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Figure 1: In training (left), our approach learns a mapping from attributes in deferred shading buffers, e. g., positions, normals, reflectance,
to RGB colors using a convolutional neural network (CNN). At run-time (right), the CNN is used to produce effects such as depth-of-field,
sub-surface scattering or ambient occlusion at interactive rates (768x512 , px 1 ms rasterizing attributes, 21/21/ 17 ms network execution).

Abstract

In computer vision, convolutional neural networks (CNNs) have
recently achieved new levels of performance for several inverse
problems where RGB pixel appearance is mapped to attributes such
as positions, normals or reflectance. In computer graphics, screen-
space shading has recently increased the visual quality in interactive
image synthesis, where per-pixel attributes such as positions, nor-
mals or reflectance of a virtual 3D scene are converted into RGB
pixel appearance, enabling effects like ambient occlusion, indirect
light, scattering, depth-of-field, motion blur, or anti-aliasing. In this
paper we consider the diagonal problem: synthesizing appearance
from given per-pixel attributes using a CNN. The resulting Deep
Shading simulates various screen-space effects at competitive qual-
ity and speed while not being programmed by human experts but
learned from example images.

Keywords: global illumination, convolutional neural networks,
screen-space
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1 Introduction

The move to deep architectures in machine learning has precipitated
unprecedented levels of performance on various computer vision
tasks, with several applications having the inverse problem of map-
ping image pixel RGB appearance to attributes such as positions,
normals or reflectance as an intermediate or end objective. Deep
architectures have further opened up avenues for several novel ap-
plications. In computer graphics, screen-space shading has been
instrumental in increasing the visual quality in interactive image
synthesis, employing per-pixel attributes such as positions, normals
or reflectance of a virtual 3D scene to render RGB appearance
that captures effects such as ambient occlusion (AO), indirect light
(GI), sub-surface scattering (SSS), depth-of-field (DOF), motion
blur (MB), and anti-aliasing (AA).

In this paper we turn around the typical flow of information through
computer vision deep learning pipelines to synthesize appearance
from given per-pixel attributes, making use of deep convolutional
architectures (CNNs). We call the resulting approach Deep Shading
[Anonymous 2016]. It can achieve quality and performance similar
or better than human-written shaders, by only learning from exam-
ple data. This avoids human effort in programming those shaders
and ultimately allows to for a deep “ilibershader” that consistently
combines all previously separate screen space effects.

2 Previous Work

Previous work comes, on the one hand, from a computer graphics
background where attributes have to be converted into appearance
and, on the other hand, from a computer vision background where
appearance has to be converted into attributes.

Attributes-to-appearance The rendering equation [Kajiya 1986]
is a reliable forward model of appearance in the form of radiance
incident at a virtual camera sensor when a three-dimensional de-
scription of the scene in form of attributes like positions, normals
and reflectance is given. Several simulation methods for solving it
exist, such as finite elements, Monte Carlo path tracing and photon
mapping. The high-quality results these achieve come at the cost of
significant computational effort. Interactive performance is only pos-
sible through advanced parallel implementations in specific shader
languages [Owens et al. 2007], which not only demands a substantial
programming effort, but the proficiency as well. By choosing to
leverage deep learning architectures, we seek to overcome those com-
putational costs by focusing computation on converting attributes
into appearance according to example data rather than using physical
principles.

Our approach is based on screen-space shading that has been demon-
strated to approximate many visual effects at high performance,
such as ambient occlusion (AO) [Mittring 2007], indirect light (GI)
[Ritschel et al. 2009], sub-surface scattering (SSS) [Jimenez et al.
2009], participating media [Elek et al. 2013], depth-of-field (DOF)



[Rokita 1993] and motion blur (MB) [McGuire et al. 2012]. Anti-
aliasing too can be understood as a special form of screen-space
shading, where additional depth information allows to post-blur
along the “correct” edge to reduce aliasing in FXAA [Lottes 2011].
All of these approaches proceed by transforming a deferred shad-
ing buffer [Saito and Takahashi 1990], i.e., a dense map of pixel-
attributes, into RGB appearance. We will further show how a single
CNN allows combining all of the effects above at once.

Although screen-space shading bears limitations like missing light or
shadow from surfaces not part of the image, several properties make
it an attractive choice for interactive applications such as computer
games: computation is focused only on what is visible on screen;
no pre-computations are required making it ideal for rich dynamic
worlds; it is independent of the geometric representation, allowing
to shade range images or ray-casted iso-surface; it fits the massive
fine-grained parallelism of current GPUs and many different effects
can be computed from the same input representation.

Until now, image synthesis, in particular in screen-space, has con-
sidered the problem from a pure simulation point of view. In this
paper, we demonstrate competitive results achieved by learning from
data, mitigating the need for mathematical derivations from first
principles. This has the benefit of avoiding any effort that comes
with designing a mathematical simulation model. All that is required
is one general but slow simulation system, such as Monte Carlo,
to produce exemplars. Also, it adapts to the statistics of the visual
corpus of our world which might not be congruent to the one a
shader programmer assumes.

Applications of machine learning to image synthesis are limited,
with a few notable exceptions. A general overview of how computer
graphics could benefit from machine learning, combined with a
tutorial from a CG perspective, is given by Hertzmann [2003]. The
CG2Real system [Johnson et al. 2011] starts from simulated images
that are then augmented by patches of natural images. It achieves
images that are locally very close to real world example data, but it is
founded in a simulation system, sharing all its limitations and design
effort. Recently, CNNs were used to transfer artistic style from a
corpus of example images to any new exemplar [Gatys et al. 2015].
Our work is different as shading needs to be produced in real-time
and in response to a great number of guide signals encoding the
scene features instead of just locally changing RGB structures when
given other RGB structures. Dachsbacher [2011] has used neural
networks to reason about occluder configurations. Neural networks
have also been used as a basis of pre-computed radiance transfer
[Ren et al. 2013] (PRT) by running them on existing features to fit a
function valid for a single scene. In a similar spirit, Ren et al. [2015]
have applied machine learning to re-lighting: Here an artificial
neural network (ANN) learns how image pixels change color in
response to modified lighting. Both works [Ren et al. 2013; Ren
et al. 2015] demonstrate high-qualitfy results when generalizing
over light conditions but share the limitation to static 3D scenes,
resp. 2D images, without showing generalization to new geometry
or animations, such as we do. Such generalization is critical for
real applications where geometry is dynamic, resulting in a much
more demanding problem that is worth addressing using advanced
(i.e., deep) learning. In the same way that PRT was not adopted
by the gaming industry for the aforementioned limitations (static
geometry), but screen-space shading is, we would argue that only
Deep Shading achieves the generalization required to make learning
a competitive image-synthesis solution in practice.

