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Figure 1: Generic image editing applications generated by our proposed paradigm. Top: The input images and users’ scribbles (color lines
on images). Bottom: The output results. From left to right: depth of field, dehazing, and tone mapping results. Our paradigm generates both
the needed additional per-pixel values and the resulting edit at interactive rates, with minimal user input that can be iteratively refined.

Abstract
Several image editing methods have been proposed in the past decades, achieving brilliant results. The most sophisticated of
them, however, require additional information per-pixel. For instance, dehazing requires a specific transmittance value per
pixel, or depth of field blurring requires depth or disparity values per pixel. This additional per-pixel value is obtained either
through elaborated heuristics or through additional control over the capture hardware, which is very often tailored for the
specific editing application. In contrast, however, we propose a generic editing paradigm that can become the base of several
different applications. This paradigm generates both the needed per-pixel values and the resulting edit at interactive rates,
with minimal user input that can be iteratively refined. Our key insight for getting per-pixel values at such speed is to cluster
them into superpixels, but, instead of a constant value per superpixel (which yields accuracy problems), we have a mathematical
expression for pixel values at each superpixel: in our case, an order two multinomial per superpixel. This leads to a linear least-
squares system, effectively enabling specific per-pixel values at fast speeds. We illustrate this approach in three applications:
depth of field blurring (from depth values), dehazing (from transmittance values) and tone mapping (from brightness and
contrast local values), and our approach proves both favorably interactive and accurate in all three. Our technique is also
evaluated with a common dataset and compared favorably.

1. Introduction

While basic image editing applications, such as white balance,
equalization or global tone mapping, require just pixel position
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and RGB color values as input, more sophisticated applications re-
quire additional per-pixel values. Examples of such additional per-
pixel information are depth or geometry values for depth of field
simulation [YG14], transmittance for dehazing [Fat14], or shading
and reflectance intrinsic per-pixel values for relighting or retextur-
ing [GMnLMG12]. Such additional per-pixel values describe prop-
erties of the scene and provide key cues for specific edits, leading
to beautiful and interesting image transformations.

The generation of such additional values has drawn much atten-
tion in recent years. A trend of approaches are based on the control
of the capture, either by capturing additional data during the cap-
ture process, such as gathering per-pixel depth values from sensor
motion [YG14] or by using specific hardware, such as a plenop-
tic camera for estimating intrinsic shading-reflectance decompo-
sitions [GEZ∗17]. Such techniques, however, are not general and
applicable to arbitrary off-the-shelf images. Another way to ob-
tain such values is elaborated heuristics and priors over the RGB
color distribution in an image, such as relating color discontinuities
with depth or reflectance discontinuities [LSH14,GMnLMG12], or
particular color distributions for transmittance estimation in partic-
ipating media [Fat14]. While results might be most of the times
accurate, all these approaches fail when the heuristics and prior as-
sumptions are not met.

This paper aims to obtain these per-pixel values from priors and
user interaction. Previous approaches in this matter, however, are
tailored for specific applications, such as intrinsic image decom-
position [BPD09], intrinsic video decomposition [BST∗14] or ma-
terial editing [DRCP14]. As a previous approach [CMM18], our
work is generic and agnostic to the underlying application. We
illustrate our interaction paradigm (that involves heuristic priors
and user brushes) with three applications as shown in Figure 1:
depth-of-field, dehazing and tone mapping. However, the interac-
tive image editing based on per-pixel value has to find a compro-
mise among efficiency, expressiveness and accuracy. Present tech-
niques that shine on one of the axes often need to sacrifice the
other, such as efficiency [BPD09], expresiveness [IEK∗14] or accu-
racy [CMM18]. Our technique overcomes such Pareto frontier by
achieving a new improved compromise between the three of them.

Our key finding is that efficiency can be preserved by still us-
ing superpixels, but enabling different per-pixel values inside each
superpixel. Thanks to this idea, our approach preserves efficiency
independently of image resolution, while achieving greater accu-
racy by having a different value per pixel. Over this representation,
we build an efficient linear least-squares system in which the re-
strictions come either from heuristics and priors (associating color
continuity to label continuity, for instance) or from user scribbles
(that set values or boundaries). We choose an order two multivari-
ate polynomial distribution of per-pixel values inside each super-
pixel, because it is both simple (therefore most restrictions are easy
to translate into linear equations) and differentiable, so restrictions
not only involve values but also gradients (such as forcing planar
surfaces through user scribbles).

