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Figure 1: Our physically based method can automatically reconstruct large-scale cumulus cloud scenes from high-resolution satellite images.
A key aspect of our approach is that we extract necessary features for modeling clouds to ensure that the simulation results can be physically
sound.

Abstract
We present a reconstruction framework fitting physically-based constraints to model large-scale cloud scenes from satellite
images. Applications include weather phenomena visualization, flight simulation, and weather spotter training. In our method,
the cloud shape is assumed to be composed of a cloud top surface and a nearly flat cloud base surface. Based on this, an effective
method of multispectral data processing is developed to obtain relevant information for calculating the cloud base height and
the cloud top height, including ground temperature, cloud top temperature and cloud shadow. A lapse rate model is proposed
to formulate cloud shape as an implicit function of temperature lapse rate and cloud base temperature. After obtaining initial
cloud shapes, we enrich the shapes by a fractal method and represent reconstructed clouds by a particle system. Experiment
results demonstrate the capability of our method in generating physically sound large-scale cloud scenes from high-resolution
satellite images.

CCS Concepts
•Computing methodologies → Modeling methodologies; Volumetric models;

1. Introduction

Modeling complex real world objects and scenes, such as fluid,
smokes, and clouds, has been attempted in both graphics and vi-
sion [Thu16, YLH∗14]. Cumulus clouds play an important role in
enhancing the visualization quality of simulated outdoor scenes,
earth view from outer space, and weather phenomena. Cloud’s
complex shape, topological diversity, and non-Lambertian appear-
ance make it challenging for constructing a 3D cloud model. Es-

pecially constructing large cloud scenes with hundreds of clouds is
undoubtedly very tedious.

In this work, our aim is to automatically reconstruct large-scale
cumulus cloud scenes from satellite images by using physically
based methods. Many methods have already been proposed for
modeling cumulus clouds, which are done by a procedural ap-
proach or an approximated meteorological model. These methods
rely on some optical and shape parameters obtained by subjective
judgement. So they can hardly produce a physically sound cloud
shape. On the other hand, a satellite image usually contains hun-
dreds of clouds, where each has a specific shape and position, com-
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prising a large number of parameters. Hence, modeling large-scale
cloud scenes will undoubtedly be tedious and difficult. In contrast,
our method automatically extracts relevant information from satel-
lite images to model physically sound cloud scenes.

As the sensors of a polar-orbit satellite are directed toward the
Earth’s surface, another key challenge for our work is to get the
information about the vertical dimension of clouds from satellite
images. In terms of spatial resolution, satellite images can be clas-
sified into two types: low-resolution images (several kilometers)
and high-resolution images (hundreds to tens of meters). For low-
resolution images, several methods have been proposed to mod-
el earth-scale clouds. At such a scale, a cloud is represented as a
thin plate without an accurate thickness, a realistic rendering can
only be achieved by generating an approximate layer-like volumet-
ric representation [DYN09,YLHY13]. These methods are therefore
not suitable for modeling cumulus clouds whose vertical sizes are
salient comparing to horizontal sizes. Furthermore, the structure of
cumulus clouds cannot be well recorded or even observed in low
resolution images because the typical size of cumulus clouds is
usually approximately several hundreds of meters and thus small-
er than the pixel size. However, high-resolution satellite images,
such as Landsat7/8, Terra and Aqua, have more accurate informa-
tion than low-resolution ones to support the modeling of cumulus
clouds. In these images, the shadow of a cloud is distinct and in-
dicates the altitude of the cloud base. With cloud shadows and a
temperature lapse rate model that establishes the relationship be-
tween temperature and altitude, our method can calculate the im-
plicit height information for reconstructing 3D cloud scenes.

In summary, our main contributions are as follows:

• A physically based automated framework is established to model
large-scale cumulus cloud scenes from satellite images.

• An automatic method is developed to identify and extract suit-
able features from satellite images for reconstructing 3D cumu-
lus clouds. This is challenging since satellite images comprise
a wide range of features representing different types of objects,
and particularly not all necessary features for cloud reconstruc-
tion are directly available.

• A lapse rate model is developed to relate temperature and cloud
altitude, providing essential inputs to derive 3D cloud shapes
by maximizing the similarity between observed and calculat-
ed cloud shadows. This is challenging since each cloud has a
distinct temperature lapse rate in a large-scale scene, while the
cloud base temperature is not available.

• A propagation procedure is established to search the optimal pa-
rameters for each cloud progressively from a set of feasible so-
lutions, in order to efficiently model a large-scale cloud scene.

2. Related Work

Modeling and rendering are two main topics about cloud animation
in computer graphics. Much work concerns itself with rendering
participating media [YIC∗10, Har05, Yus14, SDS∗16]. Meanwhile,
a large number of methods have also been proposed to model cloud
shapes [Har05, DSY10, YLH∗14, JC16]. We will limit ourselves to
the topic of modeling in this paper.

Mainstream methods utilize either a procedural approach or a

physically based method. The former mainly relies on the selection
of parameters, which includes methods based on fractals [Vos83],
textured ellipsoids [Gar85], noise function [Ebe97], spectral syn-
theses [Sak93], and interactive design [WBC08], while the latter
is based on a simplified atmospheric model for simulating the for-
mation processes of clouds [Har05, DKNY08]. Although both ap-
proaches can generate visually impressive cloud scenes, they have
difficulty in generating physically sound cloud shapes and large
cloud scenes due to the complex relation between the results and
the input parameters.