Earlier, neural networks were used to learn a mapping from character
poses to visibility for PRT [Nowrouzezahrai et al. 2009]. Without
the end-to-end learning made possible by deeper architectures, the
aforementioned approaches do not achieve generalization between
scenes, but remain limited to a specific room, character, etc. Kalan-

tari et al. [2015] have used sample data to learn optimal parameters
for filtering Monte Carlo Noise. Our function domain, i. e., screen-
space attributes, is similar to Kalantari et al. [2015]. The range
however, is very different. While they learn filter parameters, we
learn the entire shading. Not much is known about the complexity of
the mapping from attributes to filter settings and what is the effect of
sub-optimal learning. In our case, the mapping from attributes to the
value is as complex as shading itself. At the same time, the stakes
are high: learning a mapping from attributes to shading results in an
entirely different form of interactive image synthesis, not building
on anything such as Monte-Carlo ray-tracing that can be slow to
compute. Typically, no end-to-end performance numbers are given
for Monte-Carlo noise filtering work such as Kalantari et al. [2015].

For image processing, convolution pyramids [Farbman et al. 2011]
have pursued an approach that optimizes over the space of filters to
the end of fast and large convolutions. Our approach optimizes over
pyramidal filters as well, but allows for a much larger number of
internal states and much more complex filters defined on much richer
input. Similar to Convolutional Pyramids, our network is based on
a “pyramidal” CNN, allowing for fast but large filters to produce
long-range effects such as distant shadows or strong depth-of-field.

Appearance-to-attributes The inverse problem of turning image
appearance into semantic and non-semantic attributes lies at the
heart of computer vision. Of late, deep neural networks, particularly
CNNSs, have shown unprecedented advances in typical inverse prob-
lems such as detection [Krizhevsky et al. 2012], segmentation and
detection [Girshick et al. 2014], or depth [Eigen et al. 2014], normal
[Wang et al. 2015] or reflectance estimation [Narihira et al. 2015].
These advances are underpinned by three developments: availability
of large training datasets, deep but trainable (convolutional) learning
architectures, and GPU accelerated computation. Another key con-
tributor to these advances has been the ability to train end-to-end,
i.e., going from input to desired output without having to devise
intermediate representations and special processing steps.

One recent advance would be of importance in the application of
CNNss to high-quality shading: The ability to produce dense per-
pixel output, even for high resolutions, by CNNs that do not only
decrease, but also increase resolutions as proposed by [Long et al.
2015; Hariharan et al. 2015], resulting in fine per-pixel solutions.
For the problem of segmentation, Ronneberger et al. [2015] even
apply a fully symmetric U-shaped net where each down-sampling
step is matched by a corresponding up-sampling step that may also
re-use earlier intermediate results of the same resolution level.

CNNs have also been employed to replace certain graphics pipeline
operations such as changing the viewpoint [Dosovitskiy et al. 2015;
Kulkarni et al. 2015]. Here, appearance is already known, but is
manipulated to achieve a novel view. In our work, we do not seek to
change a rendered image but to create full high-quality shading from
the basic output of a GPU pipeline such as geometry transformation,
visible surface determination, culling, direct light, and shadows.

We seek to circumvent the need to manually concoct and combine
convolutions into screen-space shaders that have to be programmed,
and ultimately benefit from the tremendous advances in optimizing
over deep convolutional networks to achieve a single screen-space
iiber-shader that is optimal in the sense of certain training data.

3 Background

Here we briefly summarize some aspects of machine learning, neural
networks, deep learning, and training of convolutional networks,
to the extent necessary for immediate application to the computer
graphics problem of shading.



For our purposes, it suffices to view (supervised) learning as simply
fitting a sufficiently complex and high-dimensional function f to
data samples generated from an underlying, unknown function f,
without letting the peculiarities of the sampling process from being
expressed in the fit. In our case, the domain of f consists of all
instances of a per-pixel deferred shading buffer for images of a given
resolution (containing per-pixel attributes such as position, normals
and material parameters) and the output is the per-pixel RGB image
appearance of the same spatial resolution. We are given the value
f(x;) of the function applied to x;, the ith of n example inputs. From
this we would like to find a good approximation f to f, with the
quality of the fit quantified by a cost/loss function that defines some
measure of difference between f(x;) and f(x;). Training examples
can be produced in arbitrary quantity, by mere path tracing or any
other sufficiently powerful image synthesis algorithm.

Neural networks (NNs) are a particularly useful way of defining
arbitrary non-linear approximations f. A neural network is typically
comprised of computational units or neurons, each with a set of
inputs and a singular scalar output that is a non-linear function of
some affine combination of its inputs governed by a vector of weights
wy, for each unit k. This affine combination per unit is what is learned
during training. The units are arranged in a hierarchical fashion in
layers, with the outputs from one layer serving as the inputs to
the layers later in the hierarchy. There usually are no connections
between units of the same layer. The fan-in of each unit can either
connect to all outputs of the previous layer (fully-connected), or only
sparsely to a few, typically nearby ones. Furthermore, units can also
be connected to several preceding layers in the hierarchy.

The non-linearities applied to the affine combination per unit are
called activation functions. These are often smooth functions, such
as the sigmoid. We make use of Rectified Linear Units (ReLUs)
which are defined by r(x) = max(0,x).

