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Figure 1: Top: sampled frames of an input video. Middle and bottom: sky replaced from other videos which were generated from panoramic
images according to the motion in the upper row.

Abstract
Digital videos such as those captured by a smartphone often exhibit exposure inconsistencies, a poorly exposed sky, or simply
suffer from an uninteresting or plain looking sky. Professionals may edit these videos using advanced and time-consuming tools
unavailable to most users, to replace the sky with a more expressive or imaginative sky. In this work, we propose an algorithm
for automatic replacement of the sky region in a video with a different sky, providing nonprofessional users with a simple yet
efficient tool to seamlessly replace the sky. The method is fast, achieving close to real-time performance on mobile devices and
the user’s involvement can remain as limited as simply selecting the replacement sky.

CCS Concepts
• Computing methodologies → Computational photography; Image processing;

1. Introduction

Sky in outdoor videos poses a challenge for photographers. The lo-
cation for shooting a video may be chosen carefully, yet the sky
which often covers a large portion of the frame is subject to uncon-
trollable weather and lighting conditions. To fix this, methods for
sky segmentation and replacement in still images have been stud-
ied [TSL∗16,LUB17]. We build upon these works and extend them
to video. Simply applying sky replacement frame by frame rarely
works, even if inefficiently, and lacks components handling camera

motion. When tackling the full scope of sky replacement in video
we encounter many issues in need of resolution. These issues in-
clude algorithmic runtime efficiency, segmentation temporal con-
sistency, lighting compensation, and camera motion matching.

In this paper we focus on videos taken by a handheld device. We
assume the sky is infinitely far away. Thus, pure translation of the
camera (i.e no rotation) will not displace sky pixels in the image,
and rotating the camera results in a homography between images.
It was suggested in [Sze10] to use the infinite homography H∞,
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to model the transformation between images taken roughly from
the same location. This homography is computed between points
far away from the camera. Since in a video taken by a handheld
camera its translation is small relative to the rotation, H∞ is a good
approximation of the sky’s motion.

The replacement sky, taken from a spherical 360◦×180◦ image
(or video), which we refer to as the sky image, is used to replace
the sky in the base video.

Working with video instead of a single image provides the chal-
lenge of matching geometric properties of the sky sampled from
the sky image to those of the base video. Sampling a perspective
projection requires determining the field of view (FOV) of the base
video since we need equal FOVs for the videos so that the motions
match. The FOV can be calculated from the focal length, which
is commonly contained in the EXIF tags of images. For videos,
however, the focal length is generally not provided, and although
calibrating a rotating camera is a well studied problem [Har94],
when the camera is also slightly translating in addition to its ro-
tation, errors in focal length estimation add up. We use a slightly
more robust calibration method to better fit this setup.

Another drawback of applying existing single image sky replace-
ment approaches to videos, is the running time. For example, a
running time of 12 seconds per frame as in [TSL∗16] may seem
reasonable for a single image, but when performing the task on a
video with hundreds or thousands of frames, efficiency becomes
essential. Our work is developed with efficiency in mind and we
adapt the components of our framework to achieve close to real-
time performance.

2. Related Work

Sky replacement depends on sky segmentation, recovering cam-
era rotation and focal length parameters, and matching photomet-
ric properties between the two sources. We review the most relevant
work in these areas.

2.1. Semantic Segmentation

Semantic segmentation has seen tremendous advances in recent
years [SLD15,CPK∗17,ZSQ∗17,ZQS∗17]. Our goal is to provide a
semantic segmentation model trained to detect the sky region in ar-
bitrary, unconstrained ’in the wild’ videos, which is consistent un-
der changing conditions which are common to video such as cam-
era motion and lighting variations. Few if any annotated datasets for
semantic segmentation of videos are truly ’in the wild’. Most video
segmentation datasets are very constrained in their domain, for ex-
ample CamVid [BFC09] and Cityscapes [COR∗16], which are lim-
ited to videos captured in urban landscapes from a driving car. We
thus preferred to train a sky segmentation model on still image
datasets, augmenting these datasets to enforce segmentation con-
sistency, and then apply it to semantic segmentation of video. His-
torically, datasets such as MS-COCO [LMB∗14] focus on ’things’
such as salient objects and not on ’stuff’ such as major scene back-
ground components. In recent years new datasets that also include
’stuff’ categories were collected. We used three publicly available
image datasets annotated for semantic segmentation which contain

a sky class: Pascal-Context [MCL∗14], COCO-Stuff [CUF16] and
ADE20K [ZZP∗17].

