of the

more cluttered areas or the entire pointset, where it can be resolved

without introducing new violations.

5. Evaluation

We evaluate our heuristic REARRANGE in comparison to PRISM,

and we extend both algorithms with the order repair method

(PRISM+OR and REARRANGE+OR) to guarantee preservation of

the orthogonal order. Both algorithms and the extension with order

repair were implemented in Java, building on the framework of the

network visualization tool Visone (www.visone.info). Exper-

iments were executed on a 64-bit desktop PC with an Intel Core

i7-4790 CPU (3.60 GHz, 8 cores, 8 MB cache) and 16 GB RAM.

We use the following datasets to evaluate the algorithms.

Geographical data We have one real-life dataset, a collection of

69 cultural heritage sites on the island of St. Kitts obtained through

a crowdsourcing project [HSPT]. Each site should be represented

by a card with metadata, which includes site name, type of heritage,

and optionally a picture and/or a description. These cards determine

the size of the rectangles. To test our methods more extensively, we

extracted additional data from OpenStreetMap. To approximate ar-

chaeological site data on islands, we use the locations of important

places such as churches, schools, and museums on several islands

in Central America. We have a total of 134 such datasets, each con-

taining between 20 and 200 site locations. Since the hypothetical

representations of metadata for these sites could have any shape or

size, we model them by generating rectangles with randomly cho-

sen width and height. The rectangles have an aspect ratio between

1:4 and 4:1, and their average size depends on the area covered by

the pointset and the number of points. The middle column in Figure

6 shows examples of this type of input. We generated three sets of

random rectangles for each set of site locations. For comparison,

we also created one consisting of uniform squares and one consist-

ing of uniform rectangles with ratio 3:1.

Synthetic data For graph-related applications of overlap removal

nodes are often assumed to be of uniform size and shape, when

textual labels are expected they tend to all be wide rectangles. For

our application, however, we expect varying shapes of metadata-

symbols. To investigate the influence of label shapes on the perfor-

mance of the methods in more detail, we generated a series of syn-

thetic datasets with varying labels. The initial layout always con-

sists of normally distributed clusters spread around a circle, 100

(a) 5% wide labels (b) 50% wide labels (c) 95% wide labels

(d) low density (e) medium density (f) high density

Figure 3: Examples of synthetic test data with varying label shapes

(a-c) and density (d-f)
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nodes in total. We start with only tall labels (rectangles with aspect

ratio 1:4), and replace them with wide labels (rectangles with aspect

ratio 4:1) one by one, until all labels are wide. For each tall-to-wide

ratio we run the algorithms and compare the results. For the appli-

cation of labeling geographic maps we expect clustered datasets

with relatively small amounts of overlap and a lot of empty space.

To test what happens when the data is homogenous and dense, we

created a series of synthetic datasets with increasing label size. The

layout is a uniform random distribution of 100 points, the labels

are equal-sized squares. We run the algorithm with the different la-

bel sizes and compare the results. Both types of synthetic data are

illustrated in Figure 3.

5.1. Quality metrics

To compare the quality of the outputs of the different algorithms,

we consider the following measures:

• Our objective is to keep the total displacement of the rectangles

small, so we measure the total displacement of the rectangles

relative to their initial positions.

• We are also interested in how well the shape of the input is main-

tained. If the original graph is just scaled, shifted, or rotated as

a whole, we would consider the result to have the same shape

as before. The neglection of such transformations is achieved by

finding the optimal scaling, rotation/reflection, and shifting such

that the displacement of the vertices is minimized. This is known

as the Procrustes transformation [BG05]. We use the protest

method in R [OBF∗16] to perform a Procrustes analysis match-

ing the result of each method to the input data, and compute the

Procrustes correlation between the initial positions and the trans-

formed resulting layout. The correlation is a value between 0 and

1, where a value close to 1 indicates that two shapes are similar.

• When we run the algorithms without the ORDERREPAIR method

we also count the number of order violations in the final layout.

• We also record and compare the runtimes of the algorithms.

