
HAL Id: hal-02158423
https://hal.science/hal-02158423

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributing Monte Carlo Errors as a Blue Noise in
Screen Space by Permuting Pixel Seeds Between Frames

Eric Heitz, Laurent Belcour

To cite this version:
Eric Heitz, Laurent Belcour. Distributing Monte Carlo Errors as a Blue Noise in Screen Space by
Permuting Pixel Seeds Between Frames. Computer Graphics Forum, 2019, 38. �hal-02158423�

https://hal.science/hal-02158423
https://hal.archives-ouvertes.fr

Eurographics Symposium on Rendering 2019
T. Boubekeur and P. Sen
(Guest Editors)

Volume 38 (2019), Number 4

Distributing Monte Carlo Errors as a Blue Noise in Screen Space
by Permuting Pixel Seeds Between Frames

E. Heitz and L. Belcour

Unity Technologies

Decorrelated Randomization (1 spp)

Our method (1 spp)

Decorrelated Randomization (16 spp)

Our method (16 spp)

FFT

FFT

FFT

FFT

FFT

FFT

FFT

FFT

Figure 1: Distributing Monte Carlo errors as a blue noise in screen space. Monte Carlo noise in raytraced renderings has usually a white
spectrum because of the randomization used to decorrelate pixel estimates. Our temporal algorithm correlates pixel estimates to obtain a
noise with a blue spectrum like dithered images. This makes the images appear less noisy despite the errors having statistically the same
amplitudes. In this scene, the dragon is a participating medium rendered with up to 20 scattering events under coherent motion.

Abstract
Recent work has shown that distributing Monte Carlo errors as a blue noise in screen space improves the perceptual qual-
ity of rendered images. However, obtaining such distributions remains an open problem with high sample counts and high-
dimensional rendering integrals. In this paper, we introduce a temporal algorithm that aims at overcoming these limitations.
Our algorithm is applicable whenever multiple frames are rendered, typically for animated sequences or interactive applica-
tions. Our algorithm locally permutes the pixel sequences (represented by their seeds) to improve the error distribution across
frames. Our approach works regardless of the sample count or the dimensionality and significantly improves the images in
low-varying screen-space regions under coherent motion. Furthermore, it adds negligible overhead compared to the rendering
times. Note: our supplemental material provides more results with interactive comparisons against previous work.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

Rendering via Monte Carlo (MC) integration is subject to numer-
ical errors. The amplitude of these integration errors is best atten-
uated via variance-reduction techniques such as importance sam-
pling combined with high-convergence-rate sequences. Neverthe-
less, the errors remain present and their visual impact depends on
their screen-space distribution. Classically, two options are consid-
ered: either aliasing (the pixels use the same sequence) or white
noise (the pixels use decorrelated random sequences).

Inspired by halftoning algorithms, Georgiev and Fajardo [GF16] in-
troduced another option that achieves superior results. They noticed
that distributing the errors as a blue noise makes it less apparent
and thus improves the perceptual quality of the images. This can be
achieved by correlating pixel estimates (the pixels use different but
correlated sequences). Figure 1 illustrates this effect by comparing
blue-noise-error renderings (the spectrum has no low-frequencies)
to classic white-noise-error renderings (the spectrum is flat). The
former appear less noisy despite the errors having statistically the
same amplitudes.

submitted to Eurographics Symposium on Rendering (2019)

2 E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames

Blue-noise dithered sampling. Georgiev and Fajardo introduced
blue-noise dithered sampling (BNDS), a technique that uses blue-
noise dithering tiles [Uli93] to correlate the per-pixel sequences
in screen-space. BNDS has quickly been adopted in the indus-
try for games [GS16], virtual reality [LHR18], real-time raytrac-
ing [Sch19], or preview at low sample counts [GIF∗18]. The rea-
son for this adoption is because BNDS excels at one sample per
pixel with simple rendering integrals, which is the typical use case
of these applications. Unfortunately, the blue-noise properties of
BNDS vanish rapidly as the number of samples or the dimensional-
ity of the integrals increase. As a result, BNDS fails to provide sig-
nificant improvements to production Monte Carlo rendering with
many rays per pixel that bounce multiple times.

Contributions. Inspired by the high-quality results achieved by
BNDS in the aforementioned applications, our motivation is to
bring the benefits of distributing the errors as a blue noise in screen
space to production rendering. Like BNDS, we consider a render-
ing context where each pixel uses a sequence of random numbers to
estimate the Monte Carlo rendering integral. Our goal is to choose
the sequence of each pixel such that the resulting errors will be dis-
tributed as a blue noise in screen space. In this context, BNDS can
be categorized as an a priori method in the sense that it chooses the
sequences regardless of the actual rendering integrand (regardless
of the scene). We advocate that using a posteriori methods that op-
timize the choice of the sequence for a specific integrand (for the
scene) is the key to scale to higher sample counts and dimensional-
ities. To support this claim, we make the following contributions:

• In Section 3, we introduce an a posteriori formulation of the ren-
dering operation. Our formulation shows how to compute Monte
Carlo renderings with high-quality blue-noise distribution of the
errors regardless of the sample count and the dimensionality. The
formulation is not practical but provides useful insights and mo-
tivates the exploration of a posteriori methods.
• In Section 4, we introduce a practical temporal algorithm that ap-

proximates this a posteriori formulation by applying local per-
mutations to the pixel sequences (represented by their seeds) be-
tween two frames, as shown in Figure 2.
• In Section 5, we evaluate our temporal algorithm under vary-

ing rendering conditions. In screen-space regions that are locally
constant and coherent under motion, our algorithm achieves
high-quality blue-noise error distributions regardless of the sam-
ple count or the dimensionality. Otherwise, in the worst cases, it
produces a white-noise error distribution equivalent to a classic
decorrelated randomization.