2.2. Image Composition

The naïve approach to cut-and-paste segmented areas from differ-
ent images will usually result in unnatural looking composites as
source images will likely differ in lighting conditions [LE07]. Sev-
eral image composition techniques were proposed to assess and
improve realism of composite images [TSL∗17,SJMP10,ZKSE15,
XADR12]. They focus on transferring colors of one of the images
so their statistics match the color statistics of the other image. The
color transfer parameters in [ZKSE15] are obtained by optimizing
an affine color transform so that the composite image scores high
’objective’ realism measure. The score is obtained by feeding the
composite image to a CNN trained to distinguish composite images
from real photographs. We use this pretrained CNN to automati-
cally compare realism of videos with replaced sky vs. their original
counterparts.

2.3. Single Image Sky Replacement

A special case of image composition is sky replacement. Follow-
ing sky segmentation, Tao et al. [TYS09] provide an attribute based
search for an adequate sky image. Tsai et al. [TSL∗16] use FCNN
segmentation both to segment the sky and to retrieve candidates
from which to transfer sky, based on semantic layout similarity.
They also extend the rather simple color transfer technique em-
ployed in [TYS09]. Both approaches have natural looking results.
We share some of the building blocks with [TSL∗16], focusing on
the special challenges in video.

2.4. Camera Motion Recovery

In addition to an image composition technique, composing video
requires an accurate camera motion estimation. This has been an
active area of research for over a century. We will just mention the
few most relevant works. Intuitively, since we assume the camera is
under the same ’skydome’ for the entire clip, we are only interested
in the relative camera rotation independent of the translation. At
first glance, the work by Kneip et al. [KSP12] may seem to match
our needs perfectly. However, in our experiments, this method did
not produce exact enough results, requires the intrinsic camera pa-
rameters to be known in advance, and is not suited for RANSAC.

There is a myriad of approaches for structure from motion
(SfM), also known as simultaneous localization and mapping
(SLAM) (e.g. [VRS∗17,KM07,MAMT15,EKC17,ESC14]), which
may be utilized to recover camera motion. These approaches gener-
ally require significant camera translation for high accuracy. Model
selection techniques [TFZ98, Tor97] were suggested to distinguish
pure camera rotation from general displacement. We focus on hand-
held cameras moving freely in space, where the majority of the
motion is rotational and with only a small translation compared to
the scale of the scene. For such scenes it is often more accurate to
model the motion as a projective transformation [Sze10].
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Figure 2: Method Overview. First, the base video (a) is fed to a sky segmentation network (c) and tracking is performed, followed by
calibration and motion estimation. Based on this estimation, a video mimicking the motion (d) is generated from the sky image (b). Tonal
adjustments are performed to increase realism of the output (e) and finally the two videos are blended according to the mask(f).

2.5. Photometric Calibration

Another difference between single image and video composition
is exposure changes between consecutive frames of video. Expo-
sure variations of combined videos should be compatible, thus ex-
posure change in one video should be applied to the other before
combining them. To recover exposure variation, Goldman and Jiun-
Hung Chen [GC05] developed an optimization function to simulta-
neously estimate the camera response curve (CRC), variation in ex-
posure, and vignetting. To improve efficiency, [BWC18] optimize
the function with an analytic Jacobian. We improve it further by
limiting the temporal span over which the CRC and vignetting are
computed for faster convergence.

3. Algorithmic Overview

Sky replacement in video depends on a number of techniques; sky
segmentation with temporal consistency, focal length estimation,
computation of camera rotation parameters between consecutive
frames, computing photometric properties, color transfer and com-
positing of the sky image into the base video. In order not to com-
pute everything in each frame information flows between frames
based on tracked feature points.

The first steps, sky segmentation and tracking, can be carried out
in parallel. The tracked points are then used to estimate camera ro-
tation, focal length, vignetting and exposure changes. Then, a video
that mimics the motion of the base video is created from the sky im-
age. Then finally the base video is color graded in order to allow
for more natural looking compositions with the sky region of the
created sky video as they are composited. An outline of the process
is illustrated in Figure 2, and detailed in the following sections.