PRISM ReArrange

mean displacement 72.63 50.37

% won on displacement 0 100

mean procrustes 0.9920 0.9959

% won on procrustes 0.8 99.2

mean order violations 3.15 3.02

% won order violations 44.3 55.7

mean runtime 0.0047 0.0035

% won on runtime 8.4 88.5

PRISM+OR ReArrange+OR

mean displacement 135.0 115.33

% won on displacement 14.0 86.0

mean procrustes 0.9802 0.9847

% won on procrustes 12.5 87.5

mean runtime 1.2078 0.0815

% won on runtime 4.6 95.4

Table 1: Summary of the results for all four methods applied to the

geographical datasets with randomized label shapes

5.2. Results

Table 1 summarizes the results for all four methods applied to the

geographic datasets with varying label shapes. The percentage of

won cases indicated in this table is the percentage of datasets for

which this method scored better for this measure than the compet-

ing method. Figure 5 shows the results for displacement, Procrustes

correlation and order violations in more detail. Each dot represents

one of the geographic datasets. The average displacement per node,

Procrustes correlation, or number of violations that the two meth-

ods without or with order preservation achieved on this dataset are

plotted against each other. A dot above the diagonal line indicates a

case where PRISM performed better than REARRANGE, a dot be-

low the diagonal shows a case where REARRANGE outperformed

PRISM. These plots show that without order repair, REARRANGE

always results in a smaller average displacement than PRISM (Fig.

5a) and with only two exceptions also achieves a higher Procrustes

correlation (Fig. 5b), meaning better shape preservation. When we

extend both approaches with our ORDERREPAIR method the num-

ber of exceptions increases (Fig. 5d,e), but for both displacement

and Procrustes correlation REARRANGE still performs better in

over 85% of the cases (Table 1). Figure 5c shows the number of

orthogonal order violations in the results of both methods without

order repair. Here the performance of both methods is compara-

ble for the smaller datasets (blue dots), but especially for the larger

datasets (red dots) REARRANGE tends to cause fewer order vio-

lations. Overall, REARRANGE caused fewer violations in roughly

55% of the cases.
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(b) Runtime comparison for algorithms with order repair

Figure 4: Comparison of runtime in seconds, averaged over three

runs for each algorithm. Both with and without order repair,

REARRANGE is faster in the vast majority of the cases.
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(e)

Figure 5: Displacement (a), Procrustes correlation (b) and order violations (c) for PRISM versus REARRANGE and displacement (d) and

Procrustes correlation (e) for PRISM with order repair versus REARRANGE with order repair. Each dot represents one test instance, the color

indicates the number of nodes in this instance. Points below the diagonal represent instances where REARRANGE outperformed PRISM.

Figure 4 shows the runtimes of all four methods. Without order

repair REARRANGE tends to be slightly faster than PRISM, but the

differences are quite small and for the larger instances there are

a few outliers. When we add order repair to both algorithms the

differences in runtime become much larger and REARRANGE is

faster in over 95% of the cases. Figure 4b shows that especially for

larger instances, PRISM+OR often takes extremely long. This can

once again be explained by the fact that PRISM introduces more

order violations in its overlap removal step. When many violations

have to be repaired, many movements have to be (partially) undone,

and this causes the combined method to converge much slower than

without order repair.

Figure 6 shows four example cases that help explain why RE-

ARRANGE often performs better than PRISM. For each example

the initial positions (middle), the resulting layouts for both methods

without order preservation (left), and the resulting layouts for both

methods with order violation (right) are shown. The color of each

rectangle corresponds to its displacement, with white representing

no displacement and dark red representing maximal displacement.

As explained in Section 2, PRISM removes overlap along the edges

of the proximity graph rather than in the direction of minimum dis-

placement, which can lead to unnecessarily large displacements.

This is most clearly illustrated by the cluster of three rectangles

on the left of Figure 6a. A similar problem occurs for larger dense

clusters, as shown in Figure 6b. PRISM pushes multiple rectangles

along a ray out of the center, introducing some large displacements.

REARRANGE keeps the rectangles closer together by removing

overlap for each pair in the direction of minimum displacement. As

a result of moving rectangles in dense clusters radially outwards

PRISM sometimes creates rings of rectangles with empty centers,

which also results in a large displacement. This case is illustrated in

Figure 6c. As explained above, PRISM tends to cause more order

violations than REARRANGE, especially in larger graphs. When we

extend both methods with order repair this becomes a disadvantage

for PRISM. As shown in Figure 6d, many rectangles end up on one

line. This is a result of the order repair method that is executed af-

ter each iteration. Because PRISM causes more violations, more

of them have to be repaired, which is done by putting the violat-

ing rectangles on one line. All of the issues described here have

a negative influence on the displacement as well as the Procrustes

correlation for the PRISM+OR results.
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(a) Parks on Saint Croix

(b) Schools on Aruba

(c) Churches on Martinique

(d) Schools on Grand Cayman

Figure 6: Layout results for four examples. The initial layout is shown in the middle, the results of the two methods without order repair on

the left, and the results of both methods with order repair on the right. The rectangles are colored by their displacement. The lighter-colored

rectangles in the REARRANGE layouts indicate that REARRANGE(+OR) results in a smaller displacement than PRISM(+OR). The numbers

at the bottom indicate the average displacement (d), Procrustes correlation (p) and average number of violations (v).