With the availability of cloud-related data, the data-driven
methodology enables an intuitive and physically meaningful solu-
tion for modeling clouds. There are three types of cloud-related da-
ta: satellite images [DNYO98,CAJB∗08,DYN09,YLHY13], simu-
lation data [REHL03, HHS07], and photographic images [DSY10,
YLH∗14, JC16]. In contrast to simulation data and photographic
images, satellite images, recording multi-spectral radiation infor-
mation, contain more available information for modeling physical-
ly realistic clouds and large-scale cloud systems. There have been
much work about cloud detection, extraction and modeling from
satellite images [Cha12, GP15]. Based on the infrared image, two
different methods [LKS96, DYN09] are used to construct a cloud
top surface. They assume the cloud top height is proportional to
the intensity of the infrared image. The difference between the two
methods is that [LKS96] uses only the cloud top surface to model
clouds, while [DYN09] represents clouds using a density volume
near the cloud top surface. Unlike these methods, [DNYO98] does
not intend to directly derive the geometry of a cloud, but inverts
the density distribution of the cloud from a simple lighting model.
Overall, these methods only focus on producing realistic-looking
earth-scale clouds but pay little attention to the physically sound
3D structure of cumulus clouds.

Closely related to our method, [YLHY13] and [YG15] have pro-
posed some physically based methods to infer the shape of clouds
from satellite images. However, they assign a uniform lapse rate
for all clouds, which is not correct for large-scale cloud scenes. To
handle the problem, we proposed a lapse rate model to calculate a
unique lapse rate for each cloud by maximizing the similarity be-
tween observed and calculated cloud shadows.

3. Data Processing

The input data to our system are five-band satellite images, in-
cluding blue (BLUE, 0.450-0.515um), red (RED, 0.630-0.680um),
near infrared (NIR, 0.845-0.885um), shortwave infrared (SWIR,
1.560-1.660um), and longwave infrared (IR, 10.620-11.190um).
For each pixel, the first four bands record the reflectance ℜi for
i = blue,red,nir,swir, indicating the ratio of the reflected intensity
to the incident solar flux density, and the last one records the tem-
perature Tir. In particular, the NIR image is linearly mapped to a
grey image, as shown in Fig.2(a).

Fig.3 shows the main steps of our method. In the following, we
present an algorithm for pixel classification and an approach to ob-
tain the ground temperature and the cloud top temperature. We also
formulate a method to compute cloud shadows.
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Figure 3: Overview of our framework

Figure 2: (a) The NIR image is linearly mapped to a gray-level
image. (b) Image pixels are divided into three types: cloud (white),
original shadow (black) and background (grey). (c) The calculated
shadow (black) is formed by projecting the calculated shapes of
clouds onto the ground.

3.1. Pixel Classification

Pixel classification is the basis to identify relevant cloud informa-
tion. Cloud pixel detection has been performed by the Automat-
ed Cloud Cover Assessment (ACCA) system [IBGA06]. Due to
its complexity, we do not adopt it but use a comparable algorith-
m [OWV11]. The algorithm uses four sets of decision rules to flag
a pixel as cloud, non-vegetated land, vegetated land, snow/ice, or
water based on bands BLUE, RED, NIR and SWIR. With a minor
modification, the thermal IR image is used to eliminate pixels with
temperatures of more than 300K because clouds are colder than
this threshold. So, the pixels are divided into cloudy and cloud free.
We further use the information of four-neighborhood of a pixel to
remove noise. Finally, cloudy pixels are clustered into connected
regions, and each region is treated as a cloud (Fig. 2(b)).

3.2. Temperature Computation

The task of this section is to estimate the ground temperature Tg
and the cloud top temperature Tct . In a local region, the ground
temperature remains roughly the same. We can then approximate
the ground temperature of each cloud using the mean tempera-
ture of cloud-free pixels within an isometric zone {p : |p−C| <
R, p is a background pixel}, where C and R are the center and ra-
dius of the cloud, respectively.

The cloud top temperature can be derived by the following pro-
cess. For a cumulus cloud, the pixels in the central region have a
large optical thickness, and the ground infrared radiation is hard-
ly sensed by the satellite. The recorded temperature Tir in the IR

image can be approximately treated as the cloud top temperature
Tct . However, in the boundary region, cloud has a small thickness,
and the measured temperature is usually higher than the actual tem-
perature due to the contribution of the infrared radiation from the
ground. As a result, the infrared radiance received by the satellite is
a linear combination of the ground radiance and the cloud radiance
as follows:

Bλ(Tir) = (1− ε)Bλ(Tg)+ εBλ(Tct) (1)

where λ denotes the central wavelength at band IR, ε is the cloud
emissivity, and Bλ(·) is the Planck function. In particular, the cloud
emissivity ε relates to the optical thickness τ based on the following
equation:

ε = 1− exp(−τ) (2)

From Eqs. (1) and (2), the cloud top temperature Tct is determined
by the optical thickness τ. To compute τ, we use the reflection func-
tion in the Red band [KR04, YLHY13]:

ℜred = ℜ(τ,ς,ω,θs,θv,ϕs,ϕv) (3)

where ℜ is the reflection function, ς is the asymmetry factor, and
ω is the single scattering albedo. The zenith angle θv and azimuth
angle ϕv of the satellite can be derived from the orbit-geometry, and
the zenith angle θs and azimuth angle ϕs of the sun are recorded
in the metadata file of the Landsat-8 data. As for cumulus clouds,
the asymmetry factor ς and the albedo ω are set to 0.85 and 1.0,
respectively. For the detailed form of ℜ, please refer to [KR04].

3.3. Cloud Shadow Computation

The information of cloud shadow is used to evaluate the parame-
ters for the lapse rate model described in Section 4. In our method,
a cloud shadow is detected by combining a geometry-based tech-
nique and a spectral-test-based technique.

