
Eurographics Symposium on Rendering 2018
T. Hachisuka and W. Jakob
(Guest Editors)

Volume 37 (2018), Number 4

Deep Painterly Harmonization

Fujun Luan1 Sylvain Paris2 Eli Shechtman2 Kavita Bala1

1Cornell University 2Adobe Research

Figure 1: Our method automatically harmonizes the compositing of an element into a painting. Given the proposed painting and element on
the left, we show the compositing results (cropped for best fit) of unadjusted cut-and-paste, Deep Image Analogy [LYY∗17], and our method.

Abstract
Copying an element from a photo and pasting it into a painting is a challenging task. Applying photo compositing techniques
in this context yields subpar results that look like a collage — and existing painterly stylization algorithms, which are global,
perform poorly when applied locally. We address these issues with a dedicated algorithm that carefully determines the local
statistics to be transferred. We ensure both spatial and inter-scale statistical consistency and demonstrate that both aspects
are key to generating quality results. To cope with the diversity of abstraction levels and types of paintings, we introduce a
technique to adjust the parameters of the transfer depending on the painting. We show that our algorithm produces significantly
better results than photo compositing or global stylization techniques and that it enables creative painterly edits that would be
otherwise difficult to achieve.

CCS Concepts
•Computing methodologies → Image processing;

1. Introduction

Image compositing is a key operation to create new visual con-
tent. It allows artists to remix existing materials into new pieces
and artists such as Man Ray and David Hockney have created mas-
terpieces using this technique. Compositing can be used in differ-
ent contexts. In applications like photo collage, visible seams are
desirable. But in others, the objective is to make the compositing
inconspicuous, for instance, to add an object into a photograph
in a way that makes it look like the object was present in the
original scene. Many tools have been developed for photographic

compositing, e.g., to remove boundary seams [PGB03], match the
color [XADR12] or also fine texture [SJMP10]. However, there is
no equivalent for paintings. If one seeks to add an object into a
painting, the options are limited. One can paint the object man-
ually or with a painting engine [CKIW15] but this requires time
and skills that few people have. As we shall see, resorting to algo-
rithms designed for photographs produces subpar results because
they do not handle the brush texture and abstraction typical of
paintings. And applying existing painterly stylization algorithms as
is also performs poorly because they are meant for global styliza-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ar
X

iv
:1

80
4.

03
18

9v
4

 [
cs

.G
R

]
 2

6
Ju

n
20

18

Luan et al. / Deep Painterly Harmonization

tion whereas we seek a local harmonization of color, texture, and
structure properties.

In this paper, we address these challenges and enable one to copy
an object in a photo and paste it into a painting so that the composite
still looks like a genuine painting in the style of the original paint-
ing. We build upon recent work on painterly stylization [GEB16]
to harmonize the appearance of the pasted object so that it matches
that of the painting. Our strategy is to transfer relevant statistics
of neural responses from the painting to the pasted object, with the
main contribution being how we determine which statistics to trans-
fer. Akin to previous work, we use the responses of the VGG neural
network [SZ14] for the statistics that drive the process. In this con-
text, we show that spatial consistency and inter-scale consistency
matter. That is, transferring statistics that come from a small set of
regions in the painting yields better results than using many iso-
lated locations. Further, preserving the correlation of the neural re-
sponses between the layers of the network also improves the output
quality. To achieve these two objectives, we introduce a two-pass
algorithm: the first pass achieves coarse harmonization at a single
scale. This serves as a starting point for the second pass which im-
plements a fine multi-scale refinement. Figure 1(right) shows the
results from our approach compared to a related technique.

We demonstrate our approach on a variety of examples. Painterly
compositing is a demanding task because the synthesized style is
juxtaposed with the original painting, making any discrepancy im-
mediately visible. As a consequence, results from global stylization
techniques that may be satisfying when observed in isolation can be
disappointing in the context of compositing because the inherent
side-by-side comparison with the original painting makes it easy to
identify even subtle differences. In contrast, we conducted a user
study that shows that our algorithm produces composites that are
often perceived as genuine paintings.

1.1. Related Work

Image Harmonization. The simplest way to blend images is to
combine the foreground and background color values using lin-
ear interpolation, which is often accomplished using alpha mat-
ting [PD84]. Gradient-domain compositing (or Poisson blending)
was first introduced by Pérez et al. [PGB03] which considers the
boundary condition for seamless cloning. Xue et al. [XADR12]
identified key statistical factors that affect the realism of photo
compositings such as luminance, color temperature, saturation, and
local contrast, and matched the histograms accordingly. Deep neu-
ral networks [ZKSE15, TSL∗17] further improved color proper-
ties of the composite by learning to improve the overall photo
realism. Multi-Scale Image Harmonization [SJMP10] introduced
smooth histogram and noise matching which handles fine texture
on top of color, however it does not capture more structured tex-
tures like brush strokes which often appear in paintings. Image
Melding [DSB∗12] combines Poisson blending with patch-based
synthesis [BSFG09] in a unified optimization framework to har-
monize color and patch similarity. Camouflage Images [CHM∗10]
proposed an algorithm to embed objects into certain locations in
cluttered photographs with a goal to make the objects hard to no-
tice. While these techniques are mostly designed with photographs
in mind, our focus is on paintings. In particular, we are interested

in the case where the background of the composite is a painting or
a drawing.