4. Sky Segmentation

Precise and temporally consistent semantic segmentation of the sky
in the base video is a prerequisite for any sky replacement opera-
tion. For our task, we are also concerned with the computational
cost of this step, as users will expect sky replacement in videos not

to take much more time than playing the video even in off-line pro-
cessing. More importantly, real time is compulsory for augmented
reality applications.

4.1. Datasets and Data Organization

We used images from Pascal-Context [MCL∗14], COCO-Stuff
[CUF16] and ADE20K [ZZP∗17] where the pixels from the rel-
evant images from the three datasets were merged into a simple
two-class division of sky and non-sky, and ’cloud’ was considered
sky. The network is trained to predict a two-class score for every
pixel using a Softmax activation at the last layer. We collected more
than 14,000 images with a ground-truth mask for the sky region and
partitioned this dataset into train, validation and test sets comprised
of 64%,16%,20% of the dataset respectively.

To deal with the relative lack of semi-clouded, high-contrast
skies in the dataset, we augmented the original images by past-
ing various forms of clouds (represented as images with a transpar-
ent background) in random locations within the ground-truth sky
area, increasing the ability of the network to identify high-contrast
clouds on clear skies. To demonstrate the improvement this data
augmentation scheme gave, we trained two identical models on
exactly the same dataset up to the addition of the pasted clouds
to the sky area. When they were later tested on held-out images
from COCO-Stuff [CUF16] which contain the cloud category in
their annotations (thus they contain natural, non-pasted clouds),
we observed an average IoU of 89.4% for the model trained with
the pasted clouds, compared to 88.4% of the model trained with-
out them. The first model achieved 68.2% of images with an IoU
higher than 90%, considerably higher than the second model which
achieved 63.5% of such images.

Another augmentation process we used involved combinations
of geometric and tonal transformations, applied randomly during
training, with different parameters for each image in each train-
ing epoch. Geometric transformations included vertical flip, hor-
izontal flip, small rotations, random crops and perspective trans-
formations. Tonal transformations included brightness and contrast
changes, conversion to grayscale, addition of white Gaussian noise,
and changes of hue and saturation.
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Figure 3: Network training and inference procedure. We train on a
dataset of individual images and simulate effects of video. During
training, the ground truth mask (c) is perturbed by slight piecewise
affine transformations and added noise. The perturbed mask (a)
is concatenated with the input image (b) and fed to the network
while the unperturbed mask is used for loss. During inference, the
predicted mask of frame i is fed back into the network for predicting
the next frame’s mask.

4.2. Network Architecture

We designed a relatively small segmentation model, inspired by
various network architectures that have been shown to be benefi-
cial for semantic segmentation tasks. Our network contains: three
feedforward blocks, each including: a convolution layer with 3x3
kernels, a maxpooling layer and a batch normalization layer; a se-
ries of residual blocks in the bottleneck stage, inspired by ResNet
and similar architectures, but with the full pre-activation design
proposed in [HZRS16], and three top-down SharpMask [PLCD16]
blocks with skip connections, which scale the spatial dimension of
the result back to that of the input, and help preserve fine detail.
The Sharpmask blocks are then followed by two "fully connected"
1x1 convolutional layers representing the final decision per pixel.

4.3. Feedback channel for temporal consistency

To enhance the network’s temporal consistency over consecutive
video frames, we employ a feedback channel in which the previous
video frame’s predicted segmentation mask is fed as a fourth chan-
nel in the input tensor of the network in addition to the three RGB
channels of the current frame. This channel serves as a reliable es-
timate of the current frame’s correct segmentation mask, such that
the network has only to learn how to adapt it to the changes be-
tween the current frame and the previous one due to scene motion
and camera motion. The main challenge with this approach is how
to train the network on annotated image datasets (for the lack of
densely annotated relevant video datasets), so that the network will
learn not to ignore the fourth channel in its input, but not rely on it
too much when there is a lot of motion between consecutive frames.
To do so, during training time the fourth channel is populated with
one of the following (on a random basis): most of the time, a small
random piecewise-affine transformation of the image’s ground truth
mask is used (this serves as the proxy for the previous frame’s seg-
mentation mask during the online inference phase); the rest of the
time, we use either an all-black mask, a random noisy mask with

low-passed white noise or the slightly perturbed ground truth mask
combined with such a noise pattern.