We first construct a cylinder-shaped bounding volume for a given
cloud, computing the potential cloud shadow area. The ground in a
local region is assumed to be plane. Due to the lack of precise cloud
top height, the bounding volume is set to have a flat base surface
and a flat top surface to avoid missing any true cloud shadows.
Therefore, the base surface height should be lower than all of the
actual cloud base height. In our tests, this base surface height is set
to a low value, i.e., 50m, as no clouds exist below this altitude.

As the atmospheric lapse rate γ [Har94] describes temperature
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changing with altitude, we use it to estimate the top surface height
of the bounding volume, i.e. :

γ = g
1+ Lvrv

Rd T

cpd +
L2

v rvεdw

Rd T 2

(4)

where g is gravitational acceleration, cpd = 1004.64J(kg ·K)−1 is
the specific heat at constant pressure of dry air, rv is the mixing ratio
of water vapor, Lv is the latent heat of vaporization, Rd = 287Jkg−1

is the gas constant for dry air, εdw = 0.6220 is the ratio of the gas
constants for dry air and water vapor, and T is the temperature. Us-
ing the lapse rate, a cloud top surface height Zct [ZW12,YLHY13]
can be approximately estiamted as :

Zct = (Tg −Tct)/γ̂ (5)

For dry air, rv = 0, and γ = g
cpd

= 9.8K km−1. For wet air, rv > 0,
the lapse rate γ is not a constant, and a representative value for γ is
5.0K km−1. Hence, we use a small lapse rate (e.g, γ̂ = 4.8K km−1

) to estimate the top height of the bounding volume. If a predict-
ed location falls onto a pixel identified as cloud free, the pixel is
marked as a potential shadow.

Then the spectral test is applied to eliminate non-shadow pixels.
The spectral features of each pixel within the possible shadowed
area are inspected to detect the shadow pixels of each cloud by
[LTK08]. The classification is shown in Fig. 2(b).

4. Cloud Scene Modeling

Cumulus clouds, as a typical type of low-altitude cloud, are gener-
ally dense and possess an uneven quasi-surface. Accordingly, their
shape can be represented by a surface mesh [YLH∗14]. However,
because the sensors of polar-orbit satellites, e.g., Landsat-8, are di-
rected toward the Earth’s surface, it is difficult to observe the side
surface of a cloud. Following the work of [YLHY13], we assume
that the shape of a cloud can be described by a cloud top surface
and a cloud base surface (Fig.4 (a)), which are represented by the
cloud top height Zct and the cloud base height Zcb, respectively.
Then the matching points between the boundary vertices of the top
surface and the base surface are directly connected to form the side
surface. Hence, the proposed modeling process is mainly divided
into two steps (Fig.3). First, using the lapse rate model and the spa-
tially continuous constraint, we simultaneously estimate the cloud
top height and the cloud base height. The reconstructed shapes are
then refined and represented by a particle system for rendering.

4.1. Lapse Rate Model

Based on the hypothesis of cloud shape, we can use the atmospher-
ic lapse rate and temperatures to describe it. Because the lapse rate
has a wide range of values, it is not reasonable to assign a constant
lapse rate for every cloud in a large scene. Hence we assume each
cloud has a distinct lapse rate, and the cloud top height Zct can be
estimated by Eqs.(5). Similarly, the cloud base height Zcb can be
derived from the relative difference between the ground tempera-
ture Tg and the cloud base temperature Tcb.

The cloud shape S is finally related to four parameters: Tct , Tg,
Tcb, and γ̂ (Fig.4 (b)). Because both the temperature Tct and Tg can

Figure 4: (a) The surface of a cumulus cloud. (b) The lapse rate
model. The shape (Zcb,Zct ) of the cloud is correlated with temper-
atures (Tct ,Tg,Tcb) and the lapse rate γ̂.

be derived from satellite images, the shape S is thus determined by
the last two parameters, i.e., Tcb and γ̂, as follows:

S , S(Tcb, γ̂) (6)

There are a lot of ground-based observations supporting
the empirical rules, which define cumulus clouds as having a
horizontal base surface and a cauliflower-shaped top surface
(www.srh.noaa.gov/jetstream/clouds/cloudwise/types.html). These
observations allow us to assume that the base surface of a cumulus
cloud is flat and can be represented using a single height value. Be-
cause the ground temperature Tg and γ̂ are constant within the local
region covered by a cloud, the cloud base temperature can also be
represented using a single value [BSW∗92, ZW12]. This assump-
tion significantly reduces the complexity for recovering a complete
cloud base height field while retaining the photorealism of recon-
structed cumulus clouds to a certain extent.

Given the shape of a cloud, the viewing direction of the satellite
sensor, the solar zenith angle, and the solar azimuth angle, we can
predict the set of cloud shadow pixels casting on the ground based
on the geometric relation between a cloud and its shadow. For each
cloud, denote the calculated shape by S, its shadow by CS, the o-
riginal shape by S∗, and its original shadow recorded in the satel-
lite image by CS∗. If the calculated shape approaches the original
shape, their shadows will be similar in area, and the overlapping
area between the original shadow and the calculated shadow will
approach the area of the union of these shadows:

∫
CS

∩
CS∗

dxdy →
∫

CS
∪

CS∗
dxdywhenS → S∗ (7)

In this sense, the similarity function between their shadows can
be defined as the ratio of two areas:

SF(Tcb, γ̂) =
∫

CS
∩

CS∗ dxdy∫
CS

∪
CS∗ dxdy

(8)

As mentioned before, the shape parameters Tcb and γ̂ jointly de-
termine the shape S; the similarity function SF is therefore an im-
plicit function of these two unknown scalars.