Defining w as the set of weights for the entire network, the function
f(x;) can be expressed as fw(x;). A typical choice of loss is the
squared .%5-norm: ||fw(x;) — f(x;)||3. Alternatively, a perceptual
loss function based on a combination of .Z;-norm and structural
similarity (SSIM) index may be used [Zhao et al. 2015]. Optimizing
weights with respect to the loss is a non-linear optimization process,
and Stochastic Gradient Descent or its variants are the usual choice
of learning algorithm. The method makes a computational time -
run time trade-off between computing loss gradients with respect to
weights at all exemplars at each gradient descent step and computing
gradients with one sample at a particular gradient descent step, by
choosing to compute it for subsets of exemplars in mini-batches.
The gradient with respect to w is computed by means of back-
propagation, 1. e., the error is first computed at the output layer and
then propagated backwards through the network [Rumelhart et al.
1988]. From this, the corresponding update to each unit’s weight
can be computed.
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Figure 2: Terminology.

Convolutional networks are particular neural networks bearing reg-
ular spatial arrangement of the units. Within each layer, units are
arranged in multiple regular and same-sized grid slices. Each unit in
layer i+ 1 connects to the outputs of the units from all slices of layer
i within a certain local spatial extent, centered at the unit, defined
as the (spatial) kernel size of layer i + 1. All units of a slice share

their weights, i. e., the operation of each slice can be seen as a 3D
convolution with a kernel as large as the spatial fan-in of the units
along two dimensions, and as large as the number of slices in the
previous layer along the third dimension. We will refer to spatial
kernel size simply as kernel size.

CNNss typically stack multiple such convolutional layers, with spa-
tial resolution being reduced between consecutive layers as a trick
to achieve translation invariance, and computational efficiency for
richer features. However, de-convolutional (or up-sampling) net-
works allow us to increase the resolution back again [Long et al.
2015], which is critical for our task, where per-pixel appearance i. e.,
high-quality shading needs to be produced quickly.

4 Deep Shading

Here, we detail the training data we produced for our task, the
network architecture proposed and the process of training it.

4.1 Data Generation

Structure of the Data Our data sets consist of 61,000 pairs of
deferred shading buffers and corresponding shaded reference images
in a resolution of 512 x 512 px for AO and 256 x 256 px for all other
effects. Of these 61,000 pairs, we use 54,000 images to train the
network, 6,000 for validation and the remaining 1,000 for testing
(Sec. 6.2). Train and validation images share the same set of 10
scenes, while the test images come from 4 different scenes not used
in training or validation.

To generate the 60,000 train/validation images, we first render 1,000
pairs for each of the set of ten scenes of different nature (Fig. 3, left
part). These base images are then rotated (in steps of 90°) as well as
flipped horizontally and vertically to increase the robustness and size
of the training set in an easy way. Special care has to be taken when
transforming attributes stored in view space, here the respective
positions and vectors have to be transformed themselves by applying
rotations or mirroring. For the test set, we proceed analogously
but using the distinct set of four scenes and appropriately less base
images per scene. Generating one set, i. e., rendering and subsequent
data augmentation, takes up to about 170 hours of computation on a
single high-end GPU. We plan to make our network definitions and
data sets available for use by other research groups.

The base images all show unique and randomly sampled views of
the respective scene seen through a perspective camera with a fixed
field-of-view of 50°. View positions are sampled from a box fitted
to the scenes’ spatial extents. Sec. 5 contains additional information
on the training sets for each application. Fig. 3 shows samples of
ground truth image pairs for one instance of the network.

About half of our scenes are common scenes from the computer
graphics community such as Crytek Sponza or Sibenik Cathedral
and other carefully modeled scenes from sources such as BlendSwap.
The remaining scenes were composed by ourselves using objects
from publicly available sources to cover as many object categories as
possible, e. g., vehicles, vegetation or food. Procedurally generated
scenes would be another more sophisticated option.

Attributes The deferred shading buffers are computed using
OpenGL’s rasterization without anti-aliasing of any form. They
contain per-pixel geometry, material and lighting information. All
labels are stored as 16 bit HDR images.

Positions are stored in camera space (Ps) while normals are stored
in camera and world space (N and Ny,). Camera space is chosen as,
for our shading purposes, absolute world positions do not contain
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Figure 3: Selection of images showing training and testing scenes with random textures and lighting.

more information than the former and would encourage the network
to memorize geometry. Normals are represented as unit vectors in
Cartesian coordinates. Additionally, depth alone (Ds = F;3) and
distance to the focal plane (Dyycy) are provided to also capture
sensor parameters. To be able to compute view-dependent effects,
the normalized direction to the camera (Cy,) and the angle between
this direction and the surface normal (C¢) are additional inputs.

Material parameters (R) combine surface and scattering properties.
For surfaces, we use the set of parameters to the Phong [1975] reflec-
tion model, i. e., RGB diffuse and specular colors (denoted as Rgifs
and Rpec) as well as scalar glossiness (Rgoss)- For scattering we use
the model by Christensen and Burley [2015] which is parameterized
by the length of the mean free path for each color channel (Rgcart)-

Direct light (denoted by L or Lg;¢r for diffuse-only) is not computed
by the network but provided as an input to it, as is the case with all
corresponding screen-space shaders we are aware of. Fortunately,
it can be quickly computed at run-time and fed into the network.
Specifically, we use the Phong reflection model and shadow maps.

Finally, to support motion blur, per-pixel object motion F is encoded
as a 2D polar coordinate in each pixel, assuming that the motion
during exposure time is small enough to be approximated well by
a translation. The first component holds the direction between 0
and 7 (motion blur is symmetric), the second component holds the
distance in that direction.

In summary, each pixel contains a high-dimensional features vector,
where the dimensions are partially redundant and correlated, e. g.,
normals are derivatives of positions and camera space differs from
world space only by a linear transformation. Nonetheless, those
attributes are the output of a typical deferred shading pass in a com-
mon interactive graphics application, produced within milliseconds
from complex geometric models. Redundant attributes come at al-
most no additional cost but improve the performance of networks
for certain effects. At the same time, for some effects that do not
need certain labels, they can be manually removed to increase speed.