2. Previous work

Temporal algorithms. Our temporal algorithm builds upon the
fact that we have access to the previous frame to improve the
current frame. This is reminescent of Temporal Anti-Aliasing
(TAA) [MA06, SKW∗17, SPD18]. Note however that the execu-
tion is fundamentally different. TAA algorithms merge the pixels
of the previous frame with the pixels of the current frame, which
bias the result. In contrast, our temporal algorithm improves the
current frame by permuting the seeds using the information of the
previous frame, which leads to unbiased results.

render

seeds t

frame t

FFT

permute

render

seeds t +1

frame t +1

FFT

Figure 2: Permuting pixels between frames. In our rendering ar-
chitecture, each pixel uses a sequence of random numbers deter-
mined by a seed to estimate the Monte Carlo rendering integral.
In this example, we start with frame t whose seeds are randomly
distributed in screen-space. The resulting errors are distributed as
a white noise (the spectrum is statistically flat in a small neighbor-
hood). To obtain the seeds of frame t + 1, we apply local permu-
tations that correlate the pixel values. Thanks to this, the errors in
the next frame are distributed as a blue noise (the spectrum has no
low-frequencies in a small neighborhood). As a result, the frame
appears less noisy despite the errors are statistically the same.

Blue-noise properties. The problem addressed in this paper
should not be confused with the problem of generating sample
sequences following a blue-noise spectrum in sample space (see
[Fat11, APC∗16] as examples). Our objective is not to construct
sample sequences but rather to find how to assign a sample se-
quence to each pixel such that the Monte Carlo errors that they
produce on the rendering integrals have a blue spectrum in screen
space. Note that our method does not make any assumption on the
sequences used by the renderer as long as they can be represented
by a seed.

Screen-space errors randomization. Our works builds upon the
concept of randomizing or scrambling a sampling sequence to
break structural artifacts that would appear if the same sequence
was used across pixels. This technique is common in render-
ing [KK02,GRK12,Owe98]. However, using a pure random scram-

submitted to Eurographics Symposium on Rendering (2019)

E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames 3

bling typically leads to a white-noise distribution of the errors that
is perceptually unpleasing and produces low frequency artifacts af-
ter denoising [SPD18]. The goal of this paper is to control the spec-
tral properties of the rendering errors in order to distribute them in
screen-space as a blue noise rather than a white noise, which im-
proves the visual fidelity.

2.1. Recap on Blue-Noise Dithered Sampling

We propose a more in-depth exposition of Blue-Noise Dithered
Sampling (BNDS) [GF16] and gather several empirical observa-
tions practitioners made regarding its efficiency. These observa-
tions provide useful insights to understand the effectiveness of our
a posteriori formulation of the rendering operation introduced in
the next section.

Per-pixel Monte Carlo integration. We consider a rendering for-
mulation where the value of each pixel (i, j) is the integral of a
D-dimensional rendering integrand fi j:

Ri j =
∫
[0,1]D

fi j (x) dx. (1)

Each pixel (i, j) uses a sequence
(
s1,i j, ...,sN,i j

)
of D-dimensional

points in the unit hypercube to compute a Monte Carlo estimate of
the integral:

Ii j =
1
N

N

∑
n=1

fi j
(
sn,i j

)
≈ Ri j. (2)

Blue-noise dithered sampling. Following the idea of using dither-
ing tiles to produce halftone images, BNDS correlates the per-pixel
sequences using a dithering tile [GF16]. All the pixels use the same
sequence (s1, ..,sN) toroidally shifted by the D-dimensional vectors
di j of a dithering tile, such that the sequence of pixel (i, j) is

sn,i j = mod
(
sn +di j,1

)
. (3)

Since the vectors di j from the dithering tile are correlated in screen-
space, the sn,i j become correlated in screen-space as well. The as-
sumption is that these correlations remain after the application of
the integrands fi j . This is why BNDS is an a priori method: the
screen-space correlations are optimized regardless of the integrands
and hopefully remain once the integrands are applied. This works
only if certain conditions are met.

Optimal condition 1: single sample. The more samples from
the sequence are used, the more the screen-space correlation van-
ishes [GF16]. Hence, BNDS works best when a single sample is
used, which is equivalent to using the values stored in the dither-
ing tile directly as a single sample value, i.e. when Equation (2)
becomes

Ii j = fi j
(
si j

)
. (4)

Optimal condition 2: low dimensionality. Producing high-
dimensional blue-noise dithering tiles of good quality remains an
open problem [GF16, Pet17, Wol18]. The higher the dimension of
the samples si j , the less they can be correlated in each dimension.
Hence, BNDS works better on low-dimensional integrands and op-
timally in 1D.