This greatly improves over previous work [CMM18], in which
we not only obtain per-pixel value smoothness and therefore fewer
artifacts (see Figure 8 and Figure 9), but enable a gradient-domain
global restriction and a gradient-based user brush (e.g. for planar

surfaces). On top of that, we devise a new boundary brush that
breaks global boundary restrictions and forces noticeable bound-
aries when applied. These improvements come without any sub-
stantial performance penalty (see Section 5.5 for details).

In summary, our main contributions are as follows:

1. A general pixel-level image editing paradigm is proposed based
on four types of semantic brushes which do not require dense
and accurate drawings. Our paradigm is not sensitive to user
inputs and the editing result can be produced in real-time after
user generically input some intuitive scribbles.

2. A new additional per-pixel value propagation scheme is con-
structed as a linear optimization system by defining an order
two multinomial for each superpixel. It produces continuous
real value on per-pixel very fast which makes our paradigm to
achieve on-line interactive editing with accurate additional per-
pixel value.

3. Three editing applications (additional per-pixel values) are pro-
vided including depth simulation (depth), dehazing (transmit-
tance), and tone mapping (brightness, contrast). By the quanti-
tative and qualitative evaluations on common database NYU V2
and present methods, our paradigm produces more favorable re-
sults.

2. Related work

Interactive image editing has drawn much attention for its out-
standing and favorable outputs by introducing the meaningful
guidance from users. Besides the direct usages in interactive
cut-and-paste editing with cloning tools [ADA∗04, PGB03] and
compositing of multiple images [GJY∗18], recently it has been
widely used in many sophisticated image editing applications
such as measured materials [AP08, DTPG11], intrinsic decompo-
sition [BHY15,BPD09], depth of field [LSE17,KHC∗18], color or
face editing [MCY∗13, PHS∗18] or light field editing [JMB∗14].

Some of the most sophiticated image editing appolications re-
quire additional per-pixel information (depth, reflectance, illumina-
tion). Different from previous work, which focuses on controlling
the capture process [YG14, GEZ∗17], this paper focuses on gen-
erating such additional per-pixel values from generic user input.
Some methods have been proposed for propagating per-pixel val-
ues. Bousseau et al. [BPD09] propagate scribble constraints based
on standard least-square to achieve intrinsic decomposition. Liao
et al. [LSE17] use sparse user annotations as hard constraints
to generate per-pixel depth by a constrained linear optimization.
General propagation approaches include Markov Random Fields
(MRF) [SZS∗08] or Random Walker algorithms (RW) [VC17].
Such approaches, however, are computationally expensive, and
therefore do not provide interactive feedback to the user.

To reduce computation time, some techniques optimize algo-
rithms by using GPU [CXGS12], parallel processing [VN09] or
a linear system [IEK∗14, LFUS06]. However, the methods based
on GPU and parallel process require parallel programming and
graphics processing units. Some others improve efficiency by clus-
tering the input, either based on a selection of columns of a
matrix representation [AP08], a KD-Tree [XLJ∗09] or superpix-
els [SYJ17,CMM18]. In fact, superpixels are widely used in appli-
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cations such as depth estimation [JL15, LSH14], intrinsic image
decomposition [GMnLMG12] and semantic or geometric label-
ing [WSL∗18]. Other approaches propagate values combine MRF
with a superpixel segmentation [MK10, CK14] and even introduce
GPU [VN09] in RW to reduce time cost. Each form of cluster-
ing, however, presents some form accuracy limitations, being the
most obvious having a single constant value per superpixel, and
can lead to unnatural editing results. Our work overcomes this lim-
itation while maintaining efficency by enabling different per-pixel
values inside each superpixel.

Such as our approach, previous work obtain information from
meaningful user scribbles with different semantics. For example,
Levin et al. [DLW04] use user scribles for image and video col-
orization, while Bousseau et al. [BPD09] employ dense and careful
scribbles for shading and reflectance restrictions in intrinsic image
decomposition. Both approaches, however, are computationally ex-
pensive. Other approaches are more efficient, even interactive: slow
motion photographs by providing motion direction [TPI10], recol-
oring by color brushes [CZZT12], editing the geometry of specific
objects by scribbling structural lines [HZW∗13] and inpaiting or
retargeting by sketching geometrical restrictions [BSFG09].

