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Figure 1: We present a method for designing lightweight shell structures that are durable under the external forces that the objects may
experience during their use. For a given surface mesh and a description of the possible use cases defined by the boundary conditions (blue)
and external force configurations (left), our algorithm alters the shell thickness locally such that the final design (middle) can withstand
external forces for any of the prescribed problem configurations. The yellow surface represents the inner boundary of the optimum shell. The
optimum structure is 3D printed using a clear build material (right). The yellow soluble support structure is left inside the object to reveal
the interior boundary of the shell.

Abstract
We introduce a method to design lightweight shell objects that are structurally robust under the external forces they may
experience during use. Given an input 3D model and a general description of the external forces, our algorithm generates
a structurally-sound minimum weight shell object. Our approach works by altering the local shell thickness repeatedly
based on the stresses that develop inside the object. A key issue in shell design is that large thickness values might result
in self-intersections on the inner boundary creating a significant computational challenge during optimization. To address
this, we propose a shape parametrization based on the solution to the Laplace’s equation that guarantees smooth and
intersection-free shell boundaries. Combined with our gradient-free optimization algorithm, our method provides a practical
solution to the structural design of hollow objects with a single inner cavity. We demonstrate our method on a variety of
problems with arbitrary 3D models under complex force configurations and validate its performance with physical experiments.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh models; • Applied computing → Computer-aided design;

1. Introduction

As additively manufactured (AM) parts find their way into in-
dustrial applications as functional components, lightweighting and
structural optimization methods have become prevalent in shape
design [WWY∗13, LSZ∗14, CBNJ∗15, LSD∗16, ZKWG16]. In
many such methods, the resulting shape usually contains com-

plex internal structures, even for very simple loading configura-
tions. These structures create multiple isolated volumes inside the
object and thus, result in manufacturability as well as function-
ality problems (Figure 2). They prevent easy removal of mate-
rial encapsulated inside these cavities such as internal supports
in fused-deposition modeling (FDM) or excess material in selec-
tive laser sintering (SLS) and stereolithography (SLA). The object
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Figure 2: Conventional topology optimization algorithms create
internal structures disrupting the inner cavity. Shell structures can
avoid this problem by adjusting the thickness locally. For a can-
tilever beam problem (a), example inner structures are shown for
(b) conventional topology optimization and (c) shell optimization
methods. Note that (b) and (c) are mid-section views.

needs to be cut into pieces or perforated with multiple holes to ac-
cess each cavity during post-processing to clear the encapsulated
material [MAB∗15]. However, when extensive, these destructive
processes may significantly degrade the mechanical performance
and invalidate the structure completely. Furthermore, complex in-
ternal structures disrupt the inner cavity that could be used for
functional purposes such as housing electronics, mechanisms or
wiring [GZN∗15, SWT∗17]. Shell structures provide a compelling
alternative where the object is interpreted as the solid enclosed be-
tween two 2-manifold surfaces creating a single connected cavity
inside.

We propose a new structural optimization approach for designing
minimum weight shell objects. Our approach takes as input (1) a 3D
shape represented by its boundary surface mesh and (2) description
of the external forces that the object may experience during its use,
and produces a minimum weight 3D shell structure that withstands
any of the prescribed force configurations (Figure 1).

For shell structure design, a reasonable approach would be to
compute the optimal structure by offsetting the original boundary
surface inwards in the normal direction to create the inner bound-
ary. However, this strategy fails to guarantee that the resulting off-
set surface is free of self-intersections. Even advanced approaches
that aim to minimize such self-intersections through local alter-
ations of the offset directions [MAB∗15,ZXZ∗17] do not guarantee
self-intersection free offset surfaces for large thickness variations
in high-curvature regions. Additionally, such an approach requires
each candidate shell structure to be remeshed to perform finite ele-
ment analysis (FEA) for evaluating the structural performance un-
der the prescribed force configurations.

Our approach overcomes these challenges using a temperature
field–a 3D scalar field obtained by solving the steady-state heat
conduction–which serves as a proxy to the varying shell thickness
within the shape boundary. This temperature field is the solution
to the Laplace equation and the resulting offset surface is by de-
sign intersection-free even for large thickness variations. Addition-
ally, the temperature field defined on a constant volumetric mesh
allows easy and accurate transition to material distribution within
the current shape hypothesis. This capability enables each step of
the shape optimization to perform FEAs without requiring costly
resmeshing operations. Our approach addresses classical structural
design problems with fixed and known external forces [ACS∗11]

as well as the more general class of problems ranging from mul-
tiple external force cases [JHM09] to force location uncertainties
[UMK17]. Driven by a gradient-free optimization algorithm, our
method provides a practical solution for designing robust hollow
structures with a single inner cavity while preserving the appear-
ance of the input model.

The main contributions of the proposed work are:

• a novel formulation for shell structure design involving structural
mechanics,

• a heat-based shape parametrization method that allows large
variations in thickness while guaranteeing self-intersection-free
boundaries in the resulting structure,

• a gradient-free shape optimization approach to arbitrary 3D
problems with complex force configurations including multiple
loads as well as uncertainties in force locations.

2. Related Work

Our review is comprised of the studies that focus on design for
fabrication, structural analysis, and shell object synthesis. We em-
phasize approaches involving structural optimization for additive
fabrication.

Design for fabrication A large body of work has investigated
optimization techniques offering design aids to create shapes
that meet the prescribed structural objectives and fabrication
constraints [LEM∗17]. Recent examples include designing for
deformation behavior [BBO∗10, STC∗13, PZM∗15, MZL∗17],
meta-materials [ZKBT17, MHSL18, IFW∗16, ZSCM17], and
lightweighting [Ben89, LSZ∗14, WLQ∗17]. Broader methods that
can handle variety of requirements have also been investigated in
[CLD∗13, CBNJ∗15, MHR∗16, SXZ∗17]. Our problem falls under
the category of optimum weight structure design subject to external
forces, however our approach aims to generate a specific family of
geometries – shell objects.