Optimal condition 3: correlation-preserving integrands.
BNDS works better with simple integrands that preserve well
the correlation of the samples [GF16]. Indeed, the blue-noise
spectrum of a dithering tile reflects the screen-space correlation of
its values. For instance, if two pixels (i, j) and (k, l) are in the same
neighborhood in a dithering tile, then their respective values di j
and dkl are (anti-)correlated. As a consequence, the more fi j

(
si j

)
correlates with si j, and the more fkl (skl) correlates with skl , the
more fi j

(
si j

)
correlates with fkl (skl):

di j dkl

fi j
(
di j

)
fkl (dkl)

corr

corr

corr

corr

This is why the more integrands (anti-)correlate their values to
their argument, the more the screen-space correlations and the blue
shape of the spectrum are preserved. This is shown in the experi-
ment of Figure 3.

Optimal condition 4: screen-space coherence. Finally, a classic
condition of any dithering algorithm is that the integrands do not
vary too much in screen-space. The closer pixels (i, j) and (k, l)
are, the closer their respective integrands fi j and fkl should be. In
the examples of Figure 3, we used integrands that are constant in
screen space (fi j = fkl), which is the optimal case. In practice, this
means that the blue-noise distribution of the errors works optimally
in the screen-space neighborhoods where the scene does not vary
too much.

di j f
(
di j

)
g
(
di j

)
h
(
di j

)

FFT
[
di j

]
FFT

[
f
(
di j

)]
FFT

[
g
(
di j

)]
FFT

[
h
(
di j

)]

f

corr [x, f (x)] =−0.86

g

corr [x,g(x)] = 0.93

h

corr [x,h(x)] = 0.11

Figure 3: Correlation-preserving integrands. In this experiment,
we consider a 1D blue-noise dithering tile di j (typically used for
halftoning) and we observe what happens when various integrands
are applied. We notice that the blue spectrum of the dithering tile
is preserved by integrands that (anti-)correlate their values to their
arguments.

submitted to Eurographics Symposium on Rendering (2019)

4 E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames

(a) white-noise dithering tile (b) blue-noise dithering tile (c) white-noise frame (d) blue-noise frame
ui j di j Ii j = H−1 (ui j

)
Ii j = H−1 (di j

)

FFT FFT FFT FFT

Figure 4: A posteriori formulation of the rendering operation. To compute these frames, we start by rendering many frames with different
random seeds in order to obtain an histogram of estimates for each pixel, as in Figure 5. Then, we sample the histogram of each pixel using
random numbers provided by a dithering tile. This formulation efficiently transfers the screen-space correlations of the dithering tile to the
frame regardless of the sample count used to compute the Monte Carlo estimates or the dimensionality of the rendering integral.

3. Theory: A Posteriori Formulation of Rendering

In this section, we introduce an a posteriori formulation for dis-
tributing the errors as a blue-noise in screen space for a given scene,
whatever the sample count and the dimensionality of the integral.
This formulation cannot be used directly because it is prohibitively
costly for practical usage. However, it provides several insights that
the temporal algorithm introduced in the next section is based on.

The histogram of estimates. Remember that each pixel (i, j) uses
a random seed to obtain the sequence used to compute a Monte
Carlo estimate Ii j of the rendering integral inside this pixel. In Fig-
ure 5, we consider the histogram of all the Monte Carlo estimates
Ii j given by all the possible seeds for this pixel. This histogram of
estimates is a probability density function (PDF) hi j over the space
of the pixel estimates.

···

···
(i, j)

hi j (I)

I

Figure 5: The histogram of estimates of a pixel. In this experiment,
we render the scene many times with different random seeds such
that the Monte Carlo errors are different in each frame. Hence,
the same pixel has a different value in each frame. The statistical
representation of all the possible values of this pixel is what we call
the histogram of estimates.

Sampling the histogram of estimates. In each pixel, the render-
ing operation means choosing a random seed and computing an
estimate using this seed. Hence, in pixel (i, j) the rendering oper-
ation can be seen as a generator of random variates Ii j following
distribution hi j. Reciprocally, sampling random variates Ii j from
distribution hi j is equivalent to rendering pixel (i, j). For this pur-
pose, we use inverse-transform sampling, i.e. we map a uniform
random number u ∈ [0,1] to a random Ii j from distribution hi j with
the inverse Cumulative Distribution Function (iCDF):

Ii j = H−1
i j (u). (5)

Classic (uncorrelated) rendering formulation. In Figure 4-(a),
we show uncorrelated random numbers ui j distributed as a white
noise in screen space. We use them to sample the histogram of es-
timates

Ii j = H−1
i j (ui j), (6)

and we obtain the frame shown in Figure 4-(c). The resulting errors
are distributed as a white noise in screen-space. Note that this frame
is mathematically equivalent to a classically rendered frame where
the seeds are chosen randomly.

Dithered (correlated) rendering formulation. In Figure 4-(b),
we show a dithering tile, i.e. correlated random numbers di j dis-
tributed as a blue noise in screen space. We use them to sample the
histogram of estimates

Ii j = H−1
i j

(
di j

)
. (7)

and we obtain the frame shown in Figure 4-(d). Note that the re-
sulting errors are distributed as a high-quality blue noise in screen-
space, which is expected from this formulation. Indeed, another in-
terpretation of this equation is that it is using BNDS on the inverse
CDF H−1

i j , which satisfies three of the optimal conditions reviewed
in Section 2.1:

submitted to Eurographics Symposium on Rendering (2019)

E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames 5

Optimal condition 1: We use the dithering tile values di j di-
rectly as single samples. Equation (7) is similar to Equation (4)
where function H−1

i j plays the role of function fi j .