The most efficient of scribble-based approaches (as our ap-
proach) are often based on solving a linear system. For example,
Lischinski et al. [LFUS06] introduce sparse scribbles into the lin-
ear and edge-preserving energy system to adjust tonal value, Iizuka
et al. [IEK∗14] define a linear propagating method to compute per-
superpixel depth values, Cambra et al. [CMM18] construct a linear
system based on few scribbles that stablish restrictions to produce
per-superpixel additional per-pixel values. Although these methods
improve efficiency, they usually sacrifice accuracy because they can
only represent a single value per-superpixel. On constrast, our ap-
proach enables multiple values per-superpixel interactively by dis-
tributing per-pixel values inside a superpixel according to an order
two multivariate polynomial. This order two multinomial, addition-
aly, enables new semantic brushes that generate restrictions on the
derivative (such as forcing planar surfaces when editing depth).

3. Overview

3.1. Problem statement

The goal of our interaction paradigm is to obtain a continuous addi-
tional value L(x,y) for each pixel (x,y) of an image (continuous as
a real number, discrete as it has a single value per pixel). The only
inputs for that additional per-pixel value are the RGB color val-
ues at each pixel and scribbles from the user (several user strokes).
The feedback should be interactive: after each user stroke, the algo-
rithm should calculate a single value per pixel describing the spe-
cific property in a few seconds or less.

There is a compromise between accuracy and efficiency that
must be overcome:

• We aim at getting the additional value per pixel but the time for
calculating and obtaining such value is heavily dependant on im-
age resolution: as image resolution increases, any per-pixel tech-
nique becomes non-interactive [LDCH17, EPF14, LFUS06].
• Clustering the image into superpixels makes the calculation time

independent from image resolution, that now just depends on
the number of superpixels. However, as each superpixel often
has a single value, therefore hindering fine-grain accuracy and
generating artificial discontinuities in propagating the additional
per-pixel values [IEK∗14, LSH14, CMM18].

Furthermore, the representation of the continuous additional
value (per-pixel or per-superpixel) and the requirement of being
interactive also influences (or even limits) the semantics of the
brushes provided for the user strokes. For instance, a complex brush
that requires a non-linear global optimization would require a much
longer time than a simple brush that requires only a local optimiza-
tion. On the other hand, we would like to empower the user to have
brushes with high-level semantics for which each user stroke is in-
tuitive and predictable.

Summarizing: obtaining a continuous additional per-pixel value
L(x,y) with user brushes that have powerful semantics forces time
consuming global per-pixel optimizations. Our goal is to obtain
such behavior at interactive rates without hindering the per-pixel
effect nor the semantics of the user strokes.

3.2. Outline of the solution

Key idea. Our technique is based on the key insight that some
forms of clustering (such as superpixels) are a must to keep time
at interactive rates, so we focus on making superpixels more mean-
ingful. We do that by extending the usual representation that each
superpixel has a single additional value that applies to all pixels
in the superpixel. We instead define a mathematical expression for
each superpixel that gives specific per-pixel values. This enables us
to keep value optimization time under control (by the number of
superpixels) while having a specific value per-pixel.

Figure 2 utilizes the refocus application as an example of our
paradigm to achieve generic interactive per-pixel image editing. By
clustering the input into superpixels, our paradigm initializes the
additional values for specific image property. Then, the user inputs
some meaningful scribbles via simple brushes. By the mathemati-
cal expression of each superpixel, the additional values are propa-
gated pixel by pixel and the image operator produces result quickly.
Because the feedback result of scribbles happens at an interactive
rate, the user repeatedly draws some additional scribbles based on
feedback to optimize the editing as shown in the rectangle of Figure
2 until getting the ideal result.

Superpixel representation. Previous work that deals with propa-
gating additional values of superpixels often gives a constant value
for all the pixels inside the superpixel. Given a superpixel P they
define the additional value for each pixel in it as:

LP(xp,yp) = cP ∀(xp,yp) ∈ P, (1)

where cP is the additional value to be optimized for superpixel P.
This representation has some consequences such as artificial dis-
continuities at superpixel boundaries, and lack of accuracy and con-
trol. Our technique has represented each superpixel with a math-
ematical expression that eliminates artificial discontinuities, en-
hances accuracy and fine-grain controls of pixel values. Although
our key idea could include any mathematical representation, we
find that a good trade-off between efficiency and control is obtained
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Figure 2: An example of our interactive process via Depth of Field. First, the paradigm is initialized by superpixel segmentation. Second,
some meaningful scribbles are easily drawn. Third, additional per-pixel values (depth) are propagated among the image. Forth, an image
operator produces a real-time result as the feedback of the user’s inputs. The user repeats to draw scribbles and obtain feedback until getting
an ideal result.

with order two multinomial:
LP(xp,yp) = cP20x2

p + cP11xpyp + cP02y2
p + cP10xp + cP01yp + cP00

∀(xp,yp) ∈ P
(2)

where the factors to optimize the per-pixel values for any superpixel
P are the coefficients cP20, cP11, cP02, cP10, cP01 and cP00.