Denote the horizontal resolution of the satellite data by DX(in
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meters per pixel). Suppose the shadow of a cloud only consists of
two neighboring shadow pixels, separating by a distance DX(in me-
ters per pixel). So, the geometrical thickness of the cloud is equal
to DX/ tanθs according to the cloud-shadow geometry, where θs is
the solar zenith angle [BSW∗92]. In this scene, the vertical reso-
lution can be considered as DX/ tanθs, and the target shape of the
cloud (Zct ,Zcb) is formulated in a discrete space. Equivalently, it
is reasonable to treat the domain of the definition of Tcb or γ̂ as a
discrete space.

Because the similarity function SF is determined by two param-
eters, there may exist more than one solution maximizing the func-
tion. The amount of moisture in the air, determining the lapse rate,
is continuous, and the lapse rate is thus spatially continuous. There-
fore, the neighboring clouds should have similar lapse rates. When
the lapse rates of the neighboring clouds are available, we can esti-
mate the current cloud’s lapse rate. Then, we can retrieve the opti-
mal value of Tcb. In Section 4.3, we show a propagation procedure
to solve our model for all clouds within a scene.

4.2. Initial Cloud Shape Estimation

The aim of this section is to determine two shape parameters for
each cloud, i.e., Tcb and γ̂, which maximize the similarity function:

max
Tl≤Tcb≤Tu
γ̂l≤γ̂≤γ̂u

SF(Tcb, γ̂) (9)

where Tl and Tu are the lower and upper limits for Tcb, respectively,
and γ̂l and γ̂u are the lower and upper limits for γ̂, respectively. Un-
der standard atmosphere conditions, the lapse rate for wet air near
the cloud top surface is 5.0K km−1, and for dry air near the ground,
it is 9.8K km−1. Therefore, we set γ̂l = 4.8, and γ̂u = 10. For the
cloud base temperature, the lower limit is set as the minimal tem-
perature in the cloud region, i.e., Tl = min

p∈C
Tct(p), while the upper

limit is set as the ground temperature, i.e., Tu = Tg.

If the sampling intervals for the two parameters are both known,
the sample set {T i

cb, γ̂
j} can be formed by discretizing the rectan-

gular definition domain [Tl ,Tu]× [γ̂l , γ̂u]. As previously mentioned,
the shape of the cloud has a vertical resolution of dz = DX/ tanθs.
Here, we can use the vertical resolution dz to determine the sam-
pling intervals for Tcb and γ̂. The lapse rate γ̂ ∈ [γ̂l , γ̂u] is de-
fined as the amount of temperature decreasing per 1km, and the
amount of temperature decreased dγ̂ for height dz should satisfy
dγ̂
dz =

γ̂
1km . Accordingly, it is enough to set the sampling interval dγ̂

for the lapse rate as dγ̂ = γ̂ldz = 4.8DX/ tanθs. Given the lapse rate
γ̂ ∈ [γ̂l , γ̂u], dT

dz is thus less than γ̂u for any height dz. Therefore, the
sampling interval dT for the cloud base temperature should satisfy
the condition: dT ≤ γ̂udz = 10DX/ tanθs.

Once the set of samples {T i
cb, γ̂

j} has been generated, the sim-
ilarity function SF is computed for each sample, and a sample is
treated as a feasible solution if it maximizes the similarity function.

4.3. Large-scale cloud scene modeling

In order to model a large cloud scene, the optimal solutions of each
cloud should satisfy the physical constraints of the scene where the
lapse rates of clouds should be spatially continuous. According to

the number of solutions, we classify clouds into two sets: one is
the set with a single optimal solution C = {C1,C2, . . . ,Cm}, and the
other is the set with more than one solution C̄ = {C̄1,C̄2, . . . ,C̄n}.
In our experiments, the amount of clouds in the set C reaches about
30% of all clouds in a cloud scene. For the set C̄, we perform a
propagation procedure to choose the optimal solutions.

The set of neighbors, N(C̄ j), is determined as:

N(C̄ j) = {Ci ∈ C|di j ≤ r} (10)

where r is the effective radius of the neighborhood given by users
and di j is the Euclidean distance between Ci and C̄ j. We first judge
the optimal solution for the one with the most neighbors. We esti-
mate an expected value for the cloud using the lapse rate of neigh-
bors. Due to the local uniformity of the lapse rate, the nearer the
distance is, the more information the cloud contributes to estimat-
ing the expected value, γ̂exp, which is calculated with a weighted
average of the value. Let λ j be the weight for the cloud C j, the
expected value is given by:

γ̂exp =
|N(Ck)|

∑
j=1

λ j γ̂ j =
|N(Ck)|

∑
j=1

1
dk j

|N(Ck)|
∑

j′=1

1
dk j′

γ̂ j (11)

We then pick the feasible solution, γ̂i, that minimizes | γ̂i − γ̂exp |,
as the optimal solution, γ̂k

opt . Finally, Ck is removed from C̄ and is
added to C. The above process is repeated until the set C̄ becomes
empty. The propagation procedure is shown in Algorithm 1.

Algorithm 1 Propagation Procedure.

Input: C, C̄, r
Output: γ̂k

opt for each C̄k ∈ C̄
1: repeat
2: for all C̄ j ∈ C̄ do
3: N(C̄ j) = {Ci ∈C|di j ≤ r};
4: end for
5: find C̄k ∈ C̄ by maximizing the |N(C̄k)|;
6: for all Ci′ ∈ N(C̄k) do
7: dki′ =∥ C̄k −Ci′ ∥2;
8: end for
9: calculate γ̂exp according to Eqs. 11;

10: find γ̂i by minimizing the |γ̂i − γ̂exp|;
11: γ̂k

opt = γ̂i;
12: C = C

∪
{C̄k};

13: until C̄ = ∅

At this point, we have constructed the initial shape (Zcb and Zct )
for each cloud in the scene. In Fig. 2 (c), the calculated shadow is
formed by projecting the initial (calculated) shapes of the clouds
onto the ground.