Optimal condition 2: The values di j of the dithering tile are 1-
dimensional values, which is the optimal dimensionality for blue-
noise dithered sampling.

Optimal condition 3: Function H−1
i j is a monotonic function

because it is the inverse of a CDF. Monotonic functions usually
preserves well the correlations of the samples di j as illustrated in
the example of the third column of Figure 3.

A posteriori formulation of the rendering operation. Equa-
tion (7) is an a posteriori formulation of the rendering operation
that produces a frame with a high-quality blue-noise distribution of
the errors in the screen-space neighborhood where the scene does
not vary too much (optimal condition 4). The strength of this for-
mulation is that it uses BNDS in the space of the histogram where
its optimal conditions are met regardless of the sample count and
the dimensionality of the rendering integral.

Practical limitation. Unfortunately, the formulation is not practi-
cal as is because the computation of the histograms is prohibitively
costly: we need to render many frames to obtain the per-pixel his-
tograms. For the same rendering time one would rather render a
single frame with more samples and get a noise-free result. The
key issue to address to make this formulation practical is thus the
evaluation of the histograms. This is the focus of the next section.

4. Practice: Temporal Algorithm

In this section, we introduce a temporal algorithm based on the a
posteriori formulation introduced in the previous section. Our idea
is to obtain a cheap approximation of the histograms by gathering
the estimates of the neighboring pixels in the previous frame. We
thus make the assumption that neighboring pixels have similar val-
ues in consecutive frames and the algorithm achieves high-quality
blue-noise error distributions in low-varying screen-space regions
under coherent motion. When this assumption is violated (at object
edges, under incoherent motion, etc.) the errors are distributed as a
white noise equivalent to a classic decorrelated randomization.

4.1. Overview of our Temporal Algorithm

In practice, our temporal algorithm applies permutations to the
pixel seeds between two frames such that the errors become dis-
tributed as a target blue-noise dithering tile. Note that the target
dithering tile changes after each frame, so that each pixel has a dif-
ferent error in each frame. This is important for temporal filtering
algorithms that reduce the errors by averaging them over multiple
frames. Our pipeline shown in Figure 6 is divided in two passes.
First, the sorting pass (Sec. 4.2) approximates the a posteriori fo-
mulation, i.e. the computation of the histogram of estimates and its
dithering, over blocks of pixels. Thanks to this, the distribution of
the seeds improves with respect to the target dithering tile. How-
ever, the sorting pass remains approximate. Furthermore, the target
changes after each frame and the sorting pass alone never converges
towards the target. This is why we add a retargeting pass (Sec. 4.3)

that permutes seeds distributed as the target dithering tile into seeds
distributed as the target dithering tile of the next frame. Thanks to
this, the improvements gathered by the sorting pass in the current
frame are transferred to the next frame and they accumulate frame
after frame. It is the combination of sorting (improving) and retar-
geting (accumulating) that achieves a high-quality blue-noise dis-
tribution after a few frames.

t t +1

se
ed

s
fr

am
es

di
th

er

sort retarget

render render render

distributed as distributed as

bette
r distr

ibuted
as

Figure 6: Our temporal algorithm. Our algorithm permutes the
seeds such that the errors of a frame are distributed as a target
dithering tile that is different for each frame. The purpose of the
sorting pass is to improve the seed distribution and the purpose
of the retargeting pass is to accumulate these improvements frame
after frame. Note that our algorithm operates only on the seeds
used to compute the pixel values. The faded frame is represented
only conceptually, it is not computed explicitely.

4.2. Sorting Pass: Improving the Error Distribution

The sorting pass directly follows the dithering of the histogram of
estimates in Equation (7). First, note that a classic sampling prop-
erty is that using inverse-transform sampling on a set of discrete
1D data is equivalent to sampling a list of the sorted data. Indeed,
inverse-transform sampling maps random numbers to quantiles of
the distribution and the quantiles of a discrete distribution are its
sorted elements. Hence, with a discrete set of estimates Ii j for pixel
(i, j), inverse-transform sampling one estimate can be done by sort-
ing the set and choosing a random index, as shown in Figure 7.

U 1−U

hi j (I)

I I

H−1
i j (U) floor (U ×9)

0 1 2 3 4 5 6 7 8

⇐⇒

Figure 7: Inverse-transform sampling discrete data. Applying
inverse-transform sampling on a set of discrete data is equivalent
to sorting the data and sampling an index in the sorted list.

submitted to Eurographics Symposium on Rendering (2019)

6 E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames

Processing blocks of pixels. Sampling the histogram of estimates
of a pixel can thus be approximated by collecting estimates from
the neighboring pixels, sorting them, and sampling the sorted list.
Constructing a sorted list of neighboring pixels for each pixel is
costly. The idea of Algorithm 1 is to amortize the cost by sharing
the sorting computations over blocks of B×B pixels. Figure 8 illus-
trates how the sorting pass works over such a block of pixels. We
construct two sorted list of B2 elements: one for the pixels of the
frame (sorted by intensities) and one for the grayscale pixel values
of the dithering tile. The sorting order provides a mapping between
the pixels of the frame and the pixels of the dithering tile. They are
mapped with respect to the quantiles that they represent in their re-
spective blocks, which is equivalent to inverse-transform sampling,
as explained above. Hence, mapping by sorting orders effectively
implements Equation (7) with the approximation that the histogram
is computed using a finite number of neighboring pixels. This map-
ping yields the permutation that we apply on the pixel seeds. In Fig-
ure 8, we show that the mapping yields a permutation that would
distribute the frame values as the dithering tile if we applied it on
the frame. In practice, we apply it only on the seeds.