Appearance The reference images store per-pixel RGB appear-
ance resulting from shading. They are produced from virtual scenes
using rendering. Paintings or even real photos would represent valid
sample data as well, but their acquisition is significantly more time-
consuming than that of the approximate references we use, of which
massive amounts can be produced in a reasonable time.

More specifically, we use path tracing for AO, DO and IBL and
sample multiple lens positions or points in time for depth-of-field
and motion blur, respectively. For anti-aliasing, reference images

are computed with 8 super-sampling relative to the label images.

We use 256 samples per pixel (spp) for all of the effects. While
Monte Carlo noise might remain, compute time is better invested
into producing a new image. All per-object attributes which are
allowed to vary at run-time (e. g., material parameters) are sampled
randomly for each training sample. For effects including depth-of-
field and sub-surface scattering we found it beneficial to texture
objects by randomly assigned textures from a large representative
texture pool [Cimpoi et al. 2014] to increase the information content
with respect to the underlying blurring operations. Automatic per-
object box mapping is used to assign UV coordinates.

We do not apply any gamma or tone mapping to our reference images
used in training. It therefore has to be applied as a post-process after
executing the network.

In practice, some effects like AO and DO do not compute final
appearance in terms of RGB radiance, but rather a quantity which
is later multiplied with albedo. We found networks that do not
emulate this obvious multiplication to be substantially more efficient
while also requiring less input data and therefore opt for a manual
multiplication. However, the networks for effects that go beyond this
simple case need to include the albedo in their input and calculations.
The result section will get back to where albedo is used in detail.
Tbl. 1 provides an overview in the column “albedo”.

In a similar vein, we have found that some effects are best trained
for a single color channel, while others need to be trained for all
channels at the same time. In the first case, the same network is
executed for all three input channels simultaneously using vector
arithmetic after training it on scalar images showing only one of
the color channels. In the second case, one network with different
weights for the three channels is run. We refer to the first case as
“mono” networks, to the latter as “RGB” networks (Tbl. 1).

4.2 Network

Our network is U-shaped, with a left and a right branch. The first
and left branch is reducing spatial resolution (down branch) and the
second and right branch is increasing it again (up branch). We refer
to the layers producing outputs of one resolution as a level. Fig. 4
shows an example of one such level. Overall, up to 6 levels with
corresponding resolutions ranging from 512 x 512 px to 16 x 16 px
are used. Further, we refer to the layers of a particular level and
branch (i. e., left or right) as a step. Each step is comprised of a con-
volution and a subsequent activation layer. The convolutions (blue in
Fig. 4) have a fixed extent in the spatial domain, which is the same
for all convolutions but may vary for different effects to compute.
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Figure 4: Left: The big picture with one branch going down and another going up again in a U-shape. Right:. One level of our network. Boxes
represent in- and outputs of the layers, the arrows correspond to the operations performed by the respective layers. The spatial resolution is
denoted by multiples of n, the number of channels by multiples of u. The convolution groups are not emphasized for simplicity.

Furthermore, we use convolution groups with 2" groups on level
n. This means that both input and output channels of a convolution
layer are grouped into 2" same-sized blocks where outputs from the
m-th block of output channels may only use values from the m-th
block of input channels. The consecutive activation layers (orange
in Fig. 4) consist of leaky ReLUs as described by Maas et al. [2013],
which multiply negative values by a small constant instead of zero.

The change in resolution between two steps on different levels is
performed by re-sampling layers. These are realized by 2 x 2 mean-
pooling on the down (red in Fig. 4) and by bilinear up-sampling
(green in Fig. 4) on the up branch.

The layout of this network is the same for all our effects, but the
number of kernels on each level and the number of levels vary. All
designs have in common that the number of kernels increases by a
factor of two on the down part to decrease by the same factor again
on the up part. We denote the number of kernels used on the first
level (i.e., level 0) by ug. A typical start value is ug = 16, resulting
in a 256-dimensional feature vector for every pixel in the coarsest
resolution for the frequent case of 5 levels. The coarsest level
consists of only one step, i. e., one convolution and one activation
layer, as depicted in Fig. 4. Additionally, the convolution steps in
the up-branch access the outputs of the corresponding step of the
same output resolution in the down part (gray arrow in Fig. 4). This
allows to retain fine spatial details.

A typical network has about 130,000 learnable parameters i.e.,
weights and bias terms (see Tbl. 1 for details). We call the CNN
resulting from training on a specific input and specific labels a Deep
Shader.

Training Caffe [Jia et al. 2014], an open-source neural network
implementation, is used to implement and train our networks. To
produce the input to the first step, all input attributes are loaded from
image files and their channels are concatenated forming input vectors
with 3 to 18 components per pixel. To facilitate learning of networks
of varying complexity, without the need of hyper-parameter opti-
mization, particularly of learning rates, we use an adaptive learning
rate method (ADADELTA [Zeiler 2012]) with a momentum of 0.9
which selects the learning rate autonomously.

We use a loss function based on the structural similarity (SSIM)
index [Zhao et al. 2015] which compares two image patches in a
perceptually motivated way, and which we found to work best for
our task (Sec. 6.3). The loss between the output of the network
and the ground truth is determined by tiling the two images into
8 x 8 px patches and combining the SSIM values computed between
corresponding patches for each channel. SSIM ranges from —1 to 1,
higher values indicating higher similarity. Structural dissimilarity
(DSSIM) is defined as (1 —SSIM)/2, and used as the final loss.

Testing The test error is computed as the average loss over our
test sets (Sec. 4.1). The resulting SSIM values are listed in Tbl. 1.

Implementation While Caffe is useful for training the network,
it is inconvenient for use inside an interactive application, e. g., the
buffers produced by OpenGL would have to be transformed to match
Caffe’s internal memory layout before being able to execute the
network. Instead of integrating Caffe into a rendering framework we
opted to re-implement the forward pass of the network using plain
OpenGL shaders operating on array textures. OpenGL also enables
us to use the GPU’s hardware support for up- and down-sampling as
well as to drop actual concatenation layers by simply accessing two
layered inputs instead of one when performing convolutions. In our
application, the Deep Shader output can be interactively explored as
seen in the supplemental video.