4.4. Cloud Shape Refinement

After recovering the top height Zct and base height Zcb, a tower-
shaped cloud surface is constructed using three parts, i.e., the top
surface, the base surface, and the side surface (Fig. 5 (a)). To ob-
tain highly realistic results, the cloud surface must be enriched with
fine-scale volumetric structures. A fractal method [NDN96] is used
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Figure 5: Top views of cloud shape refinement. (a) The initial sur-
face. (b) The refined surface with more fractal details than (a). (c)
The cloud generated by filling the region inside the refined surface
with particles. The inset is the cloud region in the NIR image.

to generate fine-scale details for a cloud. A regular 3D grid is cre-
ated by subdividing the bounding box of the cloud surfaces. Each
grid point (xi,y j,zk) has two scalar properties: the distance to the
surface and the extinction value. The distance scalar is the mini-
mum of the distances to the three surfaces. The value is normalized
and denoted by d̃. The extinction σ for a cloudy pixel can be es-
timated from the optical thickness and the geometrical thickness
Zct −Zcb as follows:

σ = min(τ/(Zct −Zcb +DX),90) (12)

The spatial resolution DX is used to avoid division by zero. Due to
our flat cloud base assumption, the geometrical thickness for pixels
in the boundary region is relative small, leading to an overestima-
tion of the cloud extinction σ. We limit the value of σ to be less
than a typical value of 90km−1 for cumulus clouds [BNM∗08]. So,
the extinction of a point is set to that of the corresponding pixel
(xi,y j) if Zcb < zk < Zct . Otherwise, the extinction is set to 0. Start-
ing from the distance field, we apply [NDN96] to generate surface
fringes by iteratively placing metaballs at the surface of the cloud.
Because the base surface is relatively flat, a larger radius is used
for the metaballs compared to those for the top surface. Finally, a
mass of metaballs with various radii are arranged on the cloud sur-
face. For the refined cloud shape, the extinction volume is updated
accordingly using nearest-neighbor interpolation.

Similar to [YLH∗14], each cloud is filled with particles by an
adaptive sampling process. The process will generate a density field
for each cloud, which shows the distribution of the cloud particles
with various extinction. The refined cloud shapes and the rendering
results are shown in Fig. 5.

5. Results

In this section, we mainly verify the accuracy of feature extraction,
physical soundness and validity of our modeling method, as well as
showing some applications.

Figure 6: Qualitative comparison of two methods for cloud masks.
(a) Oreopoulos et al.’s result. (b) Our result.

Our work is implemented on a PC with an i5-2300 Intel(R)
Core(TM) 2.8GHz CPU, an NVIDIA GTX 460 card, and 4GB of
RAM. Five-band satellite images from Landsat-8, described in Sec-
tion 3, are used in the work as inputs. Note that the satellite im-
ages provided by other satellites, e.g., Landsat-7 or Terra, can also
be used as long as the satellite images have the five bands. The
Landsat-8 image data, along with a text file with metadata (date
and time, longitude and latitude, solar azimuth and zenith), can be
downloaded freely at http://landsat.usgs.gov/. For these images, the
first four bands have a resolution of 30 m while the last one has a
resolution of 100 m and is resampled to 30 m, and the zenith angle
of the sun is less than 30◦, it is hence reasonable to set dγ̂ = 0.1
and dT = 0.3.

The size of the original Landsat-8 satellite images is 7821 ×
7641. To test our methods, we choose some parts of the original
images, containing more cumulus clouds, as the input. There are
three subimages of the original images in our experiments. The first
scene from the first subimages was captured at 02:18:35 UTC on
28th June 2013 and has a size of 650× 650. The longitude range
is 121.44E ∼ 121.62E and the latitude range is 17.66N ∼ 17.84N.
The second scene was captured at 02:16:40 UTC on 12th April
2014 and has a size of 950×950. The longitude range is 121.62E ∼
121.88E and the latitude range is 16.46N ∼ 16.72N. The third
scene was captured at 02:16:25 UTC on 28th April 2014 and has a
size of 791×791. The longitude range is 121.31E ∼ 121.53E and
the latitude range is 17.98N ∼ 18.20N. The average time to model
each cloud is approximately 5s, of which 3s is required to search for
the shape parameters in the cloud shape estimation. The numbers
of clouds in the three scenes are 77, 169 and 125, respectively.

5.1. Comparison on Feature Extraction

We compare against the state of the art [OWV11] in cloud de-
tection. Fig.6 shows the qualitative comparison of cloud detection
with [OWV11], which performs on par with the ACCA algorithm.
The scene shown in Fig.2(a) is used as the input image. As shown
in Fig.6(a), although [OWV11] can mark the cloud pixels, a large
amount of noise are also picked up. In contrast, our method can
better identify the cloud pixels with fewer errors.