...

...

values

coordinate
s

frame t

dither t

frame t
sorted

sorted frame values

sorted dither values

Figure 8: Illustration of the sorting pass. In the sorting pass, we
divide the frame in blocks of size B×B (B = 8 in this example).
For each block, we sort the B2 pixels from the frame by intensities
and the B2 pixels from the dithering tile by their grayscale values.
The mapping provided by the sorted lists is a permutation. Virtu-
ally, if we applied this permutation on the frame, it would produce
an image with the same values as the frame but the same screen-
space correlations as the dithering tile. In Algorithm 1, we apply
this permutation to the seeds.

Algorithm 1 The sorting pass permutes pixel seeds by blocks.
. Create lists of Pixel(float value, int i, int j)

1: for each (i, j) in block do
2: F.add(Pixel(intensity(frame(i, j)), i, j)) . frame pixel
3: D.add(Pixel(dither(i, j), i, j)) . dither pixel
4: end for

. Sort lists by pixel values
5: sort(F)
6: sort(D)

. Permute seeds
7: for each n in 1..size(F) do
8: seeds_sorted(D(n).i, D(n). j) = seeds(F(n).i, F(n). j)
9: end for

Advantages of processing by blocks. This algorithm has three
good properties. First, the cost of the construction of the histogram
(the sorting operation) is amortized over the block of pixels. Sec-
ond, the mapping with the sorted dither values guarantees that each
seed has a unique destination, i.e. we obtain a true (bijective) per-
mutation and the seeds are never duplicated. Finally, processing by
blocks makes the algorithm easily parallelizable.

Problem of processing by blocks. The size of the blocks in the
sorting pass is a user-defined parameter B. In practice, we recom-
mend using a block size B between 2 and 8 but there is no ideal
value for B. The size of the blocks is a matter of tradeoff between
two approximations: the spatio-temporal locality and the histogram
discretization. If the blocks are too large, the locality assumption is
violated and the permuted seeds do not produce similar estimates
in the next frame, which results in a poor blue-noise distribution of
the errors. On the other side, if the blocks are too small, the his-
togram does not have enough entries to be accurate and the blue-
noise distribution does not improve much after a frame. In order
to overcome this problem, we designed the retargeting pass (Sec-
tion 4.3) that accumulates the improvements over time such that a
small block size can be used and still reaching a decent quality after
a few frames.

our pipeline with sorting only (no retargeting)

in
se

t
FF

T

our pipeline with sorting and retargeting (as in Figure 6)

in
se

t
FF

T

frame 1 frame 2 frame 3 frame 4

Figure 9: Accumulating improvements over frames thanks to the
retargeting pass. We study the evolution of the inset of Figure 4
through several frames. In this example, we use a block size B = 2
for the sorting pass, which is too small to provide significant im-
provements in a single frame. (Top) Without the retargeting pass,
the improvements of the sorting pass cannot accumulate frame af-
ter frame. The errors remain distributed as a white noise. (Bottom)
Thanks to the retargeting pass, the improvements accumulate and
the errors become distributed as a blue noise after a few frames.

submitted to Eurographics Symposium on Rendering (2019)

E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames 7

4.3. Retargeting Pass: Accumulating Improvements

The motivation for the retargeting pass is illustrated in the exper-
iments of Figure 9. In the first experiment (top rows), the sorting
pass uses a block size B = 2, which means that the histogram of es-
timates is discretized over only 4 entries. This approximation of
the histogram is too coarse and the blue-noise distribution does
not improve much after a frame. Because the target dithering tile
changes after each frame, the improvements do not accumulate and
the errors remain distributed as a white noise. In the second exper-
iment (bottom rows), we use the retargeting pass in addition to the
sorting pass. The improvements accumulate and the errors become
effectively distributed as a blue noise after a few frames. Thanks
to the retargeting pass, we can thus use a small block size for the
sorting pass (we need less screen-space coherence) and accumu-
late the improvements over multiple frame (the coarse histogram
discretization is virtually amplified over multiple frames).

dither t
dither t

retargeted dither t +1

frame t
frame t

retargeted frame t +1

distributed as distributed as

≈

≈

Figure 10: Illustration of the retargeting pass. The retargeting pass
uses a precomputed permutation represented by the green arrows.
This permutation has been optimized to permute the dithering tile
of frame t into the one of frame t + 1. Virtually, if we applied
this permutation on frame t that is distributed like dithering tile
t, it would produce an image with the same values as frame t but
the same screen-space distribution as dithering tile t + 1. In Algo-
rithm 2, we apply this permutation to the seeds.