Style Transfer using Neural Networks. Recent work on Neural
Style transfer [GEB16] has shown impressive results on transfer-
ring the style of an artwork by matching the statistics of layer
responses of a deep neural network. These methods transfer ar-
bitrary styles from one image to another by matching the corre-
lations between feature activations extracted by a pretrained deep
neural network on image classification (i.e., VGG [SZ14]). The re-
construction process is based on an iterative optimization frame-
work that minimizes the content and style losses computed from
the VGG neural network. Recently, feed-forward generators pro-
pose fast approximations of the original Neural Style formula-
tions [ULVL16,JAFF16,LW16b] to achieve real-time performance.
However, this technique is sensitive to mismatches in the image
content and several approaches have been proposed to address this
issue. Gatys et al. [GEB∗17] add the possibility for users to guide
the transfer with annotations. In the context of photographic trans-
fer, Luan et al. [LPSB17] limit mismatches using scene analysis.
Li and Wand [LW16a] use nearest-neighbor correspondences be-
tween neural responses to make the transfer content-aware. Specif-
ically, they use a non-parametric model that independently matches
the local patches in each layer of the neural network using nor-
malized cross-correlation. Note that this differs from our approach
since we use feature representations based on Gram matrices and
enforce spatial consistency across different layers in the neural net-
work when computing the correspondence. Improvements can be
seen in the comparison results in Section 2.1. Odena et al. [ODO16]
study the filters used in these networks and explain how to avoid the
grid-like artifacts produced by some techniques. Recent approaches
replace the Gram matrix with matching other statistics of neural re-
sponses [HB17,LFY∗17]. Liao et al. [LYY∗17] further improve the
quality of the results by introducing bidirectional dense correspon-
dence field matching. All these methods have in common that they
change the style of entire images at once. Our work differs in that
we focus on local transfer; we shall see that global methods do not
work as well when applied locally.

1.2. Background

Our work builds upon the style transfer technique introduced by
Gatys et al. [GEB16] (Neural Style) and several additional recon-
struction losses proposed later to improve its results. We summarize
these techniques below before describing our algorithm in the next
section (§ 2).

1.2.1. Style Transfer

Parts of our technique have a similar structure to the Neural Style
algorithm by Gatys et al. [GEB16]. They found that recent deep
neural networks can learn to extract high-level semantic informa-
tion and are able to independently manipulate the content and style
of natural images. For completeness, we summarize the Neural
Style algorithm that transfers a style image to an input image to
produce an output image by minimizing loss functions defined us-
ing the VGG network. The algorithm proceeds in three steps:

1. The input image I and style S are processed with the VGG

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

network [SZ14] to produce a set of activation values as feature
representations F [I] and F [S]. Intuitively, these capture the
statistics that represent the style of each image.

2. The style activations are mapped to the input ones. In the orig-
inal approach by Gatys et al., the entire set of style activations
is used. Other options have been later proposed, e.g., using
nearest neighbors neural patches [LW16a].

3. The output image O is reconstructed through an optimization
process that seeks to preserve the content of the input image
while at the same time match the visual appearance of the
style image. These objectives are modeled using losses that we
describe in more detail in the next section.

Our approach applies this three-step process twice, the main vari-
ation being the activation matching step (2). Our first pass uses a
matching algorithm designed for robustness to large style differ-
ences, and our second pass uses a more constrained matching de-
signed to achieve high visual quality.

1.2.2. Reconstruction Losses

The last step of the pipeline proposed by Gatys et al. is the re-
construction of the final image O. As previously discussed, this in-
volves solving an optimization problem that balances several objec-
tives, each of them modeled by a loss function. Originally, Gatys et
al. proposed two losses: one to preserve the content of the input im-
age I and one to match the visual appearance of the style image S.
Later, more reconstruction losses have been proposed to improve
the quality of the output. Our work builds upon several of them that
we review below.

Style and Content Losses. In their original work, Gatys et al. used
the loss below.

LGatys = Lc +wsLs (1a)

with: Lc =
L

∑
`=1

α`

2N`D`

N`

∑
i=1

D`

∑
p=1

(
F̀ [O]− F̀ [I]

)2
ip (1b)

Ls =
L

∑
`=1

β`

2N2
`

N`

∑
i=1

N`

∑
j=1

(
G`[O]−G`[S]

)2
i j (1c)

where L is the total number of convolutional layers, N` the number
of filters in the `th layer, and D` the number of activation values
in the filters of the `th layer. F̀ [·] ∈ RN`×D` is a matrix where the
(i, p) coefficient is the pth activation of the ith filter of the `th layer
and G`[·] = F̀ [·]F̀ [·]T ∈ RN`×N` is the corresponding Gram ma-
trix. α` and β` are weights controlling the influence of each layer
and ws controls the tradeoff between the content (Eq. 1b) and the
style (Eq. 1c). The advantage of the Gram matrices G` is that they
represent the statistics of the activation values F̀ independently of
their location in the image, thereby allowing the style statistics to
be “redistributed” in the image as needed to fit the input content.
Said differently, the product F̀ [·]F̀ [·]T amounts to summing over
the entire image, thereby pooling local statistics into a global rep-
resentation.

Histogram Loss. Wilmot et al. [WRB17] showed that LGatys is
unstable because of ambiguities inherent in the Gram matrices and

proposed the loss below to ensure that activation histograms are
preserved, which remedies the ambiguity.

Lhist =
L

∑
`=1

γ`

N`

∑
i=1

D`

∑
p=1

(
F̀ [O]−R`[O]

)2
ip (2a)

with: R`[O] = histmatch(F̀ [O], F̀ [S]) (2b)

where γ` are weights controlling the influence of each layer and
R`[O] is the histogram-remapped feature map by matching F̀ [O] to
F̀ [S].

Total Variation Loss. Johnson et al. [JAFF16] showed that the to-
tal variation loss introduced by Mahendran and Vedaldi [MV15]
improves style transfer results by producing smoother outputs.

Ltv(O) = ∑
x,y
(Ox,y−Ox,y−1)

2 +(Ox,y−Ox−1,y)
2 (3)

where the sum is over all the (x,y) pixels of the output image O.