We also performed comparisons against the manual annotation
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Figure 7: (a) Our cloud-shadow mask. (b) The manual cloud-
shadow mask. (c) The similarity histogram for all pairs of clouds.
(d) The similarity histogram for all pairs of cloud shadows.

method. Masking cloud shadows from normally illuminated sur-
face conditions is difficult [ZW12], therefore the manual method
becomes a better way for screening cloud shadows. We ask three
experienced meteorologists to label mask. They mask cloud and
cloud shadow separately in Adobe Photoshop, and the average of
the three results is used as the final manual result to reduce man-
made errors. By comparing our cloud-shadow mask with the man-
ual mask, it shows that the accuracy of our automatic classification
algorithm approaches the accuracy level of the manual method es-
pecially for cloud detection as shown in Fig.7. Without ambiguity,
we use Ci and CSi to represent the pixel set of each cloud and that
of the cloud shadow in our mask, respectively, and use Cm

i and CSm
i

to represent their corresponding pixel sets in the manual mask. To
qualitatively evaluate our mask, the similarity of the two pixel sets,
e.g., Ci and Cm

i , is defined as S(Ci,Cm
i ) =

|Ci
∩

Cm
i |

|Ci
∪

Cm
i |

. From (c) and (d),
83% of clouds have similarity greater than 0.8, 75% of cloud shad-
ows have similarity greater than 0.7. For the whole scene, the cloud
similarity is ∑i |Ci

∩
Cm

i |
∑i |Ci

∪
Cm

i |
= 90%, but the cloud shadow similarity is

relatively low, i.e., ∑i |CSi
∩

CSm
i |

∑i |CSi
∪

CSm
i |

= 72%, due to the relatively small
size of cloud shadows compared to the clouds in the scene. In gen-
eral, the accuracy of our mask is close to the latest method [ZW12]
in which the cloud similarity is 96% and the cloud shadow similar-
ity is about 70%.

To our knowledge, there is no automatic method to accurate-
ly calculate cloud height. In order to investigate the validity of
our method, we compare our method with the manual annotation
method. In both methods, the basic idea is that the cloud and its
shadow have similar shapes. Three analysts first select highly dis-

tinguishable points on the cloud edge and the corresponding points
on the shadow edge in the solar azimuth direction. Then, the cloud
base height Zm

cb is estimated from the separation distance d between
the matching pair of points based on the cloud-shadow geometry,
i.e., Zm

cb = d/ tanθs. For the three subimages, the experiment re-
sults show that the differences between our method and the manual
method in terms of the determined average cloud base heights are
approximately 85m, and the differences of standard deviations be-
tween both methods are in the order of 38m. Considering the reso-
lution of the satellite images, ranging from 30 m to 100 m, it shows
that our method yields similar results as the manual method.

We further test the shape errors taken by the fractal method
which is used to generate details for clouds. As mentioned before,
we use C f

i to represent the pixel set of each cloud, then the cloud

similarity is |Ci
∩

C f
i |

|Ci
∪

C f
i |

= 98.49%. The result reveals that the fractal

method produces less error.

5.2. Comparison on Cloud Scene Modeling

[YG15] is the most closely related to our method. In contrast, we
improve by generating more physically reliable and accurate cu-
mulus clouds. First, [YG15] applied a constant lapse rate assigned
by user to calculate cloud base heights for all clouds in a scene. In-
stead, our method automatically calculates a physical sound lapse
rate, which satisfies the physical constraints of a large-scale scene,
for each cloud separately by using the lapse rate model. So, if a
cloud does not meet the constant lapse rate, our method can im-
prove the estimate of the cloud base height accuracy, Ar, by:

Ar =
|Zcon

cb −Zuniq
cb |

Zuniq
cb

=
|λcon −λuniq|

λcon
(13)

where λcon is the constant lapse rate, λuniq denotes the unique lapse
rate of each cloud calculated by our method. Zcon

cb and Zuniq
cb are

the cloud base heights calculated by using the λcon and the λuniq,
respectively. If λcon and λuniq are set to 6.5 and 7, respectively, the
accuracy will improve by 7.14 percent according to the Eqs.(13).

Second, the influence of the ground radiance on the cloud radi-
ance is not considered in [YG15], when estimating the temperature
of the cloud top surface. In contrast, our method uses a linear com-
bination of the ground radiance and the cloud radiance to obtain
more accurate cloud top temperature. Third, the cloud base height
was computed by averaging the height for all the pixels on the edge
of the cloud top surface in [YG15]. However, cloud usually has
a small thickness along the boundary region, the measured tem-
perature is usually higher than the actual temperature due to the
contribution of the infrared radiation from the ground. So it will
underestimate the cloud base height, which make clouds be close
to ground. To improve the physical reliability and the accuracy of
the cloud base height, we instead use the lapse rate model to calcu-
late the height of cloud base. Finally, Fig.8 shows that our method
can generate clouds with more reliable heights and photorealistic
shapes, which is more useful for flight simulation and weather phe-
nomena visualization.

Our method resembles in spirit [YLHY13, LY16] in that the
cloud properties, e.g., Zct and Zcb, are derived from multi-spectral
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Figure 8: Comparisons of our method with the method of [YG15].
(a) Yuan et al.’s result. (b) Our result.

Figure 9: Comparisons of our method with the method of
[YLHY13]. (a) The surface generated by [YLHY13]. (b) The ini-
tial surface generated by our method.

images. However, [YLHY13] relies on user settings (particle num-
ber density) to estimate the base height and extinction, leading to
a quite random cloud base surface (Fig. 9 (a)), which is a needle-
like structure spreading across the entire base surface. Although,
the method [LY16] gives a more comprehensive analysis on the
method [YLHY13], it also uses a given constant lapse rate to esti-
mate the cloud base height. Such an unnatural result is inconsistent
with the observation that cumulus clouds usually have a horizontal
base. Instead, our method can produce quite flat base surface (Fig.
9 (b)), because the physically sound parameters.

Our method resembles in goal [DNYO98] generating a densi-
ty volume by inverting a simplified model. But [DNYO98] has
difficulty in recovering a reasonable cloud shape, as reported in
[YLHY13], since, it does not consider the physical reasonableness
of clouds height and the global physical constraints of cloud scenes.