Other design approaches has been explored to generate mod-
els that do not require internal support structures to fabricate
them. Topology optimization methods [Lan16, ADE∗17], slice-
based hollowing methods [WLW∗18] and specialized infill struc-
tures [WWZW16, LFC∗18] are investigated. Although these meth-
ods are well-suited for FDM or SLA printing processes, result-
ing complex structures with large number of disconnected cavities
are not desirable for processes such as SLS or polyjet where ex-
cess material is typically unavoidable. Our shape parametrization
is complementary to these approaches in that the presented support
constraints may be facilitated in our optimization to generate shell
models requiring minimum or possibly no internal supports to fab-
ricate, thereby making it practical for all of the above mentioned
fabrication processes.

Structural analysis In design optimization problems involving
structural mechanics, structural soundness of a candidate design
is determined by stress and deformation analysis through FEA
[Din86]. Simple, low-cost elemental structures such as trusses
[SHOW02, Ros07, KIL∗18] and beams [WWY∗13, JTSW17,
WYY∗18] as well as higher degree of freedom elements such as
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Figure 3: Given a contact region (red in a) where arbitrary forces can be applied on, our algorithm optimizes the boundary thickness
locally (b-c) to find the smallest weight shell structure (d) that can withstand all possible force configurations. In (b-c), we show the material
distribution in two steps of the optimization. Inset figures illustrate the scalar temperature fields on the boundary that we use to drive the
shell thickness in (b-c) and the removed material in (d).

tetrahedral [LSZ∗14, SXZ∗17] and hexahedral [BS03, HTK13] el-
ements are commonly employed based on the families of geome-
tries in consideration. For thin-walled structures, more specialized
elemental structures such as plate and shell elements are widely
used [BBWR04]. They allow modeling the bending behavior of
thin features accurately with fewer finite elements. This makes
them suitable for applications including realistic cloth simulation
[TWS06,LCBD∗18] and design for sheet metal fabrication [PP02].
However, they are limited to surface-like structures with one di-
mension (i.e., thickness) being significantly smaller than the other
two [BBWR04]. In our approach, we use tetrahedral elements in
FEA to analyze candidate shell designs. This allows our optimizer
to explore in a larger design space by providing flexibility to gen-
erate shell models with wide range of thickness values.

Zhou et al. [ZPZ13] introduce worst-case structural analysis by
extending modal analysis used in dynamic systems to static prob-
lems in order to identify weak regions of the structure that may
fail under arbitrary force configurations. Langlois et al. [LSD∗16]
present a stochastic finite element model to predict the failure prob-
abilities of objects under scenarios where the loading is stochastic
in nature (such as dropping and collisions). For problems with un-
certainties in load direction and location spanning a small subspace,
Schumacher et al. [SZB18] uses parametric descriptions of the un-
certainties to determine the worst-case load.

For scenarios where uncertainty in force contact location is
large and cannot be described parametrically, Ulu et al. [UMK17]
present a data-driven technique to predict the stress distribution for
each possible force configuration and determine the one that creates
the highest stress within the shape. Wang et al. [WUSK18] improve
this approach by incorporating a computationally tractable experi-
mental design method to select data samples. Our analysis uses a
similar approach to deal with contact location uncertainty.

Shell object synthesis Support structures [HL18], moldable ob-
jects [NAI∗18] and models with desired deformation behavior
[ZLW∗16] are among the recent applications of shell design in the
context of 3D fabrication. A common approach in generating such
shell structures is to offset the object’s surface to create the bound-
ary of the inner cavity. For constant thickness offsets, Minkowski

operations [CK10, MHCL15], boolean operations of volumetric
primitives [PK08], and use of particle sets [MCS∗18] have been
investigated.

When the input is a polygonal surface, an offset surface can be
generated by shifting the original vertices in the normal direction
[QS03]. Building upon this approach, Musialski et al. [MAB∗15]
present a method to create varying thickness offset surfaces. Their
optimizer alters the local shell thickness to minimize a set of objec-
tive functions. However, their method is not streamlined for design
problems involving structural mechanics; (1) self-intersections oc-
cur in areas of high curvature as well as regions where offsets get
too large and (2) each candidate shell needs to be remeshed for
FEA. The latter problem is addressed in [MHR∗16] and [ZXZ∗17]
by discretizing the shape using shell elements and adjusting their
thicknesses without altering the volumetric mesh. While these
methods are well-suited for optimization of thin-shells, the anal-
ysis accuracy suffers for large thickness values due to their selec-
tion of particular finite element type. Additionally, self-intersection
problems may still persist for complex geometries with large thick-
nesses. Driven by similar motivations, we undertake both of these
challenges in shell structure design.

Our approach is similar to traditional topology optimization
methods [BS03, WWG03] in that we define the material distribu-
tion on a fixed volumetric mesh. However, in order to enforce the
resulting geometry to be a shell and address the self-intersection
problems while doing so, we use a smooth scalar field defined on
this volumetric mesh as a proxy to the varying shell thickness val-
ues.