Our multinomial representation is simple enough for an efficient
additional per-pixel value optimization, while enables a variety of
pixel values per superpixel. It furthermore enables finer control:
for instance, there is the possibility of adding restrictions on the
gradient inside each superpixel, from Equation (2):

∂LP

∂xp
(xp,yp) = 2cP20xp + cP11yp + cP10 (3)

∂LP

∂yp
(xp,yp) = 2cP02yp + cP11xp + cP01 (4)

This is not possible with constant superpixel values, as in Equa-
tion (1).

Order two multivariate polynomials are the optimal choice: they
are convertible to linear equations at specific pixel positions and
having analytical partial derivatives that are also linear (and not
constant, as it would happen with order one multinomials). Higher-
order multinomials would increase the number of unknowns of the
solver which would affect both efficiency and numerical stability.
Other mathematical formulations have been considered but rejected
because they did not enable linear equations with linear derivatives
and/or involved a greater number of unknowns.

Optimization. For the user interaction to be as fluid as possible,
per-pixel value optimization must be as efficient as possible. As in
the previous work [Gra06,CMM18], our solver is a linear system of
equations. However, as opposed to previous work, our restrictions
come from non-constant superpixel values and therefore can influ-
ence each pixel’s value (or pixel-to-pixel value relations) coming
from Equation (2) or affect each pixel’s gradient (or pixel-to-pixel
gradient relations) coming from Equations (3) and (4).

Both heuristic restrictions and the constraints coming from user

strokes are expressed as a linear equation, then generating an over-
constrained linear system Ax = B where the unknowns in x are all
the superpixel coefficients c, as in Equation (2), for all the super-
pixels. As it is (generally speaking) over-constrained, it becomes a
linear least-squares minimization:

min
x∈Rm
‖B−Ax‖2 (5)

which is done through the equivalent normal linear system:

ATAx = ATB (6)

which being symmetric positive semi-definite is solved utilizing a
LDLT (Cholesky-based) optimization, which is rather efficient and
reasonably accurate.

We optimize the stability of the solver by working with normal-
ized pixel positions: xp ∈ [0..1] and yp ∈ [0..1] in Equations (2),
(3), and (4). Following this way, the structure of the linear system
does not depend on image resolution.

Preconditioning. The solver of the above optimization is modeled
as a linear least squares system as in Equation (5). Therefore, each
equation j can be weighted by a preconditioning factor w j that sets
it’s importance inside the whole system. For instance, the following
standard equation:

n

∑
i=1

ai jxi = b j (7)
can be preconditioned as:

w j

n

∑
i=1

ai jxi = w jb j (8)

In a standard linear system (not a linear least squares system),
Equations (7) and (8) would be equivalent (except for w j = 0) but in
a linear least squares system w j states the importance of the equa-
tion in the whole system. This preconditioning factor is applied lo-
cally for specific equations while there are global preconditioning
values for parts of the system (see Section 4 for details).

Precomputation and interactive stages. For the whole process,
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the calculations are split into two stages, namely the precomputa-
tion and interactive stages.

In the precomputation stage, our technique:
• Generate the equations that set up global constraints in the image

and form the initial least-square system.
• The precomputation stage is only done once per-image and takes

around 3-4 seconds.

In the interactive stage, our technique:

• Using a specific brush with a specific meaning which can affect
several pixels, the user draws one stroke in the image.
• Several equations (that correspond to the brush’s meaning) are

added into the linear least square system.
• The system is solved by the LDLT algorithm and the additional

per-pixel values based on this stroke are generated.
• The additional per-pixel values are interpreted and the corre-

sponding image operator is applied (depends on the specific edit-
ing application).