Label shapes To test the influence of the shape of the labels, we

also applied the algorithms to the geographic datasets with uniform

labels. For uniform squares the results are very similar to those with

random rectangles, but when we use uniform wide rectangles (ra-

tio 3:1) we do see some changes. In terms of displacement and

Procrustes correlation both methods perform worse with the wide

rectangles. The win-percentage of REARRANGE drops to 78% of

the cases for displacement and 64% for Procrustes correlation. To

study this effect in more detail, we apply all four methods to the

synthetic data with varying label shapes. Figure 7 shows the results

in terms of displacement and Procrustes correlation. The percent-

age of wide labels is plotted along the x-axis, the remaining labels

are tall. The performance of REARRANGE is quite stable for vary-

ing shape distributions, but it obtains slightly better results when

both shapes occur equally often. PRISM on the other hand per-

forms best with uniform labels. With respect to displacement RE-

ARRANGE remains the clear winner in any case, but when almost

all of the labels are wide rectangles there is not much difference be-

tween the two algorithms regarding the Procrustes correlation. For

the methods with order repair we observe a similar pattern but with

more variation in the results. REARRANGE performs better on aver-

age, but the difference with PRISM is largest for input with varying
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(d)

Figure 7: Variation in results depending on label shapes. The per-

formance of REARRANGE remains similar for varying label shape

distributions, PRISM clearly performs better with uniform labels

than with a mix of tall and wide rectangles.

label shapes. This can be explained by the fact that our heuristic de-

cides in which direction an overlap should be removed based on in

which dimension the overlap is smaller. When all labels are very

wide, the overlap in y-direction is much more likely to be smaller

and the image will be stretched in one direction. This has a negative

influence on the Procrustes correlation.

Density Another factor that could influence how well the algo-

rithms perform is the density of the input. We tested series of

uniform-randomly distributed datasets with equal-sized squares,

where we increased the density by scaling up the labels in each

step. In all cases REARRANGE achieves a smaller displacement,

and difference with PRISM gets larger as the density of the in-

put increases. Figure 8 shows the results for Procrustes correlation

and the number of order violations. For both these measures RE-

ARRANGE performs better than PRISM for low-density input, but

for high-density input it is the other way around. When we add or-

der repair to the algorithms, REARRANGE still achieves a smaller

displacement in over 80% of the cases. Both algorithms perform

worse regarding Procrustes correlation as the density increases, but

this has no clear effect on which one performs better.

Application example In our application of visualizing meta-data

of archaeological sites, varying label shapes and relatively low den-

sity are to be expected due to the nature of the data. Our real-life

dataset of cultural heritage sites on the island of Saint Kitts is one
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Figure 8: Procrustes correlation (a) and order violations (b) for

PRISM versus REARRANGE, showing the variation in results de-

pending on density. Each dot represents one test instance, the color

indicates the node size in this instance. Points below the diagonal

represent instances where REARRANGE outperformed PRISM.

example of this. Each site is represented by a card, but since some

elements are missing for some cards they have varying dimensions.

Figure 9 shows an overlap-free layout for this dataset, computed

with REARRANGE+OR.

6. Conclusion

We presented a new heuristic for the minimum-displacement over-

lap removal problem. In addition, we proposed an order repair

method that resolves orthogonal order violations after every iter-

ation of overlap removal. We extended our own heuristic REAR-

RANGE and the commonly used overlap removal algorithm PRISM

with this repair method, and compared the results. We evaluated

both approaches with and without order repair using various met-

rics. The experiments show that our new heuristic approach results

in the smallest displacement for almost all of the data sets and main-

tains the shape of the input better for most of them. This makes it

especially useful for applications which require a non-overlapping

placement of objects close to desired (geographical) positions, like

symbol maps of archeological sites. Furthermore, our experiments

indicate that our heuristic performs especially well when the input

contains labels of varying sizes.

In future work we aim to further improve our heuristic algorithm,

and to explore how well it performs on non-geographical data. It

would also be interesting to study the influence of different label

shapes in more detail. Furthermore, would like to generate test data

sets that have different characteristics according to known spatial

statistics to understand the influence of different point configura-

tions better. Another potential research direction would be to look

into trade-offs between displacement and other possibilities to re-

move overlap between rectangles, such as small changes in their

aspect-ratio. Such changes could reduce the displacement needed

to obtain a disjoint layout. Finally, it would be interesting to also

compare our approach to other overlap removal methods used in

practice.
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Figure 9: Layout result for real-world data: meta-data cards representing culture and heritage sites on the island of Saint Kitts. This order-

preserving layout was computed using REARRANGE extended with order repair. A map of the island is projected in the background with the

same distortion as the bounding box of the point set. The actual positions are shown in the lower left corner.
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