3. Algorithm

A shell structure can be interpreted as a solid enclosed between two
2-manifold surfaces–an outer boundary B (enclosing volume R)
and an inner boundary Bi (enclosing volume Ri) . For a given B,
our design problem aims to find an optimal inner boundary Bi such
that the resulting shell structure M = R\Ri has as low a mass
as possible while remaining robust under the forces it experiences.
We next describe our approach to addressing this problem.

c© 2019 The Author(s)
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Figure 4: Volumetric mesh of an object is composed of vertices on
the boundary surface B (red), skeleton S (blue) and internal re-
gions I (gray). For a fixed skeleton temperature, we create a tem-
perature gradient between the boundary and the skeleton by assign-
ing temperature values to the boundary vertices. The isosurface at
a cut-off temperature Tc in the resulting temperature field consti-
tutes the internal surface of the shell object.

3.1. Overview

Figure 3 illustrates our approach. Given an input 3D shape and pre-
scribed boundary and loading configurations (Figure 3(a)), our sys-
tem optimizes the shell thickness by manipulating a scalar field,
i.e., temperature field, defined on the boundary of the object. At
each step, governed by the boundary temperature distribution, our
system computes the resulting steady-state temperature field in-
side the object. In this temperature field, the isosurface at a certain
cut-off temperature forms the inner boundary of the shell struc-
ture where the region encapsulated between the outer and the in-
ner boundaries is solid and the region inside the inner bound-
ary is treated as void. Then, for the current material distribution,
our method computes the maximum stress encountered across the
entire structure. Based on the stresses, optimization updates the
boundary temperature distribution to minimize mass (Figure 3(b-
c)). At the end, a minimum weight shell structure satisfying the
imposed constraints is obtained (Figure 3(d)). Algorithm 1 sum-
marizes our approach.

ALGORITHM 1: Our shell structure optimization algorithm
Input : B, boundary conditions and force configurations
Output:M
Initialize temperature distribution on B, T B;
while Mass is reduced do

Compute the temperature distribution, T ;
Update the material distribution in V , ρ;
Estimate the distribution of maximum stress across all elements,

σ;
Compute effective boundary stress, τ;
Update T B;

end
Extract the iso-surface Bi at Tc;
Construct the shell structureM =R\Ri;

3.2. Temperature Field

We obtain the temperature field inside the object by creating a tem-
perature gradient between the boundary surface B and the shape
skeleton S (Figure 4). The skeleton is assigned a low tempera-
ture value and kept constant at all times while the boundary takes
larger temperature values and they are adjusted to manipulate the
steady state temperature field inside the object. The isosurface at
a pre-defined cut-off temperature Tc constitutes the inner bound-
ary of the shell object. Here, the skeleton at the medial axis of the
object serves as the inner bound for the isosurface and therefore,
upper bound for the resulting shell thicknesses. We adopt the ap-
proach presented in [TAOZ12] to generate the skeleton. Due to its
Laplacian-smoothing-based contraction process, this method pro-
vides smooth skeleton approximations that are less sensitive to sur-
face details compared to other 3D skeleton generation algorithms
[MAB∗15]. Please refer to [ATM∗16] for a detailed comparison of
skeleton generations methods available in the literature.

The steady-state heat distribution within a volume can be com-
puted by solving the Laplace equation∇2T = 0 subject to Dirichlet
boundary conditions T |B = TB and T |S = TS where T is the tem-
perature function. In the discrete setting, the linear system can be
written as LT = 0 where L ∈ Rnv×nv is the discrete laplacian of
the volumetric mesh V with nv vertices and T is the vector of per-
vertex temperature values. Note that V is composed of the boundary
vertices b ∈ B, the skeleton vertices s ∈ S and the internal vertices
(i.e., Steiner points) in ∈ I, i.e., V = B∪S ∪I.

Reordering the vertices as T = [T b,T s,T in]
′, the Laplace equa-

tion with Dirichlet boundary conditions can be reformulated as

Lb,b Lb,s Lb,in
Ls,b Ls,s Ls,in
Lin,b Lin,s Lin,in

T b
T s
T in

=

··
0

 . (1)

Temperature field for the internal vertices can then be computed by
solving the bottom block in Equation (1) for T b = T B and T s = T S,

Lin,inT in =−Lin,bT B−Lin,sT S. (2)

As the volumetric mesh, the boundary vertices and the skeleton
vertices are constant during the process, it is sufficient to factorize
the Lin,in once as a preprocessing step and use it to solve for new
T B.

One might argue that the skeleton temperatures could also be
altered to provide more flexibility in shape parametrization as the
cost in computing the steady state temperature distribution in Equa-
tion (2) does not change. It is technically correct that each unique
Dirichlet boundary conditions defined by the combination of T B
and T S result in a unique solution to the Laplace equation and there-
fore, a unique temperature distribution inside the object. However,
the iso-surface at Tc defining the inner boundary Bi of the result-
ing shell can be the same for different T B and T S combinations. To
avoid such redundancy, in our approach, we keep T S constant and
modify only T B to create candidate shell structures.

c© 2019 The Author(s)
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Figure 5: Possible configurations that an element may take an in-
termediate density value. Color of a vertex indicates its tempera-
ture.

3.3. Shape Optimization

We tackle the following stress constrained mass minimization prob-
lem

minimize
T B

M(T B)

subject to K(T B)ul = f l ∀l ∈ BL,

σcr(T B)≤ σy/k,

Tc ≤ T B ≤ Tu

(3)

where M is the total mass of the solid enclosed between B and Bi
created at the isosurface Tc and Tu is a large number defining the
upper bound for the boundary temperature. K is the global stiff-
ness matrix, f l and ul represent the nodal force and displacement
vectors when the external force is applied to surface node l in a
user-defined contact region BL. The object fails if the critical stress
σcr; maximum stress observed among all loading configurations,
ever exceeds the allowable stress σy/k, where k is the safety factor
and σy is the yield strength of the material.