The network architecture is illustrated in Figure 3.

5. Estimating Camera Motion

The camera motion computation is based on tracked points between
frames. In order to adhere to our rotation only motion model, we
exclusively track far away objects. Ideally, these should be sky pix-
els, as we already have them segmented. However, sky is hard to
track, with few or even no ’good features’, and even when sky pix-
els can be reliably tracked they may only cover small areas in some
of the frames, resulting in inaccurate motion estimation.

To still get a reliable motion estimation, we make use of the ob-
servation that the motion a handheld camera undergoes in an out-
door environment is often best modeled by a purely rotational con-
straint [Sze10], which allows us to track non-sky pixels as well, and
still get an accurate motion estimation. We use the KLT pyramidal
tracker [ST94] to detect and track feature points. We experimented
with other descriptor based trackers but did not get an improvement
in accuracy, only a degradation in efficiency. We divide the frame
into cells and detect ’good features’ in each of them. This improves
motion estimation as the homography will tend to be computed
over the largest possible field of view, and also improves vignetting
estimation which benefits from dense sampling.

To ensure at each frame that the remaining tracked trajectories
are spread out, we compute the SVD of the point locations. In sub-
sequent frames, if the ratio between any of the singular values and
the initial ones falls below a threshold, we set the previous frame
(in which this threshold was not yet crossed) as a keyframe, and we
detect new points to track forward.

In subsequent frames i we evaluate the forward-backward error
[KMM10] to pre-filter outlier tracks, and compute the projective
transformation Hi to the last keyframe using RANSAC.

We concatenate homographies until there exists a homography
between every frame to the first one. They are used to calibrate the
camera and to compute rotations.

5.1. Camera Calibration

We assume constant intrinsic camera parameters K throughout the
entire video. The homography H is decomposed as

H = KRK−1 (1)

where R is a rotation matrix and K an upper triangular matrix. We
set the image origin at the center of the image and assume that it is
the center of projection. We further assume zero skew and a single
focal length in x and y directions. K is thus

K =

 f 0 0
0 f 0
0 0 1

 (2)

with the focal length f , the only unknown. A pure rotational mo-
tion implies that H is an orthogonal conjugate matrix. That is, after
normalizing H so that det(H) = 1 its eigenvalues are {1,eiθ,e−iθ}.
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This is known as the modulus constraint [PVGO96] and is used
to calibrate a rotating camera [Har94]. In the context of motion
model selection this approach is frowned upon in [TFZ98] for two
reasons: (1) If the two images were taken with different intrinsic
parameters (e.g due to autofocus) it would fail; (2) In planar mo-
tion the homography is a conjugate rotation, even though the true
motion includes translation of the camera. However, in outdoor en-
vironment (1) is not likely, and (2) actually works to our favor, since
the translation is eliminated for free.

Assuming pure rotation the following equation holds [Sze10]

f 2 =
h2

12−h2
02

h2
00 +h2

01−h2
10−h2

11
(3)

where hi j is the element of H in row i and column j. This solu-
tion for f , as well as the more complicated one which solves for
all intrinsic parameters presented in [HZ03], assumes that H is an
orthogonal conjugate matrix. We relax this constraint. Denote the
eigen-decomposition H =V DV−1, where the columns of V are the
eigenvectors of H, corresponding to the eigenvalues which are on
the diagonal of D. If the motion has non zero translation the eigen-
values may deviate from unity modulus. Substituting the RQ de-
composition V = KU where K is an upper-triangular matrix and U
hermitian, yields the following equation

H = KUDU−1K−1 = KR̃K−1 (4)

Enforcing positive values on the main diagonal of K and normaliz-
ing so that k33 = 1 removes all ambiguities and results in a unique
decomposition. The relaxation comes from the fact that R̃ need not
be orthogonal.