Computation of the retargeting pass. As shown in Figure 10, our
idea is to use a precomputed permutation that transforms the dither-
ing tile t into the dithering tile t + 1 and apply this permutation to
the seeds before rendering frame t + 1. Hence, if the seeds used
to compute frame t are well distributed as dithering tile t, then the
retargeted seeds will already be distributed as dithering tile t + 1.
Thanks to this, we improve the seeds with respect to dithering tile
t + 1 twice: by retargeting the seeds optimized for frame t (before
rendering frame t + 1) and in the sorting pass of frame t + 1 (after
rendering frame t +1).

Precomputation of the retargeting permutation. We precom-
pute the retargeting permutation in an offline process using an opti-
mization similar to the algorithm of Georgiev and Fajardo [GF16].
We start with dithering tile t and apply random permutations via

simulated annealing to minimize the difference with dithering tile
t + 1. In order to obtain local permutations, we only accept per-
mutations within a small radius. In our implementation, we fix this
radius to 6 pixels. Finally, we store this permutation in a 2-channel
image in which each pixel (i, j) stores its retargeted coordinates
(k, l). Algorithm 2 shows that implementing the retargeting pass is
no more than fetching this precomputed permutation and applying
it to the seeds.

Algorithm 2 The retargeting pass permutes pixel seeds.
. Fetch precomputed retargeting tile

1: (k, l) = retarget(i, j)
. Permute seeds

2: seeds_retargeted(k, l) = seeds(i, j)

4.4. Representation of the precomputed data

Our algorithm uses two precomputed data for each frame: the
dithering tile and the retargeting tile. In theory, these tiles are dif-
ferent for each frame. In practice, however, we always use the same
tiles with a constant offset applied after each frame:

dithert (i, j) = dither0 (i+at, j+bt) , (8)

retargett (i, j) = retarget0 (i+at, j+bt)+(at,bt), (9)

where dither0 is a dithering tile computed with the void-and-
cluster method [Uli93] and retarget0 is the permutation that trans-
forms dither0 into dither1 computed as explained in Section 4.3.
Note that the offsets are always applied toroidally (modulo the size
of the tiles). In order to minimize the perception of the dithering
pattern through the animation as tearing or repetitive structure, we
used tiles that have the same resolution as the frame and we offset
them with Robert’s generalized golden ratio [Rob18].

5. Results

Our implementation runs as a loop involving the Mitsuba path
tracer [Jak10] for the rendering pass and our algorithms for the
sorting and the shuffling passes.

Memory. We store the seed tile as an image of 32-bit unsigned in-
tegers at the resolution of the rendering frame, the dither tile as a
grayscale image, and the shuffle tile as two images of 32-bit signed
integers (one image for the vertical offset and one image for the hor-
izontal offset). Hence, for 1024× 1024 renders, we store a 4.2MB
seed tile, a 1.6MB dithering tile and a 8.4MB retargeting tile. Since
we reuse the same dither and offset tiles across frames, only the
seeds need to be recomputed per frame. Note that our storage is
highly unoptimized and uncompressed.

Performance. In the following table, we aggregate the timings of
the different passes of our algorithm to render an image of the ani-
mation for CORNELL BOX (Figure 13), HETVOL (Figure 14), and
SSSDRAGON (Figure 12). Note that our CPU implementation is
single-threaded but could be trivially parallelized.

scene sorting + shuffling rendering (Mitsuba)

CORNELL BOX (32spp, 1024× 1024) 0.5s 8.6s
HETVOL (16spp, 1024× 1024) 0.5s 13s

SSSDRAGON (32spp, 1280× 720) 0.46s 84s

submitted to Eurographics Symposium on Rendering (2019)

8 E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames

Ours Decorrelated

1 spp

Ours Decorrelated

4 spp

Ours Decorrelated

16 spp

Ours Decorrelated

64 spp

Ours Decorrelated

In
se

t
FF

T

Figure 11: Scaling in sample count. Our method correctly distributes the rendering noise whatever the number of samples per pixel. Despite
the noise being less visible at 64 spp the improvement is still significant compared to a classic decorrelated randomization.

maxDepth = 4 maxDepth = 5 maxDepth = 7 maxDepth = 9 maxDepth = 15 maxDepth = 20

Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT

Figure 12: Scaling in dimensionality. The dragon is a participating medium rendered with Mitsuba’s volpath integrator. Our method still
achieves a blue-noise distribution of the errors as we increase the maximum allowed path length.

frame 1 frame 72 frame 144 frame 216 frame 288 frame 360

Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT

Figure 13: Viewpoint animation. In this example, we run our method with a camera motion scene with a low sampling count of 4 spp and
indirect illumination (see bottom insets). Despite the motion, our method still manages to distribute the rendering noise as a blue noise.

frame 20 frame 40 frame 50 frame 60 frame 90 frame 110

Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT Inset FFT

Figure 14: Object animation. In this example, we run our method on a fluid animation at 16 spp. While the content of the smoke data changes
and light transport is highly indirect (up to 16 bounces), our method still manages to distribute the rendering noise as a blue noise.

submitted to Eurographics Symposium on Rendering (2019)

E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames 9

5.1. Result Analysis

Objective 1: scaling in sample count. In Figure 11, we show that
our method preserves a blue-noise distribution of the noise as the
sampling count increases. This is expected as our method is inde-
pendent of the sampling count and work a posteriori on the pixel
intensities. We experienced that we could obtain better blue-noise
distribution when the histogram of pixel values in local windows
was sufficiently diverse. This is again expected since the ranking
strategy will better match pixels to the dither tile values. A conse-
quence is that our method can achieve a better blue-noise distribu-
tion with an increasing amount of samples per pixel.