Finding the critical stress requires a set of FEAs–one for each
distinct loading configuration. As the candidate shell structure gen-
erated at each step of the optimization does not necessarily com-
ply with the volumetric mesh V , each candidate shell needs to be
remeshed to perform FEA in the conventional form. However, dis-
continuous nature of remeshing often results in computational chal-
lenges in the optimization problem. Moreover, in addition to its
direct costs, remeshing introduces a computational overhead of re-
peated stiffness matrix computation. Namely, for each unique vol-
umetric mesh, stiffness matrix needs to be recomputed to solve the
linear elasticity problem. We address these problems by approach-
ing it similar to topology optimization [BS03], material design
[STC∗13,XLCB15] and microstructure design [SBR∗15]. Each el-
ement in the discretized domain V is associated with a density vari-
able ρe representing whether the element e is full (ρe = 1) or void
(ρe = 0). Elements that reside between B and Bi, i.e., elements with
all their vertices having temperatures larger than Tc, are deemed
to be solid while elements that are completely inside Bi, i.e., ele-
ments with all their vertices having temperatures smaller than Tc,
are considered to be void. For the elements that lie on the isosur-
face where at least one of their vertices is inside Bi, we adopt the
common approach of allowing intermediate densities ρe ∈ [0,1].
We determine the density of an element based on the fraction of its
volume residing between B and Bi. Figure 5 illustrates the possible

configurations that an element is assigned an intermediate density
value. For an element with volume Ve, the density is computed as
ρe = V in

e /Ve where V in
e is the portion between B and Bi. Assum-

ing linear isotropic materials and small deformations, the elemental
stiffness matrix Ke can be related to ρe and the stiffness matrix for
base material Ksolid

e as

Ke = Kvoid
e +ρ

β
e (K

solid
e −Kvoid

e ). (4)

Here, Kvoid
e = εKsolid

e is the stiffness matrix assigned to the void
regions to avoid singularities in FEA. We penalize the intermedi-
ate density values using a penalization factor β [Ben89]. We use
ε = 10−8 and β = 3. For the volumetric mesh V with m elements,
one can assemble ρe(T B) into vector ρ(T B) ∈ Rm and construct
the global stiffness matrix K(ρ) in order to determine the displace-
ments ul from Kul = f l . Then, the stress-displacement relationship
can be written as

σl =CgBul , (5)

where σl ∈ R6m captures the unique six elements of the elemen-
tal stress tensor and B is the strain-displacement matrix that de-
pends only on the elements’ rest shapes. Block-diagonal matrix
Cg ∈R6m×6m is constructed with elemental elasticity tensors Ce(ρ)
on the diagonal. For each element, Ce can be computed analogous
to Ke in Equation (4). In our formulation, we use 10-node quadratic
tetrahedral elements. Note that vertices of V constitute the corner
nodes of the quadratic elements and additional middle nodes are
generated for FEA purposes only.

The approach formulated in Equation (4)-(5) is useful because
it preserves the same discretization throughout the optimization.
Additionally, it complies well with our heat-based shell object
parametrization in Equation (1)-(2) by sharing the same discretiza-
tion.

We solve the optimization problem in Equation (3) using a
gradient-free iterative approach inspired by [BT15]. Figure 6 illus-
trates a single iteration in our method. Given the material distribu-
tion at step t of the optimization, we start by computing distribution
of maximum stresses across V , σ as

σi = max
l

(
σ

vm
i
)
∀l ∈ BL, (6)

where σi is the maximum stress that node i experiences for all pos-
sible force configurations. Here, for each loading configuration l,
we compute the von Mises stress at node i σ

vm
i by extrapolating the

corresponding components of σl using the element shape functions.
Note that max(σ) constitutes σcr in Equation (3). We then calculate
the effective boundary stress (EBS) by projecting the stresses at the
internal nodes onto the boundary nodes only. The effective bound-
ary stress distribution allows us to estimate the boundary tempera-
ture, thereby the shell thickness for the next step t + 1 of the opti-
mization. Thus, the higher EBS at a vertex, the more critical it is
deemed and therefore the larger temperature it is assigned.

c© 2019 The Author(s)
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Figure 6: Given the current material distribution (a), we compute maximum stresses encountered across all elements in the structure (b) and
calculate their effective projection on the boundary (c). We then update the boundary temperature distribution proportional to the effective
boundary stress (d) and compute the steady state temperature field inside the object (e). The isosurface created at a pre-determined cut-off
temperature dictates the new material distribution for the next step of the optimization.

Figure 7: Influence of internal nodes on boundary nodes. Circular
area indicates the influence region for a boundary node at its cen-
ter. The closer a node to the center, the more influence it has on the
effective boundary stress at the corresponding boundary node.

Effective Boundary Stress We compute the effective boundary
stress by distributing the stress at internal vertices to their clos-
est boundary vertices proportional to the distance between them.
The idea behind such a heuristic is based on our observation that
stresses created by external forces at a certain region of a shell ob-
ject can be manipulated effectively by adjusting (i.e., thickening
or thinning) the shell around that particular region. Therefore, the
distance-based projection allows us to adjust the boundary node
temperatures and thus, the local thicknesses accordingly. EBS at
boundary vertex j, can be defined as

τ j = ∑
i

σi

(
1/di j

q

∑ j 1/di j
q

)
, ∀i ∈ V and ∀ j ∈ B (7)

where

di j =

{
dist(i, j), if 0≤ dist(i, j)< R,
∞, otherwise.

(8)

Here, dist(i, j) is the graph distance between vertices i and j, R is
the influence depth and q is the influence exponent. The main rea-
son behind using graph distance as opposed to Euclidean distance
here is that the graph distance takes the shape boundaries into ac-
count by constraining the paths between vertices to be within the
shape. Figure 7 illustrates the contributions of internal vertices on
boundary vertices for two example cases. Note that R should be se-
lected large enough that each internal node should be inside of the
influence region of at least one boundary node. We use R = 10 and
q = 3 for our examples.