The interactive stage is based on user repeated interaction until

Value continuity. For each pair of 8-neighbor pixels belonging to
different superpixels (xp,yp) ∈ P and (xq,yq) ∈ Q we add the fol-
lowing two equations:

cPQLP(xp,yp) = cPQLQ(xp,yp)

cPQLP(xq,yq) = cPQLQ(xq,yq) (9)

which basically enforces continuity on propagating additional per-
pixel values across superpixel boundaries. The value cPQ precondi-
tions both equations (see Section 3.2), and gives more importance
in the overall system to those equations in which colors are more
similar. It is calculated as follows:

cPQ = e−k||I(xp,yp)−I(xq,yq)|| (10)

where I(x,y) represents the color of the image at pixel (x,y) in CIE-
Lab color space (L-2 norm CIE-Lab difference) and k is a user-
defined positive parameter which is experimentally set as k = 1.
Note that Equation (10) establishes the importance of the per-pixel
value continuity for Equation (9). The value of Equation (10) is
much higher when the color is very similar between superpixels
than when the color becomes too different (even though it theoreti-
cally never reaches 0 importance).

Gradient continuity. In a similar spirit, for each pair of 8-neighbor
pixels belonging to different superpixels (xp,yp)∈ P and (xq,yq)∈
Q, we add the following four equations that connect not only value
continuity of additional per-pixel value but its gradient continuity
too:

cPQ
∂LP

∂xp
(xp,yp) = cPQ

∂LQ

∂xq
(xp,yp)

cPQ
∂LP

∂yp
(xp,yp) = cPQ

∂LQ

∂yq
(xp,yp)

cPQ
∂LP

∂xp
(xq,yq) = cPQ

∂LQ

∂xq
(xq,yq)

cPQ
∂LP

∂yp
(xq,yq) = cPQ

∂LQ

∂yq
(xq,yq) (11)

where cPQ also follows Equation (10) but we experimentally set
k = 0.02. Different strategies with varying preconditioning factors
were tested, but none of them proved significantly better than this
simpler option. Generally speaking, the importance value cPQ be-
comes relevant when including other restrictions coming from user
strokes (see below in the text) where the solver will first break equa-
tions with low cPQ values to satisfy other constraints coming from
different sources.

Initialization. All global constraints establish relations between
superpixels that lead to a linear system that is unsolvable (it has
a trivial solution of setting all superpixel parameters to 0). In order
to avoid a system crash, we set an arbitrary initialization per-pixel
value of 0.5 in the upper left pixel that is removed after the first
user interaction. This ensures an initial system convergence.

4.2. User brushes

The above global constraints set up a basis from which each user
stroke can be efficiently propagated throughout the whole image.
We provide several intuitive brushes that are also mathematically

the user gets the desired result. It takes less than one second, inde-
pendently on image resolution. The tradeoff between efficiency and 
accuracy of this stage are determined by the number of superpixels. 
Figure 2 illustrates all the stages of this technique. The precompu-
tation stage happens at the initialization step, which forms the ini-
tial least-square system based on the global constraints constructed 
among superpixels. The interactive stage forms a cycle process as 
shown in the rectangle of Figure 2. It firstly introduces meaning-
ful scribbles, then quickly computes the additional per-pixel value, 
and finally employs image operator to produce a result. As this cy-
cle process happens at interactive rate, user can adaptively intro-
duce more meaningful scribbles to optimize the result based on the 
feedback.

Section 4 describes all the specific global constraints (for the pre-
computation stage) and all the specific brushes (for the interactive 
stage) and describes how each of them is translated into equations 
for the linear least square system.

4. Constraints

The constraints of our paradigm system must be expressed in the 
form of a linear equation (as discussed in the previous section). 
They come from two main sources: global precomputed constraints 
and user strokes made with different brushes.

4.1. Global Precomputed Constraints

The global precomputed constraints are based on reasonable 
heuristics that come from the RGB values in the image and the 
distribution of pixels among superpixels. The intuition for these 
is that the areas belonging to the same object are more likely to 
share both similar RGB values and similar per-pixel values. This 
is partially addressed by the superpixel segmentation, but our tech-
nique includes some constraints that link color similarity to per-
pixel value similarity at the boundaries between superpixels to en-
sure the continuity between superpixels. In this paper, we define 
the global precomputed constraints by defining the following value 
continuity and gradient continuity of our additional per-pixel value.
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Table 1: Color code used for the applied user strokes that indicates
the kind of brush and its specific set properties.

Stroke color Brush
Seed value brush.

Value from 0 (blue) to 1 (red)
Value similarity brush.