5 Results

This section analyzes learned Deep Shaders for different shading ef-
fects. Tbl. 1 provides an overview of their input attributes, structural
properties and resulting SSIM achieved on test sets, together with
the time needed to execute the network using our implementation
on an NVIDIA GeForce GTX 980 Ti GPU. For visual comparison,
we show examples of Deep Shaders applied to new (non-training)
scenes compared to the reference implementations used to produce
the training sets in Fig. 5.

Table 1: Structural properties of the networks for different effects,
resulting degrees of freedom, SSIM on the test set and time for
executing the network using our OpenGL implementation on 768 x
512 px inputs. In case of mono networks, the time refers to the
simultaneous execution of three networks. The SSIM is always with
respect to the raw output of the network, e. g., indirect irradiance
for GI. The final image might show even better SSIM.

Effect Attributes Albedo Mono uy. Lev. Ker. Size SSIM  Time
IBL Ny, Cq, R v X 300 I 1x1 39K .796 28ms
AO Ng, P X v 8 6 3x3 71K 729 17ms
DO Ny, Ns, P X X 16 5 3x3 135K 589 50ms
GI Ns, Py, Laige v v 16 5 3x3 134K .798 60 ms
SSS P, Rycan, L v v 8 5 3x3 133K 905 2l ms
DoF  Dyocar, L v v 8 5 3x3 34K .848 2l ms
MB  F,L,D; v v 16 5 3x3 133K 916 58ms
AA D, L v v 8 1 5x5 1217 982 3.8ms
Full Al v X 24 5 3x3 203K .667 97 ms

Ambient Occlusion Ambient occlusion, a prototypical screen-
space effect, simulates darkening in corners and creases due to
a high number of blocked light paths and is typically defined as
the percentage of directions in the hemisphere around the surface
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normal at a point which are not blocked within a certain distance.
Our ground truth images are computed using ray-tracing with a
constant effect range defined in world space units. In an actual
application, the AO term is typically multiplied with the ambient
lighting term before adding it to the image.
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Figure 6: A same-time comparison between Deep Shading and
HBAO. Deep Shading for AO is on-par with state-of-the-art methods
like HBAO, both numerically and visually.

The CNN faithfully reproduces darkening in areas with nearby ge-
ometry (Fig. 5), the most noticeable difference to the reference being
blurrier fine details. To evaluate how well our learned shader per-
forms in comparison to optimized screen-space AO techniques, in
Fig. 6, we show a same-time comparison to Horizon-based Ambi-
ent Occlusion (HBAQO) [Bavoil et al. 2008] which is an efficient
technique used in games. On the test set, HBAO achieves only
marginally higher SSIM than our network which we consider re-
markable given that our method has been learned by a machine.
We made AO the subject of further in-depth analysis of alternative
network designs described in Sec. 6 and seen in Fig. 10, a) and b).

Image-based Lighting In image-based lighting a scene is shaded
by sampling directions in a specific environment map to determine
incoming radiance, assuming the latter is unblocked. The network is
trained to render a final image based on diffuse and specular colors
as well as gloss strengths, so that no further processing is necessary.
It operates on all color channels simultaneously.

As can be seen from the vehicles in Fig. 5, the network handles
different material colors and levels of glossiness well. The two main
limitations are a slight color shift compared to the reference, as
seen in the tires of the tractors, and an upper bound on the level
of glossiness. The latter is not surprising as the extreme here is
a perfect mirror which would need a complete encoding of the
illumination used in training, which has a resolution of several
megapixels, into a few hundred network kernels. Generalizing over
different environment maps by using the latter as additional network
input remains future work.

Directional Occlusion Directional occlusion [Ritschel et al.
2009] is a generalization of AO where each sample direction is
associated with a radiance sample taken from an environment map
and light is summed only from unblocked directions. DO is applied
in the same way as AO. As for AO, ray-tracing is used to resolve
occluded directions within a fixed world-space radius. The training
data is produced using one specific environment map, hence the DO
Deep Shader, as for IBL, produces only shading for this particular
illumination. As IBL it operates on all channels simultaneously.

While AO works well, DO is more challenging for Deep Shading.
The increased difficulty comes from indirect shadows now having
different colors and appearing only for certain occlusion directions.

As can be seen in Fig. 5, the color of the light from the environment
map and the color of shadows match the reference but occlusion is
weakened in several places. This is due to the fact that the indirect
shadows resulting from DO induce much higher frequencies than
unshadowed illumination or the indirect shadows in AO, which
assume a constant white illumination from all directions, and are
harder to encode in a network.

Diffuse Indirect Light A common challenge in rasterization-
based real-time rendering is indirect lighting. To simplify the prob-
lem, the set of relevant light paths is often reduced to a single “indi-
rect bounce”, diffuse reflection [Tabellion and Lamorlette 2004] and
restricted to a certain radius of influence. The ground truth in our
case consists of the “indirect radiance”, i. e., the light arriving at each
pixel after one interaction with a surface in the scene. From this, the
final indirect component can be computed by multiplying with the
diffuse color. We compute our ground truth images in screen-space.
The position of the light source is sampled uniformly at random per
image. As we are assuming diffuse reflections, the direct light input
to the network is computed using only the diffuse reflectance of the
material. In the absence of advanced effects like fluorescence or dis-
persion, the light transport in different color channels is independent
from each other. We therefore apply a monochromatic network. The
network successfully learns to brighten areas in shadow, which do
not appear pitch-black anymore, rather the color of nearby lit objects
(Fig. 5).

Anti-aliasing While aliasing on textures can be reduced by ap-
plying proper pre-filtering, this is not possible for sharp features
produced by the geometry of a scene itself. Classic approaches com-
pute several samples of radiance per pixel which typically comes
with a linear increase in computation time. This is why state-of-the-
art applications like computer games offer simple post-processing
filters like fast approximate anti-aliasing (FXAA) [Lottes 2011] as
an alternative, which operate on the original image and auxiliary
information such as depth values. We let our network learn such a
filter on its own, independently for each channel.