Although all intrinsic parameters are computed as the upper right
triangular matrix K, they are not equally reliable. It was suggested
in [HZ03] to use at least 3 images acquired by a camera rotating in
different directions to reliably recover K, because for example for a
panning camera (rotating around Y axis) it is impossible to recover
the focal length along the rotation axis. We, however, assume equal
focal length along both axes, and therefore extract only k11 from
K and set it as the focal length. To improve accuracy and avoid the
panning ambiguity we rectify the feature locations used to compute
H by rotating them in pixel space such that the axis of the 3D ro-
tation between the cameras coincides with the y axis. The axis of
rotation between cameras is the eigenvector in V corresponding to
the real eigenvalue in D. This ensures accurate focal length along
the x axis and we use the same value for focal length along the y
axis.

Finally, to robustify the estimation, the focal length is taken to be
the median over those computed from homographies corresponding
to large rotation angles (θ from the eigenvalue) and motion closest
to pure rotation. To measure the deviation of the motion from a pure
rotation we use deviations of the eigenvalues from unit magnitude.
To recover camera rotation, once calibration is fixed we transform
the image corners c2 = Hc1 and compute the orthogonal matrix R
which minimizes ‖RK−1c1−K−1c2‖2.

6. Replacing the Sky

A sky video with the same camera motion and FOV as the base
video is generated either from a spherical video or a still spherical

Figure 4: Vignetting and exposure. Top: two frames from original
video captured with varying exposures. Middle: sky replaced with
no exposure compensation. Bottom: exposure compensation and
vignetting applied to the replaced sky.

image, often produced as a panoramic image. Perspective images
can be reprojected from a spherical image with arbitrary FOV and
pose, where the relation between different reprojected images is
pure rotation. Thus, it is straightforward to generate a video with
camera motion and FOV mimicking those of the base video. In-
terestingly, reprojecting from a single image looks quite natural as
the viewer expects a static sky, at least in the short term. Moreover,
skies are cropped from different parts of the sky image to follow the
motion of the base video (see different crops in Figure 2), together
with applying exposure changes and vignetting (see Section 6.1).
As a consequence, sky video generated from a single image rarely
has a ’frozen’ feel.

An advantage of using a single sky image, as opposed to a sky
video, is the reduced memory usage. Another is the relative paucity
of available 360◦ videos compared to that of still 360◦ images.
These advantages tend to be of even more importance when we ad-
dress the resolution issue. Suppose we would like to replace the
sky in a base video whose resolution is 1280x720 pixels taken
by a camera with horizontal FOV of 65◦. To obtain a perspec-
tive reprojected sky from the sky image with the same resolution,
the horizontal size of the spherical sky image should be at least
1280 360

65 = 7089 pixels. Fortunately, it is common for spherical im-
ages to be taken with such high resolutions.

The sky image may also be partial, for example a panoramic im-
age create by combining images in various directions. As long as it
covers all angles viewed by the base video it may be used for sky
replacement.

Even though the motion of the video reprojected from the sky
image is fully dictated by the motion of the base video, there are
three degrees of freedom left in choosing the starting camera pose
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(pan, tilt, and roll). As there is no preferable starting panning direc-
tion, it is left to the user. The tilt and roll values need to match those
of the first frame of the base video. There are a number of works
aiming to determine pitch and roll from a single image (see for ex-
ample [WZJ16]). We, however, did not incorporate such a method
as its prediction can only be given to the user as an initial guess and
must be refined anyways.

We merge an image In from the base video with an image Jn
generated from the sky image (if sky video is used, both videos
should have the same frame rate) by first reprojecting the latter from
an equirectangular projection to a perspective camera projection
with the FOV of In, according to the recovered camera rotation.
The merge uses the segmentation mask Mn as an alpha channel
OUTn = (1−Mn)In +MnJn.

To embed the sky image’s sky naturally in the base video we
apply its exposure changes and camera vignetting to the transferred
sky pixels. We then apply tonal adjustments to further harmonize
the combined layers.