Objective 2: scaling in dimensionality. In Figure 12, we show
that our method achieves a blue-noise distribution of the errors with
high-dimensional light transports such as path tracing in highly dif-
fusing participating medium (the dragon). We test this property by
increasing the maximum allowed path length for a volumetric path
tracer (Mitsuba’s volpath) from 4 to 20.

Robustness to animation. In Figure 13, we test our method with
camera motion and in Figure 14 with animation. One of the as-
sumption of our method is the spatio-temporal screen-space coher-
ence of the rendering integrals (condition 4 of Section 2.1). We
observe that our method is robust to smooth variations but mov-
ing edges are problematic. When the screen-space coherence as-
sumption is violated, the sorting pass cannot correctly distribute
the pixels with respect to the dither tile and our method produces a
white-noise spectrum around the edge. However, note that even in
this case, our method does not impede rendering convergence and
the error becomes distributed as a white noise, i.e. it is equivalent
to a decorrelated randomization (but not worse).

Limitation: high-frequency variations. In Figure 15, we test our
method in a scene that has a texture with high-frequency variations.
Because of the texture variations the condition 4 of Section 2.1 is
violated and our method cannot correctly distribute the seeds to
achieve a blue-noise spectrum. Again, note that in this case our
method does not impede rendering convergence and the error be-
comes distributed as a white noise, i.e. it is equivalent to a decorre-
lated randomization (but not worse).

Side effect: improving denoising. As noted by Schied [Sch19],
distributing rendering errors as a blue noise achieves better de-
noised results. Indeed, denoising typically reduces the high-
frequency part of the errors and denoising a white-noise error usu-
ally leaves some low-frequency artifacts. In contrast, errors dis-
tributed as a blue noise have no low-frequency content and de-
noising removes most of their high-frequency spectral content. Our
supplemental material provides denoised results that confirm this.

Comparisons against BNDS. Our supplemental material shows
that BNDS is superior to our method when its optimal conditions
are met: low-dimensional rendering (typically direct lighting) at
1 spp. With other sample counts or non-direct lighting, BNDS be-
comes equivalent to the classic decorrelated randomization and our
method always achieves better results. BNDS and our algorithm
provide complementary solutions to different rendering conditions.

with texture without texture

Inset FFT Inset FFT

Figure 15: Limitation: high-frequency variations. When high-
frequency textures dominate the integrand, our algorithm fails to
produce a blue-noise distribution of the errors. We obtain a white-
noise distribution as with a classic decorrelated randomization.

6. Conclusion and Future Work

We have shown that a posteriori methods can tackle the problem of
distributing Monte Carlo errors as a blue noise in screen space with-
out being subject to the limitations of a priori methods in terms of
sample count and dimensionality. To support this claim, we intro-
duced another formulation of the rendering operation and a tempo-
ral algorithm that approximates it. Our method produces promis-
ing results and we believe that it could already be considered for
offline production rendering. In the best cases it significantly im-
proves the results and in the worst cases it becomes equivalent to a
classic decorrelated randomization. Furthermore, its execution time
is negligible in comparison to the rendering time. Hence, it provides
substantial potential benefits without actual drawbacks. Still, there
is space for improvements.

Improvement: permuting similar pixels. One assumption of our
method is that pixels that are in the same neighborhood have sim-
ilar values (condition 4 of Section 2.1), which is not always true.
Our permutations might move the seeds to pixels that have very
different integrands, for instance across the edge of an object. One
way to improve this would be to permute seeds only between sim-
ilar pixels. The similarities between pixels could be obtained for
instance by the filters computed by a denoiser.

Improvement: texturing as a post-process. In Figure 15, we
have seen that high-frequency textures violate our spatial similarity
assumption, which result in a white-noise distribution of the errors.
To overcome this limitation, we could try to borrow a trick used by
many real-time denoising techniques for diffuse objects: perform-
ing our algorithm on the incident irradiance and applying albedo
textures as a post-process [SKW∗17]. In Figure 16, we apply this
trick on the example of Figure 15 and we successfully obtain a blue-
noise distribution of the errors despite the high-frequency albedo
texture.

Improvement: temporal similarity. Another assumption of our
method is that pixels have similar values across frames. This as-
sumption is true only if the screen-space positions of the objects
do not vary too much between frames. To improve this approxi-

submitted to Eurographics Symposium on Rendering (2019)

10 E. Heitz & L. Belcour / Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames

mation, TAA algorithms typically use temporal reprojection that
better match the pixels of the previous frame to the pixels of the
current frame. One possible improvement for our method would
be a temporal reprojection pass of the seeds. Note, however, that
this temporal reprojection should be implemented as a (bijective)
permutation such that each seed remains unique.