Different colors indicate different pixel connections.
Gradient similarity brush.

Different colors indicate different pixel connections.
Boundary brush.

Distance from 0 (no edge) to 1 (strongest edge).

expressed as linear equations and be seamlessly integrated with the
rest of the linear least-squares system.

For the sake of clarity, we illustrate the user strokes by means
of a coherent color code, described in Table 1, so the user (and
the reader) is able to intuitively understand the user interaction. All
figures (such as Figure 3) that illustrate our user interaction in this
paper strictly follow such color code.

According to the meanings of the strokes, all the brushes for
user strokes are classified into four kinds including the seed value
brush, value similarity brush, gradient similarity brush and bound-
ary brush. Each of the user strokes generates a set of equations that
depend on the specifically chosen brush, as follows:

Seed value brush. Each pixel (xp,yp) ∈ P (where P is a super-
pixel) affected by a user stroke with this seed value brush will be
set to a specific constant value vb:

LP(xp,yp) = vb (12)

The user interface provides several seed value brushes, each of
them with a different specific value vb. Instead of specific val-
ues, the user only sees intuitive descriptions of such values (for
instance "near", "far", "background" at propagating the per-pixel
depth value). The effect of several seed value brushes is illustrated
in the top row of Figure 3. Several brushes might be affecting the
same pixel, theoretically contradicting each other. However, being
a linear least-squares system the solver will average the value that
mostly fits all the involved equations.

Value similarity brush. This brush does not set specific per-pixel
values. Instead, it enforces that each pair of pixels (xp,yp) ∈ P and
(xq,yq) ∈ Q affected by a user stroke has the same per-pixel value
(P and Q are two superpixels, either different or the same). Specif-
ically:

LP(xp,yp) = LQ(xq,yq) (13)

There are several value similarity brushes, each of them estab-
lishing similarity restrictions to all pixels affected by the brush.
This can be used either for a single user stroke (connecting the
additional per-pixel values inside that user stroke, as in the sec-
ond row of Figure 3) or with multiple user strokes, in which all
the pixels affected by all strokes are connected (see Figure 3, third
row). Only a few previous works enable the user to establish such
per-pixel value connections at different image locations [CMM18],
which performs very efficiently in producing continuous and accu-
rate additional per-pixel values.

Gradient similarity brush. Each pair of pixels (xp,yp) ∈ P and
(xq,yq) ∈ Q affected by a user stroke using this brush will tend to
have the same gradient, which is modeled by the following equa-
tions:

∂LP

∂xp
(xp,yp) =

∂LQ

∂xq
(xq,yq);

∂LP

∂yp
(xp,yp) =

∂LQ

∂yq
(xq,yq) (14)

This brush works in the same way with the value similarity
brush. Again, there are several gradient similarity brushes available
to the user, each of them adding a different set of restrictions. Intu-
itively, this kind of brush helps to identify planar surfaces for prop-
agating additional per-pixel values (see Figure 3, fourth row). This
brush provides the gradient-based constraints which have never
been possible in superpixel-based techniques before.

Boundary brush. In some occasions, the effect of the value /
gradient continuity constraints (described in Section 4.1) does not
prioritize specific boundaries (especially, when the color at both
borders of the boundary is too similar). Therefore, we define the
boundary brush to deal with the additional per-pixel values on
boundary locations. This brush enforces the existence of a bound-
ary in two ways: first, it eliminates all the equations that stab-
lish some connectivity in the boundary by adding the same Equa-
tions (9) and (11) but with negative −cPQ to all the border pixels
affected by the boundary brush. Additionally, for each pair of su-
perpixel border pixels (xp,yp) ∈ P and (xq,yq) ∈ Q (P 6= Q) af-
fected by the boundary brush we add the equation

LP(xp,yp) = LQ(xq,yq)+db (15)

where db is a per-brush specific parameter (there can be several
boundary brushes with different parameters) which establishes the
strength of the boundary. The P and Q superpixels are selected ac-
cording to the direction of the stroke: if done counterclockwise,
the inner superpixel is Q and the outer superpixel is P. In practice,
this equation (and the elimination of the global constraints affect-
ing both pixels) enhances the boundary (see Figure 3, bottom row).
This brush just affects the corresponding equations at superpixel
boundaries. As future work, it would be interesting that this brush
would also create superpixel boundaries dynamically.