6.1. Exposure Variation and Vignetting

Similarly to tracking, exposure and vignetting estimation is based
on the luma channel. We adopt the model presented by [GC05],

P j
i = g(eiV (x)L j) (5)

where g is the Camera Response Curve (CRC), ei the relative ex-
posure of frame i, V (x) is vignetting per spatial location, and P j

i
is pixel intensity indexed by frame i and imaged object j whose
radiance is L j. We use the cost function presented in [BWC18],

E = ∑
i

∑
j

w j
i ‖P

j
i −g(eiV (x)L j)‖h (6)

where w j
i depend on edge intensity and h is the Huber norm param-

eter. The under-constrained problem of simultaneously estimating
vignetting, CRC, exposure and radiance is solved by coordinate
descent on the four parameters. Similarly to [BWC18] we mini-
mize this function using Levenberg-Marquardt with an analytic Ja-
cobian, except for CRC’s Jacobian which is calculated numerically
as it is non parametric and learned from data (we used the values
provided by [GN04]).

Generally, without vignetting estimation the problem is badly
conditioned, as CRC recovery depends highly on the existence of
strong changes in exposure [KFP07]. Thus, we minimize the cost
function over pixels from a subsequence with intense camera mo-
tion in which the vignetting effect is substantial and the optimiza-
tion enables reliable recovery of CRC. To estimate vignetting, cor-
respondences over large spatial range are necessary. Therefore we
subsample tracked trajectories which are both long and scattered
over the entire image frame. This is also beneficial for the estima-
tion of the CRC as pixels across the entire intensity curve partici-
pate in the estimation.

Since vignetting and CRC do not change during the video, once
they are computed for a small subset of frames we fix them and op-
timize for exposure change through the rest of the video by mini-
mizing w j

i ‖eiL j−g−1(P j
i )/V (x)‖ over exposure and radiance. Lin-

ear optimization is performed by batch coordinate descent fixing ei-

Figure 5: Comparing color transfer methods. Top: Original and
simple composite images. Middle: Color transfer using [RAGS01]
(left) and [PKD05] (right). Bottom: Color transfer using MKL
[PK07] (left) and our final result after blending MKL with the orig-
inal image (right). Blending the original foreground with one that
has a color histogram resembling that of the new skies, achieves
more realistic results by simulating the new airlight component of
each pixel in the foreground.

ther exposures or radiance and calculating the other. Usually it only
takes a few iterations to converge. Non linear Levenberg-Marquardt
optimization for this second stage yielded only marginal improve-
ment.

To transfer vignetting and exposure changes from the base video
to the reprojected sky video, after cropping an image Jn from the sky
video, we apply the exposure en computed from In and vignetting
to every pixel P using the estimated CRC of the base video

P = g(g−1(P)enV (x)) (7)

The superscript is omitted to point out that the radiance of this pixel
has no effect on the intensity transfer. Ideally, we would use the
inverse CRC of the sky image. However, it is usually unknown, as
we only have a single image. Instead, we apply the CRC of the
base video to the projected sky to make its changes in accordance
with the changes of the base video. See Figure 4 for an example of
exposure changes applied to the replaced sky.

6.2. Color Transfer

To look realistic, the lighting, color histogram and other tonal prop-
erties of the base video and the sky video need to be aligned. We
use tonal manipulations in both directions in order to change the
airlight in the base video from the original airlight to the one cre-
ated by the newly replaced sky as well as propagate haze effects
from the base video onto the sky video. To adjust the global airlight
in the base video we use the affine Monge-Kantorovitch color his-
togram transfer algorithm [PK07] to transfer the histogram of the
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Figure 6: Video HDR. Top row: two frames from base video. Sec-
ond row: Spherical image created from another video captured at
the same location during sunset and used as the sky image. Third
row: new perspective images sampled from the sky image accord-
ing to the motion in the base video. Bottom row: frames from output
HDR video. Please refer to supplementary video for full sequences.

sky from the sky region only (using the segmentation) onto the his-
togram of the base video in its entirety (including the soon to be
replaced sky region). To allow for less computations as well as tem-
poral consistency, the Monge-Kantorovitch matrix is re-calculated
every 8 frames and interpolated between them. While the Monge-
Kantorovitch color transfer is not as exact (in the sense of repro-
ducing the color histogram of the reference image) as for example
the sliced Wasserstein method of [PKD05], it is much faster. The
resulting composited videos often have a much more natural look
with a less bimodal color histogram (see Fig. 5). To mitigate the ef-
fects of haze, which appear not only in the sky region but also in the
rest of the image and most prominently near the horizon (e.g. Fig.
11 (b)), we estimate the horizon line in the base video via the seg-
mentation mask and propagate the lightness from that region into
the sky region in the sky video.