ALGORITHM 2: Boundary temperature update algorithm

Input : t T B← T B

Output: t+1T B

Scale the boundary temperature to [0,1]:
t T B
′ = (t T B−Tc)/(Tu−Tc);

if σcr > σy/k then
Increase the temperature budget:

TΣ = ∑
t T B
′+h nb;

else
Decrease the temperature budget:

TΣ = ∑
t T B
′−h nb;

end
t+1T B

′← Distribute TΣ to boundary vertices proportional to τ;
Scale back to [Tc, Tu]:

t+1T B = t+1T B
′
(Tu−Tc)+Tc;

Boundary Temperature Algorithm 2 describes how the boundary
temperature T B is updated at each step of the optimization. As the
total mass M of the shell object is linearly proportional to T B, the
change in mass can be controlled by the change in a temperature
budget TΣ; a maximum cap on the total sum of the boundary tem-
peratures at any step of the optimization. Hence, TΣ is adjusted by
a step size h based on the critical stress value. TΣ is increased for
σcr larger than the allowable stress and it is reduced otherwise. The

c© 2019 The Author(s)
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Figure 8: Distribution of maximum stresses computed for a fully
solid model. Estimated stress (left) is an approximation of the
ground truth (right), obtained with a lower computational cost.

temperature budget is then distributed among the boundary vertices
proportional to their corresponding EBS as

t+1T B
′
= max

(
TΣ

∑ j τ jκ
τ

κ, 1
)
. (9)

Here, τ ∈ Rnb is a vector storing EBS values where nb denotes the
number of vertices in B and κ is the proportion exponent. We use
κ = 5.0 in our algorithm.

As a final step, we linearly blend boundary temperatures from
the previous step with the current step as

T B = α
t+1T B +(1−α) tT B, (10)

where α is the blending factor. This helps attenuate drastic jumps
between two consecutive iterations that could be created due to lo-
cal stress concentrations and result in smooth transitions through-
out the optimization. We found out that α = 0.5 works well for all
our examples.

As the optimization approaches toward the final result, we ob-
serve frequent direction changes in TΣ across consecutive iterations.
This usually results in back and forth jumps between two states.
We address this problem by halving the step size in every direction
change. Hence, the step size provides an effective indicator for con-
vergence. We initialize the optimization with h = 0.1 and terminate
it when h is smaller than 10−8.

4. Force Location Uncertainty

In the case of a small number of force configurations, the maximum
stress distribution in Equation (6) and σcr can be calculated by per-
forming an FEA per force configuration. However, for cases where
a large number of force configurations need to be considered, a
brute force approach in this way becomes restrictively impractical.
A vast majority of such problems can be generalized under force
location uncertainties where the external forces’ contact locations
exhibit significant variations during the use of the object.

For problems with force location uncertainties, we adopt a simi-
lar approach to [UMK17] in estimating the maximum stress distri-
bution σ ∈ Rnv and σcr. We perform FEAs for only a small num-
ber of force configurations and use them to construct a mapping

between the nodal forces and the resulting stress distributions and
estimate the stress distributions for the remaining force configura-
tions.

Suppose uncertainty in the external force locations is defined
such that the normal forces are allowed to make contact within a
user-specified union of contact regions BL ⊆ B. We start by uni-
formly sampling a number of force instants on BL such that the
geodesic distance between the closest samples is maximized. Here,
we use approximate geodesic distances [CWW13] for computa-
tional efficiency. We assume that each force is distributed to a small
circular area around the contact point to avoid stress singularities.
Therefore, it can be represented as a sparse vector f ′l of size nb
where each element corresponding to a boundary surface node that
lies inside this circular area takes a non-zero value equal to the
magnitude of the nodal force component. Von Mises stress corre-
sponding to each force instant forms a vector σ

vm of size nv.

Using a small number of training force samples p (i.e., p� nb�
nv), it is not possible to represent the relationship between these
two high dimensional data using a simple mapping function. Thus,
we project both the force and von Mises stress data onto lower di-
mensional spaces; we use the Laplacian basis for forces and the
principal components for stresses. We compute the Laplacian basis
functions as the first s eigenvectors of the surface graph Laplacian
LB ∈ Rnb×nb . In all our examples, we use s = 15 eigenvectors to
construct our lower dimensional Laplacian basis. For stresses, we
use principal component analysis (PCA) to obtain the lower dimen-
sional basis. A PCA on the stress data results in (p− 1) principal
vectors.

Lower dimensional representations of the force instants and the
corresponding stresses allow us to construct a simple mapping be-
tween these two spaces. We build the following quadratic regres-
sion model with L2 regularization

T =FW (11)

where T is the lower dimensional representation of nodal von
Mises stresses, F is a matrix storing lower dimensional force rep-
resentation including the quadratic terms andW is the coefficient
matrix that models the quadratic map. The coefficient matrix can
then be computed as

W = (FTF + rI)−1(FTT ) (12)

where I is identity matrix and r controls regularization. Using this
map, we estimate the nodal von Mises stresses σ

vm for each force
instant. This allows us to compute an estimation for σ using Equa-
tion (6). Figure 8 illustrates σ obtained through our estimation in
comparison to the ground truth for an example model.