2. Painterly Harmonization Algorithm

We designed a two-pass algorithm to achieve painterly harmo-
nization. Previous work used a single-pass approach; for example,
Gatys et al. [GEB16] match the entire style image to the entire input
image and then use the L2 norm on Gram matrices to reconstruct the
final result. Li and Wand [LW16a] use nearest neighbors for match-
ing and the L2 norm on the activation vectors for reconstructing. In
our early experiments, we found that such single-pass strategies did
not work as well in our context and we were not able to achieve as
good results as we hoped. This motivated us to develop a two-pass
approach where the first pass aims for coarse harmonization, and
the second focuses on fine visual quality (Alg. 1).

The first pass produces an intermediate result that is close to the
desired style but we do not seek to produce the highest quality out-
put possible at this point. By relaxing the requirement of high qual-
ity, we are able to design a robust algorithm that can cope with
vastly different styles. This pass achieves coarse harmonization by
first performing a rough match of the color and texture properties
of the pasted region to those of semantically similar regions in the
painting. We find nearest-neighbor neural patches independently
on each network layer (Alg. 3) to match the responses of the pasted
region and of the background. This gives us an intermediate result
(Fig. 2b) that is a better starting point for the second pass.

Then, in the second pass, we start from this intermediate result
and focus on visual quality. Intuitively, since the intermediate im-
age and the style image are visually close, we can impose more
stringent requirements on the output quality. In this pass, we work
at a single intermediate layer that captures the local texture prop-
erties of the image. This generates a correspondence map that we
process to remove spatial outliers. We then upsample this spatially
consistent map to the finer levels of the network, thereby ensuring
that at each output location, the neural responses at all scales come
from the same location in the painting (Alg. 4). This leads to more
coherent textures and better looking results (Fig. 2c). In the rest of
this section, we describe in detail each step of the two passes.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

Algorithm 1: TwoPassHarmonization(I,M,S)

input input image I and mask M
style image S

output output image O

// Pass #1: Robust coarse harmonization (§ 2.1, Alg. 2)
// Treat each layer independently during input-to-style mapping

(Alg. 3)
I′← SinglePassHarmonization(I,M,S, IndependentMapping)

// Pass #2: High-quality refinement (§ 2.2, Alg. 2)
// Enforce consistency across layers
// and in image space during input-to-style mapping (Alg. 4)
O← SinglePassHarmonization(I′,M,S,ConsistentMapping)

Algorithm 2: SinglePassHarmonization(I,M,S,π)

input input image I and mask M
style image S
neural mapping function π

output output image O

// Process input and style images with VGG network.
F [I]← ComputeNeuralActivations(I)
F [S]← ComputeNeuralActivations(S)

// Match each input activation in the mask to a style activation
// and store the mapping from the former to the latter in P.
P← π(F [I],M,F [S])

// Reconstruct output image to approximate new activations.
O← Reconstruct(I,M,S,P)

2.1. First Pass: Robust Coarse Harmonization

We designed our first pass to be robust to the diversity of paintings
that users may provide as style images. In our early experiments,
we made two observations. First, we applied the technique of Gatys
et al. [GEB16] as is, that is, we used the entire style image to build
the style loss Ls. This produced results where the pasted element
became a “summary” of the style image. For instance, with Van
Gogh’s Starry Night, the pasted element had a bit of swirly sky,
one shiny star, some of the village structure, and a small part of
the wavy trees. While each texture was properly represented, the
result was not satisfying because only a subset of them made sense
for the pasted element. Then, we experimented with the nearest-
neighbor approach of Li and Wand [LW16a]. The intuition is that
by assigning the closest style patch to each input patch, it selects
style statistics more relevant to the pasted element. Although the
generated texture tended to lack contrast compared to the original
painting, the results were more satisfying because the texture was
more appropriate. Based on these observations, we designed the
algorithm below that relies on nearest-neighbor correspondences
and a reconstruction loss adapted from [GEB16].

Mapping. Similarly to Li and Wand, for each layer ` of the neural
network, we stack the activation coefficients at the same location
in the different feature maps into an activation vector. Instead of
considering N` feature maps, each of them with D` coefficients, we

(a) Cut-and-paste (b) 1st pass. Robust
harmonization but
weak texture (top)
and artifacts (bottom).

(c) 2nd pass. Refined
results with accurate
texture and no artifact.

Figure 2: Starting from vastly different input and style images (a),
we first harmonize the overall appearance of the pasted element (b)
and then refine the result to finely match the texture and remove
artifacts (c).

work with a single map that contains D` activation vectors of di-
mension N`. For each activation vector, we consider the 3×3 patch
centered on it. We use nearest neighbors based on the L2 norm on
these patches to assign a style vector to each input vector. We call
this strategy independent mapping because the assignment is made
independently for each layer. Algorithm 3 gives the pseudocode of
this mapping. Intuitively, the independence across layers makes the
process more robust because a poor match in a layer can be com-
pensated for by better matches in the other layers. The downside
of this approach is that the lack of coherence across layers impacts
the quality of the output (Fig. 2b). However, as we shall see, these
artifacts are limited and our second pass removes them.

Reconstruction. Unlike Li and Wand who use the L2 norm on
these activation vectors to reconstruct the output image, we pool
the vectors into Gram matrices and use LGatys (Eq. 1). Applying
the L2 norm directly on the vectors constrains the spatial location
of the activation values; the Gram matrices relax this constraint as
discussed in § 1.2.2. Figure 3 shows that using L2 reconstruction
directly, i.e., without Gram matrices, does not produce as good re-
sults.