5.3. Validation Using Numerical Simulation Data

Fig.10 provides the validity evaluation. Because it is not easy to
gather real 3D cloud data, we use the outcome of the WRF model
[NCA] to construct the ground-truth cloud. The data set consists of
80 time steps in the time interval of 10 minutes, recording a part of

the lifecycle of a cumulus cloud. The dimensions of the data set are
81×81×71 voxels organized on a rectilinear lattice.

The data set includes multiple variables with a horizontal res-
olution of 100 m and a vertical resolution of 50 m. We use two
variables, i.e., the cloud particle/air mass ratio mr and the tempera-
ture T . A voxel with mr > 0 is treated as a cloudy voxel, otherwise,
it is treated as a cloud-free voxel. From this classification, the cloud
surface is extracted using the Marching Cubes algorithm. Then, the
reference cloud top height zr

ct and cloud base height zr
cb are generat-

ed from the cloud surface. From the cloud top height, the cloud top
temperature Tct can be generated by interpolating the temperature
variable T . The ground temperature Tg is treated as the tempera-
ture at the bottom of the simulation lattice. In addition, the cloud
shadow is formed by projecting the cloud surface onto the ground.

Once the cloud top temperature, ground temperature, and cloud
shadow are available, our method is used to reconstruct the cloud
base height Zcb and the cloud top height Zct . The average value of
the lapse rates Tg−Tct

Zr
ct

for all cloudy pixels is used to determine the
optimal shape parameters. In Fig. 10, the results of three phases
for the formation of a cumulus cloud, including (a) the formative
phase, (b) the developing phase, and (c) the mature phase. From
the three results, the standard error of the cloud base height and
that of the cloud top height are 350 m and 278 m respectively. In
this scene, for cumulus cloud, our method performs better than the
standard method [WTM11] based on its standard error of 800 m
for the cloud base height and on the resulting error of 500 m for the
cloud top height. Furthermore, the calculated shape, as well as the
calculated shadow, is similar to the ground-truth shape.

5.4. Applications

In this section, we showcase two multimedia applications. The
particle-based representation allows the generated clouds to be eas-
ily integrated with other graphics models, such as ocean, and sky.
Fig.1 and Fig.11 reveals several applications integrating clouds
with some different scenes. To present our results better, we give a
video to demonstrate the integrating results with ocean scene sim-
ulated using [BNH10].

The data of clouds could also be used to improve visualization
effect of GIS system. In the experiment, according to latitude and
longitude values of satellite images, we add the clouds modeled
to the corresponding area of an earth model loaded by osgEarth.
Fig.12(a) depicts the original satellite image used to model clouds.
Fig.12(b) is the original earth model. Fig.12(c) shows the result
of adding clouds to the original model. As shown in Fig.12, the
technique promotes the appeal of the GIS system.

6. Conclusion

We present a new physically based framework for modeling cumu-
lus cloud scene from high-resolution satellite images. The key to
our framework is estimating a reliable cloud shape by jointly us-
ing the shadow and temperature information recorded in satellite
images. For this, the data processing and the lapse rate model are
proposed for getting physically sound modeling parameters. The
shape parameters are determined by maximizing the similarity be-
tween the reconstructed shadow and the original shadow. Based on
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(a) The formative phase

(b) The developing phase

reference shape
(c) The mature phase

calculated shape calculated shadoworiginal shadow  top height difference base height difference 

Figure 10: Validation of our method using WRF data. Each row shows a phase for the formation of the cumulus cloud, including the formative
phase, the developing phase and the mature phase.

Figure 11: Four examples of integrating with different scenes for the reconstructed cumulus clouds.

Figure 12: Example of enhance display effect of the virtual earth.
(a) The original satellite image. (b) The original earth model. (c)
The earth model with clouds generated by our method.

these, we can automatically recover the geometry of clouds from
multi-spectral images. Experiment results have demonstrated the
effectiveness and efficiency of our framework in modeling a large-
scale cumulus cloud scene from satellite images. In the future, we
are interested in extending this framework to simulate the evolution
of cumulus clouds. Incorporating ground-based observation data,
such as lidar data, to facilitate the evaluation and the recovery of
the cloud base height is also an interesting research direction.
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national Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XXXIX-B3 (2012), 559–564. 2

[DKNY08] DOBASHI Y., KUSUMOTO K., NISHITA T., YAMAMOTO T.:
Feedback control of cumuliform cloud formation based on computation-
al fluid dynamics. ACM Transactions on Graphics (TOG) 27, 3 (2008),
Article No. 94. 2

[DNYO98] DOBASHI Y., NISHITA T., YAMASHITA H., OKITA T.: Mod-
eling of clouds from satellite images using metaballs. In Computer
Graphics and Applications, 1998. Pacific Graphics’ 98. Sixth Pacific
Conference on (1998), IEEE, pp. 53–60. 2, 8

[DSY10] DOBASHI Y., SHINZO Y., YAMAMOTO T.: Modeling of cloud-
s from a single photograph. Computer Graphics Forum 29, 7 (2010),
2083–2090. 2

[DYN09] DOBASHI Y., YAMAMOTO T., NISHITA T.: Interactive and
realistic visualization system for earth-scale clouds. In Pacific graphics
2009 (poster paper) (2009). 2

[Ebe97] EBERT D. S.: Volumetric modeling with implicit functions: A
cloud is born. In Visual Proceedings of SIGGRAPH (1997), p. 147. 2

[Gar85] GARDNER G. Y.: Visual simulation of clouds. ACM Siggraph
Computer Graphics 19, 3 (1985), 297–304. 2

[GP15] GUPTA R., PANCHAL P.: Advancement of cloud detection algo-
rithm in satellite images with application to color models. In Computer
Communication and Informatics (ICCCI), 2015 International Confer-
ence on (2015). 2