Note that computed σ here is only an approximation of the actual
values, thus cannot be used directly to obtain σcr. We adopt the
hierarchical search approach described in [UMK17] to compute σcr
accurately and guarantee the structural soundness of the resulting
shell under prescribed force location uncertainties.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



E. Ulu, J. McCann & L. B. Kara / Structural Design Using Laplacian Shells

Figure 9: Our temperature based shape parametrization allows
large variations in the internal surface and therefore the resulting
shell structure. Example shell structures (right) obtained for a sim-
ple sphere model using a spherical skeleton (left) are illustrated.
Corresponding boundary temperatures are shown on the top.

Figure 10: An example shell optimization for open surfaces. Tem-
perature field is generated between the input boundary surface
(clear) and an external skeleton (green). Isosurface at the cut-off
temperature (yellow) constitutes the internal boundary of the re-
sulting shell. Variation of the wall thickness is shown with diagonal
cross-sections. (top-right).

5. Results and Discussion

5.1. Shape Parametrization

In our heat based shape parametrization, the shell structure is rep-
resented by a temperature field created on the boundary surface
of the input mesh, i.e., the number of design parameters are iden-
tical to the number of boundary vertices. This provides our opti-
mizer enough flexibility to perform localized changes with large
variations on the shell thickness while preserving smoothness in
the resulting internal surfaces. Figure 9 illustrates an example set
of shells that can be achieved by our shape parametrization on a
simple sphere model. Although the number of design parameters
could be large for models with intricate surface details such as the
octopus (Figure 1) or the sea horse (Figure 12), our parametriza-
tion preserves a certain level of smoothness inherently due to the
smooth temperature field created inside the object.

Another advantage of our shape parametrization method is that
the resulting temperature field is easily transitioned into the density
based representation from which the structural analysis can be con-
structed directly. This allows us to use the same volumetric mesh
throughout the entire optimization without requiring costly remesh-
ing operations. Moreover, during this transition, only a small num-
ber of intermediate density elements are created (Figure 6(a)),
which is highly desirable in structural optimization as the analy-
sis accuracy is only minimally affected.

Figure 11: Comparison of inner boundaries created by Musialski
et al. [MAB∗15] and our method for random sets of design vari-
ables. Their method results in self-intersections for large offset val-
ues around high-curvature regions of the boundary surface. Our
approach circumvents such challenges even for complex geometries
such as the octopus. Self-intersections are shown in red.

Skeleton and Guarantee for a Single Hole Skeletons used in our
examples are shown in green in Figure 12 and Figure 13. Note
that the skeletons are essentially a set of connected vertices in
our formulation. Therefore, the variety of geometric representa-
tions including polylines, open or closed surfaces, meso-skeletons
[TAOZ12] or combinations of these can be used as skeletons in
our approach. In our examples, we employ curvilinear skeletons for
the deer head, sea horse, cactus, spot, shark and octopus, a meso-
skeleton for the mug, and an open surface mesh for the beam model.

As the skeleton defines the inner bound for the resulting shell,
users may constrain the design space by manually manipulating
the skeleton geometry. For example, in the pitcher model, we add a
spherical surface to the curvilinear skeleton inside the inner cham-
ber to set the minimum capacity in the final result. As the isosur-
face defining the inner boundary is restricted to reside between the
skeleton and the outer boundary surface, the resulting structure is
guaranteed to have the internal part of the skeleton hollow. This can
be useful in designing dedicated housings to incorporate electronics
or other instrumentation.

Importantly, because the solution to the heat equation is a har-
monic function, the maximum principle [ABW01] guarantees that
all voids are connected to the skeleton and all solid areas are con-
nected to the outer boundary. This means that an optimized object
will never have more voids than the number of connected compo-
nents in the skeleton. To ensure the creation of a single hole, we
restrict the number of skeletons to one in our approach.

Although the internal skeletons can be obtained easily for closed
meshes, they are not well-defined for open surfaces. Figure 10
demonstrates an example case where the input to our algorithm is
an open surface mesh and a solid shell structure is to be created
by thickening the input surface. The surface is fixed at its boundary
and three different loads are applied to top of the surface. In this
case, we create a surface to serve as the skeleton (shown in green)
in our algorithm by projecting the mesh to a lower plane. Then,
the volumetric mesh is created in the space enclosed between these
two surfaces, on which the temperature field is solved. The result-
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Table 1: Performance of our algorithm on a variety of models. Columns 2 to 5 are the number of finite elements in the volumetric mesh and
the number of vertices on the boundary, skeleton and remaining regions, respectively. Column 6 reports the number of force configurations
for which the shell object is optimized. In all examples, the target factor of safety is 90% of that of the fully solid versions.

Model Elements
Vertices Force

Iteration Time [s]
Volume [cm3]

Boundary Skeleton Internal Configurations Initial Optimized Reduction [%]

Cactus 43727 1856 233 5858 1 29 11.60 68.99 26.51 61.6
Sea Horse 99054 7502 105 11814 1 42 157.23 6.42 1.48 77.0
Deer Head 89521 7500 834 8969 20 47 92.68 27.80 9.14 67.1
Lilium 41962 3389 2085 4513 3 37 24.20 - 91.35 -
Octopus 130896 12502 893 14035 4 53 70.69 75.32 26.00 65.5
Test Beam 87284 6000 976 9730 2 38 76.84 20.38 9.32 54.3
Pitcher 61881 4997 735 6703 820 92 1788.39 175.85 31.09 82.3
Spot 56504 2930 310 7247 2189 50 1037.77 367.75 132.04 64.1
Mug 48604 3000 2679 3575 2510 76 1212.17 104.12 46.26 55.6
Shark 69243 5757 680 7522 4282 33 1100.37 66.45 12.79 80.8

ing shell boundary is shown in yellow. The combination of this
boundary and the input surface constitutes the resulting solid shell.