2.2. Second Pass: High-Quality Refinement

As can be seen in Figure 2(b), the results after the first pass match
the desired style but suffer from artifacts. In our early experiment,
we tried to fine-tune the first pass but our attempts only improved
some results at the expense of others. Adding constraints to achieve
a better quality was making the process less robust to style diver-
sity. We address this challenge with a second pass that focuses on
visual quality. The advantage of starting a complete new pass is
that we now start from an intermediate image close to the desired
result and robustness is not an issue anymore. We design our pass
such that the input-to-style mapping is consistent across layers and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

Overly weak texture Severe artifacts

Figure 3: Examples of quality loss when not using a Gram matrix
in the first pass. The inputs are the same as in Figure 2. Directly
applying the L2 norm, similarly to Li and Wand, forces each spa-
tial location to use only the nearest neighbor from the style image,
which causes artifacts when the match is not good. As we show
later, using a Gram matrix to pack the matched features together
relaxes this limitation and produces fewer artifacts.

Algorithm 3: IndependentMapping(F [I],M,F [S])

input input neural activations F [I] and mask M
style neural activations F [S]

output input-to-style mapping P

// For each layer in the network...
for ` ∈ [1 : L] do // L = number of layers

// For each “activation patch” in the `th layer...
// “activation patch” = vector made of all the activations
// in a 3×3 patch across all the filters of a layer.
for p ∈ [1 : D`] do // D` = number of patches in the `th layer

// Consider only the patches inside the mask
// resized to the resolution of the `th layer
if p ∈ Resize(M, `) then

// Assign the style patch closest to the input patch
P(`, p)← NearestNeighborIndex(F̀ [I]p, F̀ [S])

space. We ensure that the activation vectors assigned to the same
image location on different layers were already collocated in the
style image. We also favor the configuration where vectors adja-
cent in the style image remain adjacent in the mapping. Enforcing
such strict requirements directly on the input image often yields
poor results (Fig. 5d) but when starting from the intermediate im-
age generated by the first pass, this approach produces high quality
outputs (Fig. 5h). We also build on previous work to improve the
reconstruction step. We explain the details of each step below.

Mapping. We start with a nearest-neighbor assignment similar to
the first pass (§ 2.1) but applied only to a single layer, which we call
the reference layer `ref (Alg. 4, Step #1). We tried several layers
for `ref and found that conv4_1 provided a good trade-off between
deeper layers that ignore texture, and shallower layers that ignore
scene semantics, e.g., pairing unrelated objects together (Fig. 4).

Then, we process this single-layer mapping to improve its spatial
consistency by removing outliers. We favor configurations where
all the style vectors assigned to an input region come from the same
region in the style image. For each input vector p, we compare

Algorithm 4: ConsistentMapping(F [I],M,F [S])

input input neural coefficients F [I] and mask M
style neural coefficients F [S]

output input-to-style mapping Pout

// Step #1: Find matches for the reference layer.
// Do the same as in Alg. 3 but only for the reference layer.
for p ∈ [1 : D`ref] do

if p ∈ Resize(M, `ref) then
// P is an intermediate input-to-style mapping refined
// in the next step of the algorithm.
P(`ref, p)← NearestNeighborIndex(F̀ ref [I]p, F̀ ref [S])

// Step #2: Enforce spatial consistency.
for p ∈ [1 : D`ref] do

if p ∈ Resize(M, `ref) then
// Look up the corresponding style patch.
q← P(`ref, p)

// Initialize a set of candidate style patches.
CSet←{q}
// For all adjacent patches...
for o ∈ {N,NE,E,SE,S,SW,W,NW} do

// Duplicate its assignment, i.e.:
// 1. Look up the style patch of the adjacent patch p+o
// and apply the opposite offset −o.
// 2. Add the result to the set of candidates.
CSet← CSet∪{P(`ref, p+o)−o}

// Select the candidate the most similar to the style patches
// associated to the neighbors of p.
Pout(`ref, p) ←

argmin
c∈CSet

∑
o∈O
‖F̀ ref [S]c− F̀ ref [S]P(`ref,p+o)‖

2

// withO = {N,NE,E,SE,S,SW,W,NW}

// Step #3: Propagate the matches in the ref. layer to the other layers.
// For each layer in the network excluding the reference layer...
for ` ∈ [1 : (`ref−1)]∪ [(`ref +1) : L] do

for p ∈ [1 : D`] do

if p ∈ Resize(M, `) then
// Compute the index of the patch in F̀ [I]
// at the same image location as F̀ ref [I]p.
p′← ChangeResolution[I](`,`ref, p)

// Fetch matching style patch in the reference layer.
q← Pout(`ref, p′)

// Change the resolution back.
Pout(`, p)← ChangeResolution[S](`ref, `,q)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

(a) `ref = conv3_1 (b) `ref = conv4_1
(our setting)

(c) `ref = conv5_1

Figure 4: Setting `ref to conv3_1 produces low-quality results due
to poor matches between the input and style images (a). Instead we
use conv4_1 that yields better results (b). Using the deeper layer
conv5_1 generates lower-quality texture (c) but the degradation is
minor compared to using conv3_1. The inputs are the same as in
Figure 2.

the style vector assigned by the nearest-neighbor correspondence
above as well as the vectors obtained by duplicating the assign-
ments of the neighbors of p. Among these candidates, we pick the
vector pointing to a style feature that is most similar to its neigh-
bors’ features. In practice, this removes small outlier regions that
are inconsistent with their neighborhood. This procedure is Step #2
of Algorithm 4.

Last, we propagate these correspondences to the other layers so
that the activation values are consistent across layers. For a given
location in the input image, all the activation values across all the
layers are assigned style activations that come from the same loca-
tion in the style image (Alg. 4, Step #3).