[Har94] HARTMANN D. L.: Global physical climatology, vol. 56. Aca-
demic press, 1994. 3

[Har05] HARRIS M. J.: Real-time cloud simulation and rendering. In
ACM SIGGRAPH (2005), pp. 1886–1890. 2

[HHS07] HUFNAGEL R., HELD M., SCHRÖDER F.: Large-scale, realis-
tic cloud visualization based on weather forecast data. In Iasted Interna-
tional Conference on Computer Graphics & Imaging (2007), pp. 54–59.
2

[IBGA06] IRISH R. R., BARKER J. L., GOWARD S. N., ARVIDSON T.:
Characterization of the landsat-7 etm+ automated cloud-cover assess-
ment (acca) algorithm. Photogrammetric Engineering & Remote Sens-
ing 72, 10 (2006), 1179–1188. 3

[JC16] JHOU W. C., CHENG W. H.: Animating still landscape pho-
tographs through cloud motion creation. IEEE Transactions on Multi-
media 18, 1 (2016), 4–13. 2

[KR04] KOKHANOVSKY A. A., ROZANOV V. V.: Simple approximate
solutions of the radiative transfer equation for a cloudy atmosphere. In
Proceedings of SPIE (2004), vol. 5571, pp. 86–93. 3

[LKS96] LEE C. A., KESSELMAN C., SCHWAB S.: Near-real-time satel-
lite image processing: Metacomputing in cc++. IEEE Computer Graph-
ics and Applications 16, 4 (1996), 79–84. 2

[LTK08] LUO Y., TRISHCHENKO A. P., KHLOPENKOV K. V.: De-
veloping clear-sky, cloud and cloud shadow mask for producing clear-
sky composites at 250-meter spatial resolution for the seven modis land
bands over canada and north america. Remote Sensing of Environment
112, 12 (2008), 4167–4185. 4

[LY16] LIANG X., YUAN C.: Derivation of 3d cloud animation from
geostationary satellite images. Multimedia Tools and Applications 75,
14 (2016), 8217–8237. 7, 8

[NCA] NCAR: The weather research & forecasting model. 8

[NDN96] NISHITA T., DOBASHI Y., NAKAMAE E.: Display of cloud-
s taking into account multiple anisotropic scattering and sky light. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques (1996), ACM, pp. 379–386. 5, 6

[OWV11] OREOPOULOS L., WILSON M. J., VÁRNAI T.: Implemen-
tation on landsat data of a simple cloud-mask algorithm developed for
modis land bands. Geoscience and Remote Sensing Letters, IEEE 8, 4
(2011), 597–601. 3, 6

[REHL03] RILEY K., EBERT D., HANSEN C., LEVIT J.: Visually accu-
rate multi-field weather visualization. In Proceedings of the 14th IEEE
Visualization 2003 (VIS’03) (2003), IEEE, pp. 279–286. 2

[Sak93] SAKAS G.: Modeling and animating turbulent gaseous phenom-
ena using spectral synthesis. The Visual Computer 9, 4 (1993), 200–212.
2

[SDS∗16] SHINYA M., DOBASHI Y., SHIRAISHI M., KAWASHIMA M.,
NISHITA T.: Multiple scattering approximation in heterogeneous media
by narrow beam distributions. In Computer Graphics Forum (2016),
vol. 35, Wiley Online Library, pp. 373–382. 2

[Thu16] THUEREY N.: Interpolations of smoke and liquid simulations.
ACM Transactions on Graphics (TOG) 36, 1 (2016), 3. 1

[Vos83] VOSS R.: Fourier synthesis of gaussian fractals: 1/ f noises,
landscapes, and flakes. State of the Art in Image Synthesis Tutorial Notes
10 (1983). 2

[WBC08] WITHER J., BOUTHORS A., CANI M.-P.: Rapid sketch mod-
eling of clouds. In Proceedings of the Fifth Eurographics conference
on Sketch-Based Interfaces and Modeling (2008), Eurographics Associ-
ation, pp. 113–118. 2

[WTM11] WONG E., TSUGAWA R., MULVEY G. J.: Joint polar satellite
system (jpss) viirs cloud base height algorithm theoretical basis docu-
ment (atbd). 8

[YG15] YUAN C., GUO J.: An efficient framework for modeling cloud-
s from landsat8 images. In International Conference on Graphic and
Image Processing (2015), pp. 94431X–94431X–5. 2, 7, 8

[YIC∗10] YUE Y., IWASAKI K., CHEN B.-Y., DOBASHI Y., NISHITA
T.: Unbiased, adaptive stochastic sampling for rendering inhomoge-
neous participating media. ACM Transactions on Graphics (TOG) 29,
6 (2010), 177. 2

[YLH∗14] YUAN C., LIANG X., HAO S., QI Y., ZHAO Q.: Modelling
cumulus cloud shape from a single image. Computer Graphics Forum
33, 6 (2014), 288–297. 1, 2, 4, 6

[YLHY13] YUAN C., LIANG X., HAO S., YANG G.: Modeling large
scale clouds from satellite images. In Pacific Graphics (short papers)
(2013), pp. 47–52. 2, 3, 4, 7, 8

[Yus14] YUSOV E.: High-Performance Rendering of Realistic Cumu-
lus Clouds Using Pre-computed Lighting. In Eurographics/ ACM SIG-
GRAPH Symposium on High Performance Graphics (2014), Wald I.,
Ragan-Kelley J., (Eds.), The Eurographics Association. 2

[ZW12] ZHU Z., WOODCOCK C. E.: Object-based cloud and cloud
shadow detection in landsat imagery. Remote Sensing of Environment
118 (2012), 83–94. 4, 7