Applying our network to an aliased image (Fig. 5) replaces jagged
edges by smooth ones. While it cannot be expected to reach the
same performance as the 8§ x multi-sample anti-aliasing (MSAA)
we use for our reference, which can draw from orders of magnitude
of additional information, the post-processed image shows fewer
disturbing artifacts. At the same time, the network learns to not
over-blur interior texture areas that are properly sampled, but only
blurs along depth discontinuities.

Depth-of-field As a simple rasterization pass can only simulate a
pinhole camera, the appearance of a shallow depth of field (DoF)
has to be faked by post-processing when multiple rendering passes
are too costly. In interactive applications, this is typically done
by adaptive blurring of the sharp pinhole-camera image. We learn
our own depth-of-field blur from sample data which we generate in
an unbiased way, by averaging renderings from multiple positions
on the virtual camera lens. The amount of blurriness depends on
the distance of each point to the focal plane. As the computation
of the latter does not come with any additional effort compared to
the computation of simple depth, we directly use it as an input to
the Deep Shader. While the training data is computed using a fixed
aperture, the shallowness of the depth of field, as well as the focusing
distance, are easy to adjust later on by simply scaling and translating
the distance input. The Deep Shader again is trained independently
for each channel, assuming a non-dispersive lens.

The Deep DoF Shader blurs things in increasing distance from the
focal plane by increasing extents. In Fig. 5, the blossoms appear



sharper than e. g., leaves in the background. It proved fruitful to use
textured objects in training to achieve a sufficient level of sharpness
in the in-focus areas.

Sub-surface Scattering Simulating the scattering of light inside
an object is crucial for achieving realistic appearance for translucent
materials like wax and skin. A popular approximation to this is
screen-space sub-surface scattering (SSSS) [Jimenez et al. 2009]
which essentially applies a spatially-varying blurring kernel to the
different color channels of the image. We produce training data at
every pixel by iterating over all other pixels and applying Pixar’s
scattering profile [Christensen and Burley 2015] depending on the
distance between the 3D position at the two pixels. After training
the Deep Shader independently for all RGB channels on randomly
textured training images with random parameters to the blurring
profile we achieve images which are almost indistinguishable from
the reference method.

Motion Blur Motion blur is the analog to depth-of-field in the
temporal domain. Images of objects moving with respect to the
camera appear to be blurred along the motion trajectories of the
objects for non-infinitesimal exposure times. The direction and
strength of the blur depends on the speed of the object in the image
plane [McGuire et al. 2012].

For training, we randomly move objects inside the scene for random
distances. Motions are restricted to those which are parallel to the
image plane, so that the motion can be encoded by an angle and
magnitude alone. We also provide the Deep Shader with a depth
image to allow it to account for occlusion relations between different
objects correctly, if possible. Our Deep Shader performs motion blur
in an convincing way that manages to convey a sense of movement
and comes close to the reference image (Fig. 5).

Full Shading Finally, we learn a Deep Shader that combines sev-
eral shading effects at once and computes a scene shaded using
image-based lighting, with ambient occlusion to produce soft shad-
ows, and additional shallow depth-of-field. As AO and IBL are
part of the effect, the network can again make use of all channels
simultaneously and is again specific to a certain environment map.
Note, that a single Deep Shader realizes all effects together in a
single network.

An image generated using the network (Fig. 5) exhibits all of the
effects present in the training data. The scene is shaded according
to the environment map, working for both diffuse and moderately
glossy materials. Furthermore, there is a subtle depth-of-field effect.

Animations Please see the supplemental video for view changes
inside those scenes, and dynamic characters.

6 Analysis

In the first part of this section, we address some shortcomings in
the form of typical artifacts produced by our method and also dis-
cuss how the network reacts when applying it to new resolutions
and attributes rendered with a different field-of-view value. The
remainder of the section explores some of the countless alternative
ways to apply CNNs, and machine learning in general, to the prob-
lem of screen-space shading. We cover different choices of actual
network structure (Sec. 6.2), loss function (Sec. 6.3) and training
data anatomy (Sec. 6.4) as well two techniques competing with deep
CNNs, namely artificial neural networks (ANNs) and random forest
(RFs) (Sec. 6.5).

6.1 Visual Analysis

Figure 7: Typical artifacts of our approach: a): Blur. b): Color shift.
¢): Ringing. d): Background darkening. e): Attribute discontinuities.

Typical Artifacts In networks, where light transport becomes too
complex and the mapping was not fully captured, what looks plausi-
ble in a static image may start to look wrong in a way that is hard to
compare to common errors in computer graphics: spatio-temporal
patterns resembling the correct patterns emerge, but are inconsistent
with the laws of optics and with each other, adding a painterly and
surrealistic touch. We show exemplary artifacts in Fig. 7. Captur-
ing high frequencies is a key challenge for Deep Shaders (Fig. 7,
a). If the network does not have enough capacity or was not train
enough the results might over-blur with respect to the reference. We
consider this a graceful degradation compared to typical artifacts
of man-made shaders such as ringing or Monte Carlo noise which
are unstable over time and unnatural with respect to natural image
statistics. Sometimes, networks trained on RGB tend to produce
color shifts (Fig. 7, b). CNN-learned filters may also introduce high
frequencies manifesting as ringing (Fig. 7, ¢). Sometimes effects
propagate into the wrong direction in world space, e. g., geometry
may cast occlusions on things behind it (Fig. 7, d). At attribute
discontinuities, the SSIM loss lacking an inter-channel prior gives
rise to color ringing (Fig. 7, e).
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Figure 8: Increasing (decreasing) the resolution shrinks (enlarges)
effect size relative to the resolution. The radius can be increased
(decreased) again with no effects on timings by scaling the input
attribute determining the radius accordingly, e. g., the positions for
AO. Consequently, images on the diagonal are similar. All images
show outputs produced by the same network. The time for each row
is identical. The SSIM is higher for smaller effect radii that are
easier to reproduce.