Reconstruction. A first option is to apply the same reconstruc-
tion as the first pass (§ 2.1), which already gives satisfying results
although some minor defects remain (Fig. 5e). We modify the re-
construction as follows to further improve the output. First, we ob-
serve that in some cases, the nearest-neighbor assignment selects
the same style vector many times, which generates poor results.
We address this issue by selecting each vector at most once and
ignoring the additional occurrences, i.e., each vector contributes at
most once to the Gram matrix used in the style loss. We name Ls1
this variant of the style loss. We also add the histogram and total-
variation losses, Lhist and Ltv (§ 1.2.2). Together, these form the
loss that we use to reconstruct our final output:

Lfinal = Lc +wsLs1 +whistLhist +wtvLtv (4)

where the weights ws, whist, and wtv control the balance between
the terms. Figure 5 illustrates the benefits of this loss. We explain
in Section 3 how to set these weights depending on the type of
painting provided as the style image.

Discussion. Our constrained mapping was inspired by the
nearest-neighbor field upsampling used in the Deep Analogy

work [LYY∗17, § 4.4] that constrains the matches at each layer
to come from a local region around the location at a previous layer.
When the input and style images are similar, this technique per-
forms well. In our context, the intermediate image and the style
image are even more similar. This encouraged us to be even stricter
by forcing the matches to come from the exact same location. Be-
side this similar aspect, the other algorithmic parts are different and
as we shall see, our approach produces better results for our appli-
cation.

We experimented with using the same reconstruction in the first
pass as in the second pass. The quality gains were minimal on the
intermediate image and mostly non-existent on the final output.
This motivated us to use the simpler reconstruction in the first pass
as described in Section 2.1 for the sake of efficiency.

2.3. Post-processing

The two-pass process described thus far yields high quality results
at medium and large scales but in some cases, fine-scale details can
be inaccurate. Said differently, the results are good from a distance
but may not be as satisfactory on close examination. The two-step
signal-processing approach below addresses this.

Chrominance Denoising. We observed that, in our context, high-
frequency artifacts primarily affect the chrominance channels while
the luminance is comparatively cleaner. We exploit this character-
istic by converting the image to CIE-Lab color space and applying
the Guided Filter [HST10] to filter the ab chrominance channels
with the luminance channel as guide. We use the parameters sug-
gested by the authors, i.e., r = 2,eps = 0.12. This effectively sup-
presses the highest-frequency color artifacts. However, some larger
defects may remain. The next step addresses this issue.

Patch Synthesis. The last step uses patch synthesis to ensure that
every image patch in the output appears in the painting. We use
PatchMatch [BSFG09] to find a similar style patch to each output
patch. We reconstruct the output by averaging all overlapping style
patches, thereby ensuring that no new content is introduced. How-
ever, the last averaging step tends to smooth details. We mitigate
this effect by separating the image into a base layer and a detail
layer using the Guided Filter again (using the same parameters).
The base layer is the output of the filter and contains the coarse
image structure, and the detail layer is the difference with the orig-
inal image that contains the high-frequency details. We then apply
patch synthesis on the base layer only and add back the details. This
procedure ensures that the texture is not degraded by the averaging,
thereby producing crisp results.

3. Painting Estimator

The above algorithm has two important parameters that affect the
stylistic properties of the output — style and histogram weights (ws
and whist). We observed that different sets of parameters gave opti-
mal results for different paintings based on their level of stylization.
For example, Cubism paintings often contain small multifaceted ar-
eas with strong and sharp brush strokes, while High Renaissance
and Baroque paintings are more photorealistic. Rather than tweak
parameters for each input, we developed a trained predictor of the
weights to make our approach to weight selection more robust.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

(a) Style image (b) Cut-and-paste (c) Independent mapping (1st pass
only, our intermediate result)

(d) Consistent mapping (2nd pass
only, bad correspondence)

(e) Entire pipeline without Lhist and
using Ls instead of Ls1

(f) Entire pipeline using Ls

instead of Ls1

(g) Entire pipeline without painting
estimator (default parameters, style
is too weak)

(h) Our final result

Figure 5: Ablation study. (c-h) are cropped for best fit. Zoom in for details. The 1st pass (a) reduces the style difference gap between the
foreground and background, but lacks fine texture details. Directly applying the 2nd pass produces fine texture details, but the correspondence
is not as good, which causes texture mismatch problems. Without the histogram loss, (e) is unable to reproduce the dot texture of the
background painting in some regions due to the instabilities of the Gram matrix. Without addressing many-to-one mappings, redundant style
patches are reused multiple times and cause artifacts in the output (f). Without the painting estimator, the style of the result (g) is not well
reproduced. (h) is our final solution by combining all components.

(a) Inset of our result
(before post-processing)

(b) After guided filtering (c) After patch synthesis

(d) a channel
(before guided filtering)

(e) a channel
(after guided filtering)

(f) Our result
after post-processing

Figure 6: Post-processing: Given deconvolution result with inset
(a), we perform Chrominance Denoising to produce (b) and Patch
Synthesis on (b) to produce (c). (d) and (e) show the insets of a
channel in CIE-Lab space before and after denosing. (f) is the final
full-resolution result.

Strength Art style examples (ws,whist)

Weak Baroque, High Renaissance (1.0,1.0)
Medium Abstract Art, Post-Impressionism (5.0,5.0)
Strong Cubism, Expressionism (10.0,10.0)

Table 1: Weights for selected art styles. Please refer to the sup-
plemental document for compact art styles and parameter weights.
The final weight is a linear interpolation of different art styles using
our trained painting estimator network. TV weights are computed
separately based on the noise level of the painting image (Sec. 4) .