5. Experiments

This section describes the evaluations and comparisons of our
generic pixel-level image editing paradigm. We first verify the ac-
curacy of our depth estimation on the famous NYU V2 dataset
[NSF12] in Section 5.1. We then explore the sensitivity of our ap-
proach in Section 5.2. Then, we describe the applications of our
paradigm in Section 5.3. Specially, we illuminate our outstand-
ing contribution about smoothing the additional per-pixel values
on Section 5.4. Finally, we analyze the efficiency of our paradigm
on Section 5.5. Unless otherwise stated, all the results are generated
by a PC with i7-6700 CPU at interactive rates (383 superpixels, <1s
for each interaction), without GPU.

5.1. Accuracy

We test the accuracy of our approach with the NYU V2 dataset,
which provides RGB images with ground truth depth (captured us-
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Figure 3: Individual effect of each brush with the example of depth editing. From left to right: input before the edit, depth map before the
edit, new user stroke with the specific brushes, depth map after the edit. From top to bottom: seed value brushes (two strokes with different
values), value similarity brush (single user stroke), value similarity brush (two separate but connected user strokes), gradient similarity brush
(user stroke forces a planar surface), boundary brush (user stroke forces depth difference around the chair). Note that on each case (row) the
effect of each user stroke is both meaningful and practicable.

dataset (the rest of the results from this dataset are available as sup-
plementary material). As our seed value brushes (that set specific
depth values in this case) are subjectively specified ("near", "far")
for this experiment, we configure them to yield specific fixed val-
ues (objective as opposed to subjective) in order to be able to test
its accuracy numerically. Still, the number of user strokes for each
of the results is rather low (between four and ten for all the results,
see Figure 4, rightmost column). We obtain an average root mean
square error of 0.439 for all the 30 images with an average of 10
user scribbles per image, which is a reasonably low number given
the accuracy of the results, and a good metric of the expressiveness
of our approach. To put the error metric in perspective, the most ac-

ing a Microsoft Kinect camera) and has been often used for validat-
ing depth estimation [LSH14, EPF14, LDCH17]. Some of the im-
ages of the dataset do not have depth values for every single pixel, 
due to regions out of the sensor’s capturing range, and therefore are 
not suitable for our approach. We ignore those and select a subset 
of 30 representative images. With few user strokes of our interac-
tion paradigm, we generate a depth map for an RGB image of the 
dataset and we compare it with the ground truth (numerically and 
visually).

Figure 4 illustrates some of our results compared to previous 
automatic work [LSH14] and the ground truth from the NYU V2
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Image Ground truth Our result User strokes

Figure 4: Each row presents different our depth map estimation results compared to the NYU V2 ground truth. The color at user stroke
(rightmost column) is described in Table 1.

curate automatic previous work reports a 0.641 average root mean
square error for this dataset [EF15]. The whole accuracy analysis
with several error metrics can be found as supplementary material.

Furthermore, we analyze the progression of the error with re-
spect to the number of user strokes (see Figure 5). Note that, as
expected, the error decreases as the user refines the input (number
of user strokes).

5.2. Sensitivity

One of the main concerns regarding user interaction is its sensi-
tivity, the variation of output with respect to user input. Each in-
teraction paradigm must find the appropriate compromise between
predictability (the technique is sensitive enough to the intentions on
the user) and stability (the technique does not yield extreme varia-
tions on the output from minimal user input). In the case of our pro-
posed interaction paradigm, this is partially explored in Figure 3, in
which each individual brush is explored independently.

Furthermore, Figure 6 illustrates such sensitivity by applying
different sets of user strokes to the same input, and compare the
outputs. It can be seen that similar input yields similar output and
that our approach is stable to small variations of the input user
strokes. This stability comes from the balance between the global
constraints (Section 4.1) and the local user scribbles (Section 4.2).

5.3. Applications

As previous work [CMM18], we illustrate the versatility of our
paradigm through three different applications (illustrated in Fig-
ure 7):

Depth of field. A depth map is generated using our interaction
paradigm. Following the previous work in [LSP14], the depth of
field effect is obtained by applying a set of convolutions (blurs) of
different radius according to the difference between depth at each
pixel and focal distance. The user can configure both focal distance

(by clicking on the specific focus point on the scene) and the max-
imum radius (related to the emulated aperture).

Dehazing. A transmittance map is generated using our interac-
tion paradigm. The color of maximum pixels of the transmittance
map indicates the color of the "haze", and from that transmittance
map, the dehazed image is obtained using the standard dehazing
formulation as proposed in [Fat14].