Effect Radius Typically, screen-space shading is faded out based
on a distance term and only accounts for a limited spatial neigh-
borhood. As we train in one resolution but later apply the same
trained network also to different resolutions, the effective size of the
neighborhood changes. As a solution, when applying the network at



a resolution which is larger by factor of N compared to the training
resolution, we also scale the effect radius accordingly, dividing it by
N. While the effect radius is not an input to the network but fixed in
the training data, this can still be achieved by scaling the attributes
determining the spatial scale of the effect, e. g., of the camera space
positions in the case of AO, DO or GI, or of the distance to the focal
plane in the case of DoF. To conclude, effect radius and resolution
can be changed at virtually no additional cost without re-training the
network.
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Figure 9: Effect of FOV on image quality. The horizontal axis is
FOV in degrees. The central line is the reference of 50°. The vertical
axis is DSSIM error (less is better). Note that the vertical axis spans
only a small difference (.12 to .18), indicating FOV has no large
impact on visual quality.

Internal Camera Parameters As deep shading was trained on
images of a specific FOV of 50°, it is not clear how they perform on
frame-buffers produced using a different FOV. Fig. 9 demonstrated
the effect of FOV on image quality. We see from the minimal drop
in SSIM quality, that FOV affects the quality only to a very limited
extent.

6.2 Network Structure

Deep learning architectures, with their vast number of trainable
parameters, tend to over-fit even in the presence of a large training
corpus. While this typically falls under the purview of regularization,
of concern to us is the trade-off between the expressiveness of the
network in approximating a certain effect and its computational
demand. To understand this, we investigate two modes of variation
of the number of parameters of the network, choosing to vary the
spatial extent of the kernels as well as the number of kernels on the
first level ug, which also determines the number of kernels for the
remaining levels. (See 4.2 for details) We seek the smallest network
with adequate learning capacity, that generalizes well on previously
unseen data. The results are summarized in Fig. 10, (a), (b) for the
example of AO.

Spatial Kernel Size Fig. 10, (a) (green and yellow lines) shows
the evolution of training, validation and test error with an increasing
number of training iterations, with the number of kernels fixed to a
medium value of uy = 8 and varying the spatial extent of the kernels.

We see that with a kernel size of 5 x 5, the training profile slightly
lags behind that for kernel size of 3 x 3, even though they approach
a similar test loss at 100k iterations. This shows that both networks
have sufficient capacity to approximate the mapping, with neither
beginning to overfit. Looking at the run times, however, we see that
the one with a kernel size of 3 x 3 is about twice as fast as the one
with 5 x 5. This also has a proportional bearing on the training time,
given similar mini-batch sizes, i.e., the time it takes per iteration.
Thus, for the given training set, 3 x 3 is the optimal choice and is the
faster-to-execute of the options as shown in Fig. 10, (b). We observe
a similar relative timing relationship between the pairs of networks
with ug = 4 and uy = 16.

Initial Number of Kernels The orthogonal mode of variation is
ug, the number of kernels on the first level, with the number of
kernels in subsequent layers expressed as multiples of uy. Again,
we plot the training, validation and test errors, this time for different
values of ug (Fig. 10, a, green and blue lines, yellow and purple
lines). We can observe that reducing the number to ug = 4 clearly
evinces a loss of expressiveness, evidenced by both the training
curves as well as the test losses.

Further, nets with ug = 16 performs only slightly better than uy = 8
(Fig. 10, b,), but lose out in compute time by more than a factor of 6,
in part due to increased memory consumption, both in the way of
increased number of parameters and increased size of intermediate
representations. Varying the spatial kernel size in isolation does not
affect the size of intermediate representations but only the number
of parameters, which is relatively insignificant compared to the
combined memory usage of the intermediate representations.

The number of iterations shown, though sufficient to already make
a decision about the choice of structural parameters, still leave the
network with scope to learn more (indicated by the negative slope
on the train-test curves). Once ug = 8 with a kernel size of 3 x 3
emerges as the clear choice for our application, we let it train for an
additional 100k iterations, keeping an eye on the validation curve
for signs of overfitting.

Structural Choices for other Effects The detailed analysis for
AO yields an expedient direction to proceed in for the choice of
kernel size and uq for the other effects. We start off with spatial
extents of 3 x 3 and 5 x 5, with ug = 8, and proceed to increase
or decrease uq in accordance with over-fit/ underfit characteristics
exhibited by the the train-test error curves. Tbl. 1 indicates the final
choice of the network structure for each effect. Additionally, the
train-test error curves for the final choices for each effect are shown
in Fig. 10, (c¢), with their test loss-vs.-speed characteristics captured
in Fig. 10, (d). ug for all pairs of curves in Fig. 10, (c) are as listed
in Tbl. 1.

6.3 Choice of Loss Function
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Figure 11: Outputs produced by the same network trained with
different loss functions for the case of AO.

The choice of loss function in the optimization has a significant
impact on how Deep Shading will be perceived by a human observer.
We trained the same network structure using the common L1 and
L2 losses as well as the perceptual SSIM metric and also using
combinations of the three. Fig. 11 shows a visual comparison of
results produced by the respective nets. We found L1 and L2 to be
prone to producing halos instead of fading effects out smoothly as
can be seen in the first two columns. The combination of L2 with
SSIM also exhibits these kind of artifacts to a lesser extent. SSIM
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Figure 10: Analysis of different network structures. We here compare different design choices for different effects in terms of compute time and
DSSIM loss. The vertical axes on all plots corresponds to DSSIM loss (less is better). The horizontal axes of the line plots range over the
number of training iterations. The scatter plots have computation time of the Deep Shader as the horizontal axis. a) Train, test and validation
loss as a function of iterations for different designs of AO (curves). b) Relation of final loss and compute time for different designs for AO. c)
Loss as a function of iterations for the chosen designs for other effects (curves). d) Comparison of compute time and final loss for the other

effects, as a means of placing their relative complexity.

and SSIM + L1 both produce visually pleasing results with pure
SSIM being more faithful to the amount of contrast found in the
reference images.

6.4 Training Data Diversity
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Figure 12: Left: Data points correspond to the same time budget
to produce training data but with different trade-offs regarding the
scene count. Right: Patches from a test scene.