Comparison Figure 11 compares the performance of our shape
parametrization with the reduced order offset surfaces approach of
Musialski et al. [MAB∗15]. The offset directions in this method
are computed such that the self-intersections are avoided as much
as possible. However, high curvature regions are still susceptible
to such problems for large thickness values. Therefore, there is
no guarantee that the candidate shell structures generated during
the optimization will be free of self-intersections. Although self-
intersections might be tolerated for certain optimization problems,
design optimization involving structural mechanics are highly sen-
sitive to such complications as each candidate design needs to be
evaluated by a set of FEAs. In our method, because the inner shell
boundary is a level-set of a smooth and continuous temperature
field, the resulting shell is guaranteed to be self-intersection free.
Note that the inner boundaries shown in Figure 11 are results of ran-
dom sets of feasible design variables. For the offset surfaces, we use
36 manifold harmonics to generate the results. In both cases, we use
the same skeleton structure generated using [TAOZ12]. Parts of the
skeleton that are outside of the boundary are manually corrected.

5.2. Structural Optimization

5.2.1. Multiple Problem Configurations

Figure 12 illustrates the results of our method on various 3D prob-
lems where the shell structures are required to withstand a num-
ber of fixed and known force configurations. Displacement bound-
ary conditions are shown in blue and the force contact regions are
shown in red. Our shell structure optimization algorithm detects the
failure-prone parts of the objects and adjusts the local shell thick-
ness accordingly. For example, in the deer head model, the branch-
ing regions of the antler where the stresses are high due to large
bending moments are thickened while the rest of the head is left
rather hollow. Similarly, in the cactus model, since the trunk is al-
ready structurally sound under a load applied to the long arm, only

the region where the arm branches out from the trunk is optimized
to have a large shell thickness.

Our formulation in Equation (6) also allows optimization of
structures for different displacement boundary conditions as well as
for any arbitrary loading configuration at a cost of increased com-
putational complexity. In such cases, each set of Dirichlet boundary
conditions needs to be incorporated into the stiffness matrix and a
linear solve needs to be performed per problem configuration at
each step of the optimization. Figure 15 illustrates an example case
where the beam is optimized to withstand two sets of boundary
conditions as well as loading configurations.

In all of the examples, given the boundary and loading condi-
tions, the target factor of safety for optimization in Equation (3) is
set to be 90% of the factor of safety of the fully solid, original mod-
els. This effectively means the optimization tries to preserve at least
90% of the structural strength of the fully solid models. Under this
relatively stringent condition, our algorithm achieves 54% to 77%
mass reduction. Table 1 reports the reduction in volume together
with various other metrics relevant to these models.

5.2.2. Force Location Uncertainty

In Figure 13, we demonstrate the results of our method on a set of
example problems where there are uncertainties in the force config-
urations. In these examples, the displacement boundary conditions
are assumed to be known and fixed and the forces are compressive
and normal to the boundary surface.

Similar to the previous cases, a thicker shell is obtained around
the parts of the objects where high stresses may develop under the
given force location uncertainties. Notice the handles of the pitcher
and mug models or the tail connecting the shark body to the base
plate.

Although the computational cost is higher and the optimization
takes longer to converge compared to the simpler loading configu-
rations mentioned earlier, a similar volume reduction performance

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



E. Ulu, J. McCann & L. B. Kara / Structural Design Using Laplacian Shells

Figure 12: Structural optimization results for problems with multiple force configurations. Left-to-right, problem setup with fixed boundary
conditions (blue) and force contact regions (red), skeletons used during the optimization, optimized shell structures and their 3D printed
cut-outs revealing the variations in the shell thickness. Yellow surface indicates the inner boundary of the shell.

Figure 13: Structural optimization results for problems with force location uncertainties. Left-to-right, problem setups with fixed boundary
conditions (blue) and force contact regions (red), skeletons used during the optimization, optimized shell structures and their 3D printed
cut-outs revealing the variations in the shell thickness. Yellow surface indicates the inner boundary of the shell.
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Figure 14: Comparison of structures generated by Lu
et al. [LSZ∗14], Ulu et al. [UMK17] and our method. Our
optimization approach produces a lighter structure that has only
one connected cavity inside while sustaining any possible force
applied on the boundary.

is obtained. For the problems with force location uncertainties, we
achieved 55% to 82% reduction in volume (Table 1).

Comparison In Figure 14, we compare our approach with the
build-to-last method [LSZ∗14] and the lightweighting method in
[UMK17]. As the build-to-last method creates honeycomb-like
structures, it tends to generate large number of unconnected internal
voids. For the shark model, the number of such components turns
out to be 48. Therefore, unless a special technique is employed to
avoid internal supports in 3D printing, post-processing could be
very cumbersome and costly. Our approach, however, generates a
shell structure with a single connected hole.

In comparison to [UMK17], our optimum result weighs 14.7%
less when it is optimized for 20N load that is allowed to be applied
anywhere on the surface of the shark in normal direction. As their
approach is a reduced order method, the performance is affected
highly by the number of material basis being used. For 15 material
modes, the optimization can perform more global alterations than
local changes. On the other hand, our method can perform more
localized alterations using all the vertex temperatures and thereby
hollowing out both the fins as well as the tail.

5.3. Validation and Performance

Fabrication We 3D printed our optimum shells using polyjet (OB-
JET Connex 350), SLS (ProMaker P2000 HT) and FDM (Strarasys
F170) technologies. As our method creates a single connected void
inside the object, internal supports (or excess material) can be
removed by piercing a single access hole to empty the material
trapped inside the shell. For models printed using SLS and polyjet,
we used water jet for this purpose. However, for cases where a large
amount of material can be accessed through only a small passage
(such us the shark or deer head models), we observed that such
an approach might not be effective. In those cases, a 3D printing
technology allowing soluble support material is a more practical
solution. We used soluble support in our FDM prints as an example
(see accompanying video).