7. Results and Analysis

Please see sample frames of algorithm results in Figures 9, 11. Ad-
ditional video clips are provided in the supplementary material †.

† https://youtu.be/1uZ46YzX-pI

7.1. Network Training Details

We used the Adam optimizer [KB14] with exponential learning rate
decay. We trained our network for 50 epochs, based on observed
convergence rates for this task.

We compared ourselves to [TSL∗16], using 1045 random images
exhibiting the sky or the cloud sky classes out of the LMSun [TL10]
dataset, similar to the evaluation process in [TSL∗16].

The model used to produce the IOU statistics reported below
does not have a fourth feedback input channel, as this testing was
done on an image dataset and not videos. It had 8 residual blocks
with a residual bottleneck of 32 filters.

When calculating the average mean-IOU ratio on these images
between the binarized raw network output (binarized with respect
to a threshold of 0.5) and the ground truth, we report an average
IOU of 88.8%, higher than the 87.6% reported before refinement
in [TSL∗16]. Moreover, 69.0% of the images achieve an IOU ra-
tio higher than 90%, which is considered visually pleasing, a con-
siderably higher ratio, even without refinement, than the approxi-
mately 62% reported after refinement (as estimated from Figure 5
in [TSL∗16]). To evaluate the accuracy and temporal consistency
of our feedback model we conducted the following experiments:
(i) We generated videos from images with ground truth sky seg-
mentation using a virtual camera path; (ii) We measured IOU and
compared it to the feedback model, and to the same model with-
out a dense conditional random field (CRF) [KK11], using the CRF
code provided by the authors. (iii) We measure and report temporal
consistency by projecting pairs of consecutive segmentation masks
onto the same plane (we have the ground truth transformations) and
measuring their difference.

The accuracy does not alter significantly by adding the feedback
channel. After applying CRF to refine the results, the resulting bi-
nary maps achieve an average IOU score of 88.1% with respect
to the ground truth masks, comparable with the 88.7% average
IOU reported in [TSL∗16] (though they use their own refinement
procedure). 67.3% of the images achieve an IOU ratio of 90% or
higher, considerably more than in [TSL∗16]. Although numerically
the CRF slightly degrades accuracy as measured against the ground
truth segmentation, subjectively the results look better. This counter
intuitive observation can be explained by the ground truth annota-
tions of sky regions with difficult boundaries, such as trees, being
very inexact, as it is composed of simple polygons roughly sketched
by human annotators.

Temporal consistency improved significantly when adding a
feedback channel, by a factor of 2.06, and by a factor of 2.41 after
applying a CRF. Yet, in some scenes temporal consistency artifacts
are visible, especially in highly complex scenes or due to a strong
lighting change when the camera rotates (e.g. towards the sun).

7.2. Residual ablation study

To study the effect of adding more residual blocks or dropping
some of the last ones to speed up the inference stage, we trained
three models, differing in their number of residual blocks (8, 12,
16) and in the size of their residual bottleneck (32, 16, 8 respec-
tively) on the same data with the same optimizer and the same
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Figure 7: Effects of removing residual blocks on segmentation ac-
curacy and running time. Reducing the number of blocks decreases
running time and accuracy in correlation. However, after fine-
tuning accuracy climbs almost to the same level as the full model,
suggesting that in our model a good trade-off is achieved with 6
residual blocks.

number of epochs. We then calculated the mean IOU value on the
1045 LMSun images for ablated versions of these models where
the last residual blocks hae been skipped. As is evident in Figure
7. As expected, the average IOU measured increases monotonously
with the number of residual blocks, albeit most of the improvement
is demonstrated by specific residual blocks.

We then also fine tuned these ablated versions for a fixed num-
ber of additional epochs and with a reduced learning rate, and again
measured the resulting IOU. Again, an increasing monotonous rela-
tion exists but now its slope is smaller, as the additional fine tuning
improved the performance of the ablated models.

Finally, by considering the relative running times of the ablated
models, one can then pick a desired trade-off between performance,
which is especially important in video, and model accuracy.