We train a painting estimator that predicts the optimization pa-
rameters for our algorithm such that parameters that allow deeper
style changes are used when the background painting is more styl-
ized and vice versa. To train this estimator, we split the parame-
ter values into three categories (“Weak”, “Medium” and “Strong”),
and manually assign each painting style to one of the categories.
Table 1 presents a subset of painting styles and their categories
and weight values. We selected the 18 most common styles based
on wikiart.org ranking: Abstract Art, Abstract Expression-
ism, Art Nouveau (Modern), Baroque, Color Field Painting, Cu-
bism, Early Renaissance, Expressionism, High Renaissance, Im-
pressionism, Mannerism (Late Renaissance), Naive Art (Primi-
tivism), Northern Renaissance, Post-Impressionism, Realism, Sur-
realism, Symbolism and Ukiyo-e. More details appear in the sup-
plementary material.

We collected 80,000 paintings from wikiart.org and fine-
tuned the VGG-16 network [SZ14] on classifying 18 different

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

styles. After training, we remove the last classification layer and
use weighted linear interpolation on the softmax layer based on
style categories to output a floating value for ws and whist indicating
the level of stylization. These parameter values (shown in Table 1)
are then used in the optimization.

4. Implementation Details

This section describes the implementation details of our approach.
We employed pre-trained VGG-19 [SZ14] as the feature extrac-
tor. For the first-pass optimization, we chose conv4_1 (α` = 1 for
this layer and α` = 0 for all other layers) as the content represen-
tation, and conv3_1, conv4_1 and conv5_1 (β` = 1/3 for those
layers and β` = 0 for all other layers) as the style representation,
since higher layers have been transformed by the CNN into rep-
resentations with more of the actual content, which is crucial for
the semantic-aware nearest-neighbor search. We used these layer
preferences for all the first-pass results. For the second-pass opti-
mization, we chose conv4_1 as the content representation, conv1_1,
conv2_1, conv3_1 and conv4_1 as the style representation. We
also employed the histogram loss and used conv1_1, and conv4_1
(γ` = 1/2 for these layers and γ` = 0 for all other layers) as the
histogram representation as suggested by the original authors. We
chose conv4_1 as the reference layer `ref for the nearest-neighbor
search in the second-pass optimization. We name τ the output float-
ing number of the painting estimator and set the parameters ws = τ,
whist = τ, and wtv = τ ∗ sigmoid(median_tv(S)), where the
sigmoid(x) = 10

1+exp(104x−25) and median_tv(S) is the median
total variation (Eq. 3) of the painting S. We found the parameters
for the sigmoid function empirically. The intuition is that we im-
pose less smoothness when the original painting is textured.

Our main algorithm is developed in Torch + CUDA. We have
implemented the dense correspondence search and spatial consis-
tency resampling in CUDA to manipulate the feature activations
from the VGG network. The optimization pipeline is based on a
popular Torch implementation †. We apply chrominance denoising
and patch synthesis after the optimization pipeline as a separate
post-processing step. All our experiments are conducted on a PC
with an Intel Xeon E5-2686 v4 processor and an NVIDIA Tesla
K80 GPU. We use the L-BFGS solver [LN89] for the reconstruc-
tion with 1000 iterations. The runtime on a 500×500 image takes
about 5 minutes. We will release our implementation upon accep-
tance for non-commercial use and future research.

5. Results

We now evaluate our harmonization algorithm in comparison with
related work and through user studies.

Main Results. In Figures 11 and 12, we compare our method
with four state-of-the-art methods: Neural Style [GEB16], CN-
NMRF [LW16a], Multi-Scale Image Harmonization [SJMP10],
and Deep Image Analogy [LYY∗17] across paintings with various
styles and genres. Neural Style tends to produce “style summaries”
that rarely work well; for example, background sky texture appears

† https://github.com/jcjohnson/neural-style

in the foreground eiffel tower (Fig. 11(iv)). This is due to the lack
of semantic matching since the Gram matrix is computed over the
entire painting. CNNMRF often generates weak style transfers that
do not look as good when juxtaposed with the original painting.
Multi-Scale Image Harmonization performs noise matching to fit
high-frequency inter-scale texture but does not capture spatially-
varying brush strokes common in paintings with heavy styles. Deep
Image Analogy is more robust compared to the other three meth-
ods but its results are sometimes blurred due to patch synthesis and
voting, e.g., Figures 11(i-iii), 12(vii). Its coarse-to-fine pipeline also
sometimes misses parts (Fig. 11(iv)).

User Studies. We conduct user studies to quantitatively charac-
terize the quality of our results. The first user study, “Edited or
Not”, aims to understand whether the harmonization quality is good
enough to fool an observer. The second user study, “Comparison”,
compares the quality of our results with that of related algorithms.

Study 1: Edited or Not. We showed the users 20 painterly com-
posites, each edited by one of four algorithms: CNNMRF [LW16a],
Multi-Scale Image Harmonization [SJMP10], Deep Image Anal-
ogy [LYY∗17], and ours. We asked the users whether the painting
had been edited. If they thought it was, we asked them to click
on the part of the image they believed was edited (this records the
coordinates of the edited object) so that we could verify the correct-
ness of the answer. This verification is motivated by our pilot study
where we found that people would sometimes claim an image is
edited by erroneously identifying an element as edited although it
was part of the original painting. Such misguided classification is
actually a positive result that shows the harmonization is of high
quality. We also recorded the time it took users to answer each
question.

One potential problem in the study that we had to consider is
that people might spot the edited object in a painting due to rea-
sons other than the harmonization quality. For example, an edit in
a famous painting will be instantly recognizable, or if the compo-
sition of the edited painting is semantically wrong, e.g., a man’s
face in a woman’s head, or a spaceship in a painting from the 19th
century. To avoid these problems, we selected typically unfamilar
paintings and made the composition sensible; for example adding
a park bench in a meadow or a clock on a wall (see supplementary
material for more examples). We further asked the users for each
example if they were familiar with the painting. If they were, we
eliminated their judgement as being tainted by prior knowledge.