Figure 15: The beam model is optimized for two different prob-
lem configurations–three-point bending (left) and tensile test (mid-
dle). Optimum result (right) satisfies the design constraints for both
problem configurations concurrently by thickening the middle re-
gion.

Figure 16: Three-point bending (left) and tensile (right) tests on
the optimized beam model and identical weight uniform thickness
beam. The optimized model meets the design constraint of 115N
for both problem configurations while the uniform thickness model
only satisfies it for the tensile loading.

Physical Tests Figure 15 illustrates a beam model we designed to
perform tests to physically evaluate the strength of the 3D printed
model. The model is required to withstand 115N force in three-
point bending and tensile loading configurations. As the stress is
concentrated in the middle section under three-point bending com-
pared to the more uniformly distributed stresses in tensile loading
case, our algorithm thickens the middle while keeping the ends as
thin as possible.

To validate the optimization result, we performed three-point
bending and tensile tests on our optimized beam model. We used
an INSTRON universal testing machine for our tests. For compar-
ison, we performed the same two tests on an identically weighing
uniform thickness beam. Figure 16 shows the test setups as well as
the resulting force-displacement curves. For the uniform thickness
model, we measured 96.3N and 780.8N of failure (yielding) forces
for three-point bending and tensile tests, respectively. Although its
tensile performance is better, the uniform thickness model fails
to satisfy the design constraint of 115N for the three-point bend-
ing case. Our optimum result, however, can withstand 153.4N and
433.7N forces for these cases, thereby satisfying the design con-
straint for both. Note that, for the same mass, our method shifts
the material towards the center to improve the performance for the
three-point bending test and satisfy the constraint while sacrificing
its tensile performance (while satisfying both imposed constraints).

Performance Table 1 shows the performance of our algorithm.
We tested our method on a computer with an 3.7GHz Intel Xeon
W-2145 CPU and 32GB memory. Our tests include the optimiza-
tion of various 3D models for problem configurations of different
complexities. As in most of the structural optimization approaches,
FEAs constitute the majority of the computational cost in our ap-
proach. Therefore, the performance is heavily affected by the size
of the volumetric mesh as well as the number of problem config-
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Figure 17: Convergence of the Cactus and Shark models.

urations. Sea horse (large number of elements) vs. cactus (small
number of elements) highlights the impact of the mesh size on the
optimization time. For the same number of force configurations,
computation time per iteration increases ∼ 9.5× on average when
the number of elements is increased by ∼ 2×. Similarly, problems
with force location uncertainty (Pitcher, Spot, Mug and Shark) take
longer to optimize compared to problems with a single (Cactus, Sea
Horse) or a small number of problem configurations (Deer Head,
Lilium, Octopus and Test beam). However, our estimation based
approach in determining σ and σcr allows us to achieve ∼ 5× ac-
celeration on average over a brute force approach.

In all of our examples, the optimization converges under 100 iter-
ations. Figure 17 illustrates the convergence profiles for Cactus and
Shark as examples of classical structural design problems with a
single force configuration and problems with force location uncer-
tainties, respectively. Note that larger step sizes used at the initial
stages allow the optimizer to reach reasonable solutions quickly
by removing large amount of material. In later stages, however,
smaller step sizes result in more local and intricate alterations re-
quiring larger number of iterations. Although, faster convergence
can be achieved by relaxing the stopping criteria, this comes at the
cost of limited flexibility in optimization.

5.4. Limitations and Future Work

Our algorithm can create very thin shells when required. However,
the density values associated with the elements on such thin re-
gions could be very low resulting in inaccurate stress calculations.
We address this problem by enforcing a single layer of boundary el-
ements to be solid at all times. The thickness of this layer, however,
is largely dictated by the quality of the volumetric mesh. Linear
elasticity model may fail to predict the nonlinear buckling failure
modes of shell structures. In the future, our analysis could be ex-
tended or complemented with nonlinear corotational methods to
capture such failure modes more accurately.

The temperature distribution in our algorithm depends on the ge-
ometry of the skeleton created. We found mean curvature skeletons
to work well for organic shapes. However, for man-made shapes
such as voluminous mechanical objects, the generated skeleton
may limit the design space and restrict the quality of the result-
ing shell structure. For such cases, a manual adjustment tool such
as a sketching interface would be beneficial to the user. For open
meshes, we use a simple heuristic of projecting the input surface
to a plane in creating the skeleton. Although this approach works

well for smooth surfaces with low curvature, computation of the
skeleton for complex open surfaces remains an open problem.

For very large boundary temperatures, our formulation is bound
to create a small internal void around the skeleton (such as the spout
of the pitcher model in Figure 13). Such small voids might result
in manufacturability issues in 3D printing and more importantly
can create stress concentration problems. A natural extension to our
approach would be to limit the minimum hole size by thickening
the skeleton using morphological operations.

6. Conclusion

We present a lightweight shell structure optimization method for
3D objects. We propose a heat based shape parametrization method
to create shell structures with large thickness variations. With this
method, we show that smooth internal surfaces can be created with-
out self-intersections. A rapid transition between our heat based
shape parametrization and the density based representation pro-
vides a practical solution to the computationally demanding de-
sign problem involving structural mechanics. Combined with the
data-driven critical stress estimation approach, we demonstrate that
our method can be applied to a generalized set of problems where
there is uncertainty in the force locations. We evaluate the perfor-
mance of our algorithm on a variety of 3D models. Our results show
that significant mass reductions can be achieved by optimizing the
shell thickness while ensuring that the object is structurally sound
against a wide range of force configurations.
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