7.3. User study

To assess the perceptual quality of our results we conducted a user
study on a set of 17 real videos and the same videos after sky re-
placement. Every one of our 43 participants was asked to rank the
realism of those 34 video clips, one at a time in random order. The
participants were asked to assess the perceptual quality and realism
of each clip independently on a scale between 1 and 5. The aver-
age score of real videos was 4.1, and of our composite videos 3.1.
Scores for individual videos are shown in Figure 8.

7.4. Automatic realism score

In addition to the subjective evaluation we performed a more ob-
jective one. For this, we used a CNN trained to distinguish real
photographs from composite images [ZKSE15] which was shown
to correlate highly with human perception. This RealismCNN out-
puts a realism score in the range [0,1] for a given image. For videos,

Figure 8: Quantitative and qualitative evaluation of our method.
We evaluated the realism of 17 videos before and after sky replace-
ment, both based on a user study and by automatic means. Videos
are ordered in decreasing score obtained from user study on re-
placed videos. Most of the replaced videos got realism score >=
.6 and were not far behind original videos based on this measure.
Subjective scores were normalized from the range [1,5] to [0,1].

we computed this score per frame and assigned the average as the
realism score for the video. It is interesting to compare a score of
a video with the score of its sky replaced version. On average real
videos obtained a score of 0.32, while our composite videos were
not far behind with 0.23. Individual scores are provided in Fig. 8.

7.5. Running Time on Mobile Device

We tested the algorithm’s running times on an iPhone 6S. The cho-
sen segmentation network takes 55 ms per frame using the GPU,
evaluating all layers for every frame. Color transfer takes 10 ms.
KLT Tracking takes 10 ms. with OpenCV [Bra00] and camera mo-
tion estimation takes about 2 ms. Substituting tracking with ro-
tation measurements from the device’s gyroscope (or sensor fu-
sion [YN01]) will potentially provide faster and image independent
rotation estimations. This implementation makes augmented real-
ity applications such as live sky replacement while in video chat
possible at a frame rate of 15 fps. If the base video is captured on
the device its FOV may be provided by the device and the FOV
calculation step is skipped.

7.6. Video HDR

Usually the sky is much brighter than the rest of the image. Our
work naturally extends to creating a high dynamic range video. For
this we capture a couple of videos with different exposures, whose
fields of view overlap on the sky region. One of them - typically the
one with lower exposure, in which the sky is correctly exposed - is
used to construct a spherical panoramic image using the method
of [SS97], while the other serves as the base video, preserving
scene dynamics. An example is shown in Figure 6. We estimate
vignetting, CRC and focal length on the base video, as the features
are easier to track and apply the same values to both videos.
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(a)

(b)

(c)

Figure 9: Sample frames from videos with replaced sky. Row pairs show corresponding frames from before and after sky replacement.

Figure 10: A substantial camera translation may result in inaccu-
rate rotation estimation. Top: Images captured by a drone, where
the majority of the motion is translational. Bottom: Rotation of the
replaced sky differs from that of the original video.

A video which concentrates on the sky may be hard to track, due
to the scarcity of features in sky regions, and the fact that land-
scape regions may be underexposed. One might prefer direct it-
erative alignment [BM04]. However, in our experiments, on some
frames it did not converge, so we dropped this attempt.

7.7. Limitations

The assumptions that our design choices rely on do not always
hold. The sky segmentation network, while producing consistent
segmentation masks, might be consistent on errors as well. In some
cases, a wrong segmentation region in the order of a few pixels in
a single frame started to grow in consecutive frames through the
feedback loop of the network. Also, isolated small foreground ele-
ments are sometimes segmented as sky, e.g the pole on the roof in
Fig. 9 (c).

Another failure case is inaccurate camera motion estimation.
Motion and FOV estimation assume a relatively small amount
of translation. Under significant camera displacement, such as in
videos taken by a drone, wrong motion estimation may lead to mo-
tion inconsistency between the replaced sky and the original video.
An example for this type of motion discrepancy is illustrated in
Figure 10.

8. Conclusion

We introduced an almost real time sky replacing framework for
video, adding a useful and powerful tool to the Augmented Reality
toolbox. Usually AR inserts objects close to the camera, where the
geometry can be measured. We extended this to insert content into
areas which are essentially infinitely far away.
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(a)

(b)

(c)

(d)

Figure 11: Additional results.
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