Figure 8 shows the results of Study 1 using two metrics: the aver-
age painting classification rate and average answer time. Let N(x)
denote the total number of users with answer x. For an original
painting, the painting classification rate is computed as Nn/(Nn +
Ne), where Nn is the number of answers with Not Edited and Ne
is the number of answers with Edited. For edited paintings using
those four algorithms, the painting classification rate P is computed
as (Nn + N̂e)/(Nn +Ne), where N̂e is the number of answers with
Edited but with the wrong XY coordinates of the mouse click.
This captures all the cases where the viewer was “fooled” by the
harmonization result. A higher rate means better harmonization
quality since users were unable to identify the modification. Fig-
ure 8 shows that our algorithm achieves a painting classification

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

(a) Source (b) Target painting (c) [PGB03] (d) [SJMP10] (e) [DSB∗12] (f) Ours

Figure 7: When pasting the face of Ginevra de’ Benci (a) on Mona Lisa (b), Poisson Blending [PGB03] does not match the texture (c),
Mulitscale Harmonization [SJMP10] adds texture but does not reproduce the paint cracks (d), Image Melding [DSB∗12] adds cracks faith-
fully but not everywhere, e.g., there are no cracks below the eye on the right (e). In comparison, our result generates cracks more consistently
over the image (f).

0%

25%

50%

75%

100%

10s 15s 20s

Pa
in

tin
g

cl
as

si
fic

at
io

n
(h

ig
he

r i
s b

et
te

r)

Answer time

Unedited painting
CNNMRF

Multiscale Harmonization
Deep Analogy

Ours

Figure 8: Results of the“Edited or Not” user study. A higher paint-
ing classification rate means better harmonization performance
since users were unable to identify the edit. See text for more de-
tails. The large symbols represent the average of each category.

rate significantly higher than that of the other algorithms and close
to that of unedited paintings.

The answer time has a less straightforward interpretation since
it may also reflect how meticulous users are. Nonetheless, Figure 8
shows that the answer time for our algorithm is close to that of
unedited paintings and significantly different from that of the other
algorithms, which also suggests that our results share more similar-
ities with actual paintings than the outputs of the other methods.

Study 2: Comparison. We showed the users 17 paintings, each
painting had been edited with the same four algorithms as the first
study. We asked the users to select the result that best captures the
consistency of the colors and of the texture in the painting. The
quantitative results are shown in Figure 9. For most paintings our
algorithm is most preferred. We provide more detailed results in the
supplementary document.

 0

 20

 40

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of
votes per image
(higher is better)

Image index

CNNMRF Multiscale Harmonization

Deep AnalogyOurs

Figure 9: Results of the “Comparison” user study. Our algorithm
is often the most preferred among the four algorithms.

Image Harmonization Comparisons. We compare our results
with Poisson blending and two state-of-the-art harmonization so-
lutions, [SJMP10] and [DSB∗12] in Figure 7. Poisson blending
achieves good overall color matching but does not capture the tex-
ture of the original painting. Multiscale Harmonization [SJMP10]
transforms noise to transfer texture properties, in addition to color
and intensity. However, it is designed to fit small-scale, noise-like
texture and is not well suited for more structured patterns such as
painting brush strokes and cracks. Image Melding [DSB∗12] im-
proves texture quality by using patch synthesis combined with Pois-
son blending, but the texture disappears at some places. In com-
parison, our method better captures both the spatial and inter-scale
texture and structure properties (Fig. 7f).

Harmonization of a canonical object across styles. In the above
examples, we picked different objects for different paintings to cre-
ate plausible combinations. In this experiment, we use the same
canonical object across a variety of styles to demonstrate the styl-
ization independent of the inserted object. We introduce a hot air
balloon into paintings with a wide range of styles. We randomly
selected paintings from the wikiart.org dataset to paste the
balloon into (Fig. 10). Note that some of the results are stylized so
strongly that they are difficult to distinguish from the background
painting. This is similiar to Camouflage Images [CHM∗10], and
is a limitation of our approach and an interesting future research
direction.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

Figure 10: Canonical object harmonization results for hot air bal-
loon (upper-left).

6. Conclusions

We have described an algorithm to copy an object in a photograph
and paste it into a painting seamlessly, i.e., the composite still looks
like a genuine painting. We have introduced a two-pass algorithm
that first transfers the overall style of the painting to the input and
then refines the result to accurately match the painting’s color and
texture. This latter pass relies on mapping neural response statis-
tics that ensures consistency across the network layers and in im-
age space. To cope with different painting styles, we have trained
a separate network to adjust the transfer parameters as a function
of the style of the background painting. Our experiments show that
our approach succeeds on a diversity of input and style images,
many of which are challenging for other methods. We have also
conducted two user studies that show that users often identify our
results as unedited paintings and prefer them to the outputs of other
techniques.

We believe that our work opens new possibilities for creatively
editing and combining images and hope that it will inspire artists.
From a technical perspective, we have demonstrated that global
painterly style transfer methods are not well suited for local trans-
fer, and we designed an effective local approach. This suggests
fundamental differences between the local and global statistics of
paintings, and further exploring this difference is an exciting av-
enue for future work. Other avenues of future work include fast
feed-forward network approximations of our optimization frame-
work, as well an extension to painterly video compositing.

Acknowledgements. This work was supported by a National Sci-
ence Foundation grant (IIS-1617861), Adobe, and a Google Faculty
Research Award.