Improvement: RGB dithering. One of the main limitation of our
algorithm is that we do not handle color noise (typically the noise
produced by a spectral renderer). This is because the sorting pass
illustrated in Figure 8 uses the grayscale intensities of the frame.
Note that the sorting pass is reminescent of color-transfer algo-
rithms: its purpose is indeed to transfer the colors of the frame to
the dithering tile. Hence, it is tempting to replace the sorting pass
by a color-transfer algorithm that operates on 3D color values. Fur-
thermore, note that the inverse-transform sampling solved by the
sorting pass is equivalent to optimal transport in 1D and one clas-
sic color-transfer algorithms is precisely optimal transport in a 3D
color space [MS03]. Hence, the natural generalization of our 1D
sorting pass would be a 3D solver that computes the permutation
that yields the optimal transport between the RGB pixels of the
frame and the pixels of a 3D dithering tile.

Generalization: other a posteriori approaches. The crux of the
problem to use our a posteriori formulation is the ability to evaluate
the histogram of estimates, for which we use a temporal approxima-
tion. Is it possible to obtain a fast approximation of the histogram
of estimates by other means?

albedo×no texture = Inset FFT

Figure 16: Improvement: texturing as a post-process. To overcome
the limitation of our method to work with textured assets shown in
Figure 15, one can apply a classic trick of denoising methods. Here,
we render an irradiance image without textures and another image
containing the albedo textures and multiply them to obtain the final
image (left). By applying our algorithm on the irradiance image
without textures, our algorithm manages to distribute the errors as
a blue-noise. (right).

Acknowledgments We thank Kenneth Vanhoey, Jonathan Dupuy,
Victor Ostromoukhov, David Coeurjolly and Jean-Claude Iehl for
their constructive feedback.

References
[APC∗16] AHMED A. G. M., PERRIER H., COEURJOLLY D., OSTRO-

MOUKHOV V., GUO J., YAN D.-M., HUANG H., DEUSSEN O.: Low-
discrepancy blue noise sampling. ACM Trans. Graph. 35, 6 (Nov. 2016),
247:1–247:13. 2

[Fat11] FATTAL R.: Blue-noise point sampling using kernel density
model. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM,
p. 48. 2

[GF16] GEORGIEV I., FAJARDO M.: Blue-noise dithered sampling. In
ACM SIGGRAPH 2016 Talks (2016), ACM, p. 35. 1, 3, 7

[GIF∗18] GEORGIEV I., IZE T., FARNSWORTH M., MONTOYA-
VOZMEDIANO R., KING A., LOMMEL B. V., JIMENEZ A., ANSON
O., OGAKI S., JOHNSTON E., HERUBEL A., RUSSELL D., SERVANT
F., FAJARDO M.: Arnold: A brute-force production path tracer. ACM
Trans. Graph. 37, 3 (Aug. 2018), 32:1–32:12. 2

[GRK12] GRÜNSCHLOSS L., RAAB M., KELLER A.: Enumerating
quasi-monte carlo point sequences in elementary intervals. In Monte
Carlo and Quasi-Monte Carlo Methods 2010. Springer, 2012, pp. 399–
408. 2

[GS16] GJOEL M., SVENDSEN M.: Low complexity, high fidelity: The
rendering of INSIDE. Game Developer Conference 2016. 2

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 7

[KK02] KOLLIG T., KELLER A.: Efficient multidimensional sampling.
In Computer Graphics Forum (2002), vol. 21, Wiley Online Library,
pp. 557–563. 2

[LHR18] LATTA L., HILL S., RADEZTSKY R.: Powering up
ILMxLAB’s location-based VR experiences. Game Developer Confer-
ence 2018. 2

[MA06] MEYER M., ANDERSON J.: Statistical acceleration for animated
global illumination. ACM Trans. Graph. 25, 3 (July 2006), 1075–1080.
2

[MS03] MOROVIC J., SUN P.-L.: Accurate 3d image colour histogram
transformation. Pattern Recogn. Lett. 24, 11 (July 2003), 1725–1735. 10

[Owe98] OWEN A. B.: Scrambling sobol’and niederreiter–xing points.
Journal of complexity 14, 4 (1998), 466–489. 2

[Pet17] PETERS C.: The problem with 3d blue noise, 2017. Blogpost.
URL: http://momentsingraphics.de/?p=148. 3

[Rob18] ROBERTS M.: The unreasonable effectiveness
of quasirandom sequences, 2018. Blogpost. URL:
http://extremelearning.com.au/unreasonable-
effectiveness-of-quasirandom-sequences/. 7

[Sch19] SCHIED C.: Real-time path tracing and denoising in Quake 2.
Game Developer Conference 2019. 2, 9

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal variance-guided filtering: real-
time reconstruction for path-traced global illumination. In Proceedings
of High Performance Graphics (2017), ACM, p. 2. 2, 9

[SPD18] SCHIED C., PETERS C., DACHSBACHER C.: Gradient estima-
tion for real-time adaptive temporal filtering. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 1, 2 (2018), 24. 2, 3

[Uli93] ULICHNEY R.: The void-and-cluster method for dither array gen-
eration. Proceedings of SPIE - The International Society for Optical
Engineering (09 1993). 2, 7

[Wol18] WOLFE A.: Not all blue noise is created equal, 2018. Blog-
post. URL: https://blog.demofox.org/2018/08/12/not-
all-blue-noise-is-created-equal/. 3

submitted to Eurographics Symposium on Rendering (2019)

http://momentsingraphics.de/?p=148
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
https://blog.demofox.org/2018/08/12/not-all-blue-noise-is-created-equal/
https://blog.demofox.org/2018/08/12/not-all-blue-noise-is-created-equal/