Ideally, the training set for an effect consists of a vast collection of
images from a high number of different scenes with no imperfections
from Monte Carlo noise. However, in practice, the time budget to
produce training data is typically limited and the question how to
spend this time best arises. One factor that has influence on the
quality of the trained Deep Shaders is the diversity of scenes in the
training set, e. g., a CNN that has only seen round objects during
training will fail to correctly re-produce its effect for square objects.
In our training sets, we use 1000 views from each of 10 different
scenes as our starting points (cf. Sec. 6.4). To see how well CNNs
perform for less diverse data we produced DO training sets of the
same total size but for a lower number of different scenes. DO was
chosen as we observed it to be particularly sensitive to the scene
diversity. The resulting DSSIM values for (the same) test set are
plotted in Fig. 12, left. While the error for five scenes compared
to a single one is 5% smaller, increasing the number further to 10
scenes leads to only a smaller advantage of about another 1% which
indicates that our scene set is of acceptable diversity. In the case of
DO, the difference in the loss visually translates to a more correct
placement of darkening. A network trained with only one scene
tends to create “phantom occlusions” in free spaces (Fig. 12, right).

6.5 Comparison With Other Regression Techniques

Aside from deep CNNss, approaches such as shallow artificial neural
networks (ANNs) and random forests (RFs) [Criminisi and Shotton
2013] could putatively be used for our objective, having found use in
image synthesis related tasks such as estimation of filter parameters
[Kalantari et al. 2015] or relighting [Ren et al. 2013; Ren et al. 2015].

For comparison, we train our Deep Shader, ANNs, and RFs to
regress AO on patches of deferred shading information with a spatial
resolution of 256 x 256. For RFs, we input patch sizes of 21 x 21
and predict AO of the patch’s central pixel with different number of
trees. The RFs are split across four cores and have a minimum of
five samples per leaf. With ANNs, we input patch sizes of 11 x 11
and 21 x 21 to predict AO of the central pixel, with 2 hidden layers
with 50 nodes each.

The RFs and ANNS are trained on .% loss as in [Ren et al. 2013;
Ren et al. 2015], and evaluated on the SSIM loss we suggest. For
ANN:S, speed is measured using the OpenGL implementation of the
forward pass of the network (as with CNNs), and for RFs we employ
scikit-learn [Pedregosa et al. 2011] on a regular workstation.We see
in Fig. 13 that image quality and run-time depend on the chosen
patch size and the number of trees.

Figure 13: Comparison of AO computed using random forests,
shallow neural networks and our Deep Shader. The vertical axis is
image error indicated as DSSIM (less is better) on a linear scale.
The horizontal axis is compute time for 256 x 256 images on a
logarithmic scale (less is better). n indicates the number of trees.

Fig. 13, shows the relative speed and quality for ANNs and RFs
compared to Deep Shading. Pixel-wise predictions with random



forests clearly lose out on both visual quality and run time. RF run
times increase linearly with the number of trees, more of which are
necessary to construct a better ensemble. Even with more readily
prallelizable variants of RFs [Bosch et al. 2007], there would have
to be an improvement of more than two orders of magnitude on the
run time to be comparable with our Deep Shader. Besides, there
is still the question of image quality. Some structural information
captured via multi-variate regression of smaller patches (rather than
pixel predictions) may see improvements on this front, and so would
increasing the patch size, but again at the cost of run time.

For the two ANNs with patches of size 11 x 11 and 21 x 21, we
observe a worsening of image quality with increased patch sizes due
to the overfitting owing to the quadratic increase in the number of
parameters with patch size, necessitating far more training data and
training iterations.

This is a deciding factor in choosing deeper convolutional networks,
to allow for an increase in effective receptive field sizes through
stacked convolutions and downsampling, without an exponential in-
crease in the number of parameters, while leveraging the expressive
power of deeper representations [Hastad 1986].

7 Conclusion

We propose Deep Shading, a system to perform shading using CNNs.
In a deviation from previous applications in computer vision using
appearance to infer attributes, Deep Shading leverages deep learning
to turn attributes of virtual 3D scenes into appearance. It is also
the first example of performing complex shading purely by learn-
ing from data and removing all considerations of light transport
simulation derived from first principles of optics.

We have shown that CNNs can actually model any screen-space
shading effect such as ambient occlusion, indirect light, scattering,
depth-of-field, motion blur, and anti-aliasing, as well as arbitrary
combinations of them at competitive quality and speed. Our main re-
sult is a proof-of-concept of image synthesis that is not programmed
by human experts but learned from data without human intervention.

The main limitation of Deep Shading is the one inherent to all screen-
space shading techniques, namely missing shading from objects not
contained in the image due to occlusion, clipping or culling. At the
same time, screen-space shading is well-established in the industry
due to its ability to handle large and dynamic scenes in an output-
sensitive manner. We would also hope that in future refinements, the
Deep Shader could even learn to fill in this information, e. g., it might
recognize the front of a sphere and know that in a natural scene the
sphere will have a symmetric back that will cast a certain shadow.
In future work, we would like to overcome the limitation to screen
space effects by working on a different scene representation, such
as surfels, patches or directly in the domain of light paths. Some
shading effects like directional occlusion and indirect lighting are
due to very complex relations between screen space attributes. Con-
sequently, not all configurations are resolved correctly by a network
with limited capacity, such as ours which runs at interactive rates.
We have however observed that the typical artifacts are much more
pleasant than from human-designed shaders. Typical ringing and
over-shooting often produces patterns the network has learned from
similar configurations, and what appears plausible to the network is
often visually plausible as well. A perceptual study could look into
the question whether Deep Shaders, in addition to their capability to
learn shading, also produce more visually plausible errors than the
typical simulation-type errors which are patterns that never occur in
the data. Screen-space excels in handling complex dynamic scenes,
and Deep Shading does as well. Deep Shaders that result in a low
final test error (Fig. 10, c) are almost free of temporal artifacts as
seen in the supplemental video.

Deep Shading of multiple effects can currently achieve performance
on-par with human-written code, but not exceed it. We would hope
that more and diverse training data, advances in learning methods,
and new types of deep representations or losses, such as network
losses [Johnson et al. 2016] will allow surpassing human shader
programmer performance in a not-so-distant future.
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