References

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A., GOLDMAN
D. B.: Patchmatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Trans. Graph. 28, 3 (2009), 24–1. 2, 6

[CHM∗10] CHU H.-K., HSU W.-H., MITRA N. J., COHEN-OR D.,
WONG T.-T., LEE T.-Y.: Camouflage images. ACM Trans. Graph.
29, 4 (2010), 51–1. 2, 9

[CKIW15] CHEN Z., KIM B., ITO D., WANG H.: Wetbrush: Gpu-based

3d painting simulation at the bristle level. ACM Trans. Graph. 34, 6
(2015), 200. 1

[DSB∗12] DARABI S., SHECHTMAN E., BARNES C., GOLDMAN
D. B., SEN P.: Image melding: Combining inconsistent images using
patch-based synthesis. ACM Trans. Graph. 31, 4 (2012), 82–1. 2, 9

[GEB16] GATYS L. A., ECKER A. S., BETHGE M.: Image style transfer
using convolutional neural networks. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (June 2016). 2, 3, 4, 8, 11,
12

[GEB∗17] GATYS L. A., ECKER A. S., BETHGE M., HERTZMANN A.,
SHECHTMAN E.: Controlling perceptual factors in neural style transfer.
In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (July 2017). 2

[HB17] HUANG X., BELONGIE S.: Arbitrary style transfer in real-time
with adaptive instance normalization. In The IEEE International Con-
ference on Computer Vision (ICCV) (Oct 2017). 2

[HST10] HE K., SUN J., TANG X.: Guided image filtering. In Pro-
ceedings of European Conference on Computer Vision (ECCV) (2010),
Springer-Verlag, pp. 1–14. 6

[JAFF16] JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
real-time style transfer and super-resolution. In Proceedings of European
Conference on Computer Vision (ECCV) (2016), Springer, pp. 694–711.
2, 3

[LFY∗17] LI Y., FANG C., YANG J., WANG Z., LU X., YANG M.-H.:
Universal style transfer via feature transforms. In Advances in Neural
Information Processing Systems (2017). 2

[LN89] LIU D. C., NOCEDAL J.: On the limited memory bfgs method
for large scale optimization. Mathematical programming 45, 1 (1989),
503–528. 8

[LPSB17] LUAN F., PARIS S., SHECHTMAN E., BALA K.: Deep photo
style transfer. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (July 2017). 2

[LW16a] LI C., WAND M.: Combining markov random fields and con-
volutional neural networks for image synthesis. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2016). 2, 3,
4, 8, 11, 12

[LW16b] LI C., WAND M.: Precomputed real-time texture synthesis with
markovian generative adversarial networks. In Proceedings of European
Conference on Computer Vision (ECCV) (2016), Springer, pp. 702–716.
2

[LYY∗17] LIAO J., YAO Y., YUAN L., HUA G., KANG S. B.: Visual
attribute transfer through deep image analogy. ACM Trans. Graph. 36, 4
(2017), 120:1–120:15. 1, 2, 6, 8, 11, 12

[MV15] MAHENDRAN A., VEDALDI A.: Understanding deep image
representations by inverting them. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2015), pp. 5188–5196.
3

[ODO16] ODENA A., DUMOULIN V., OLAH C.: Deconvolution and
checkerboard artifacts. Distill 1, 10 (2016), e3. 2

[PD84] PORTER T., DUFF T.: Compositing digital images. In ACM Sig-
graph Computer Graphics (1984), vol. 18, ACM, pp. 253–259. 2

[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image editing.
In ACM Trans. Graph. (2003), vol. 22, ACM, pp. 313–318. 1, 2, 9

[SJMP10] SUNKAVALLI K., JOHNSON M. K., MATUSIK W., PFISTER
H.: Multi-scale image harmonization. In ACM Trans. Graph. (2010),
vol. 29, ACM, p. 125. 1, 2, 8, 9, 11, 12

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014). 2, 8

[TSL∗17] TSAI Y.-H., SHEN X., LIN Z., SUNKAVALLI K., LU X.,
YANG M.-H.: Deep image harmonization. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (July 2017). 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

(i)

(ii)

(iii)

(iv)

(a) Cut-and-paste (b) [GEB16] (c) [LW16a] (d) [SJMP10] (e) [LYY∗17] (f) Ours

Figure 11: Example results with insets on proposed composite for unadjusted cut-and-paste, four state-of-the-art methods and our results.
We show that our method captures both spatial and inter-scale color and texture and produces harmonized results on paintings with various
styles. Zoom in for details.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Luan et al. / Deep Painterly Harmonization

(v)

(vi)

(vii)

(a) Cut-and-paste (b) [GEB16] (c) [LW16a] (d) [SJMP10] (e) [LYY∗17] (f) Ours

Figure 12: Continued.

[ULVL16] ULYANOV D., LEBEDEV V., VEDALDI A., LEMPITSKY V.:
Texture networks: Feed-forward synthesis of textures and stylized im-
ages. In Proceedings of International Conference on Machine Learning
(2016), JMLR.org, pp. 1349–1357. 2

[WRB17] WILMOT P., RISSER E., BARNES C.: Stable and controllable
neural texture synthesis and style transfer using histogram losses. arXiv
preprint arXiv:1701.08893 (2017). 3

[XADR12] XUE S., AGARWALA A., DORSEY J., RUSHMEIER H.: Un-
derstanding and improving the realism of image composites. ACM Trans.
Graph. 31, 4 (2012), 84. 1, 2

[ZKSE15] ZHU J.-Y., KRAHENBUHL P., SHECHTMAN E., EFROS
A. A.: Learning a discriminative model for the perception of realism
in composite images. In The IEEE International Conference on Com-
puter Vision (ICCV) (2015), pp. 3943–3951. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