Tone mapping. We start from a global tone mapping
curve [MS08] that transforms High Dynamic Range images into
Low Dynamic Range images through two global parameters:
brightness and contrast. Our application modulates both global pa-
rameters through our user interaction paradigm into a per-pixel
brightness map and contrast map.

Figure 7 compares each of these applications with the automatic
(as in automatically generated maps) state of the art, plus with pre-
vious superpixel-based editing work [CMM18]. It shows how our
work, with few user strokes, enables results that are visually in
comparison with the state of the art.

5.4. Superpixels

One of the key contributions of our work is to achieve per-pixel
quality maps with superpixel efficiency. In previous work, each su-
perpixel represents a single constant additional value for all the pix-
els within the superpixel [LSH14, CMM18] as described in Equa-
tion (1), while our work has a multinomial superpixel represen-
tation (as described in Equation (2)). This difference makes our
method overcome the discontinuity of additional per-pixel value
among superpixels that are common for the other present methods.

Figure 8 demonstrates the depth map obtained with two kinds
of superpixel techniques: one of them(shown in the fourth col-
umn) uses learning and a discrete optimization [LSH14], the other
(shown in the second column) is based on user editing [CMM18]
as our work. Both of the resulting depth maps present heavy dis-
continuities at superpixel boundaries, while our technique is able to
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Input Scribble 1 Scribble 2 Scribble 3 Scribble 4 Scribble 5 Scribble 6 Scribble 7

Ground truth Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7

RMS 0.637 0.530 0.505 0.504 0.479 0.443 0.269

Figure 5: Accuracy progression with respect to the number of user strokes. Left column : Input and ground truth. Rest of columns, from
left to right : Accuracy progression. Top row: user strokes. Middle row: output depth map. Bottom row: root mean squared error of the
output with respect to the ground truth. Note that each user stroke improves accuracy.

Input Scribbles 1 Scribbles 2 Scribbles 3 Scribbles 4

Ground truth Depth 1 Depth 2 Depth 3 Depth 4

Input State-of-the-art Cambra et al. [CMM18] Ours

Figure 7: Comparison between our results and the state-of-the-
art algorithm for different applications. From left to right: Input
image; results obtained from different state-of-the-art algorithm;
results from previous editing technique [CMM18]; our results;
From top to bottom: Applications with different state-of-the-art
algorithms: dehazing [Fat14], tone mapping [LFUS06]; depth of
field [YG14].

erage. Although still at interactive rates, our approach seems slower
but this is expected: as the number of unknowns increases, solving
the linear system and propagating the additional per-pixel values
requires more time. However, when given the more expressive na-
ture of our superpixel formulation, we are able to obtain still more
accurate results with around 300 superpixels, which only require
0.27 seconds per interaction.

We demonstrate the efficiency performance of our method and
the present interactive editing method [CMM18] by Figure 10.
Comparing the top two rows and the middle two rows of Figure 10,
we know that with the similar superpixel number (383 superpixels
for ours, 376 superpixels for theirs), our method performs slightly
slower, but producing more accurate results. That is because we use
an order two multinomial to represent the values for the pixels in-

Figure 6: Analysis of scribble sensitivity. For the same scene, dif-
ferent scribble inputs are performed and different (but similar) 
depth maps are obtained. Left column, top: Input image. Left col-
umn, bottom: Ground truth depth. Rest of the columns, top row: 
Different sets of user scribbles as input. Rest of the columns, bot-
tom row: Obtained depth maps corresponding to each set of user 
scribbles.

overcome them thanks to the multinomial superpixel representation 
and the value and gradient continuity constraints (see Section 4.1).

Such discontinuities affect the outcome (additional per-pixel 
value) of the editing and be noticeable in the final r esult. This is 
illustrated in Figure 9, where the user applies similar user strokes 
using the method of Cambra et al. [CMM18] and ours. For the three 
applications, this work yields smooth and clear results, while the 
discontinuities in previous work lead to the unpleasant visual ap-
pearance (see Figure 9).

5.5. Efficiency

Previous work on superpixel based image editing has proven to 
work at interactive rates [CMM18] and also solves the propaga-
tion by means of a linear system of equations. Compared to it, 
our approach presents six unknowns per superpixel (multinomial 
coefficients) while their approach requires only one: the constant 
value. When using a similar number of superpixels in our exper-
iments (around 700 superpixels for the NYU V2 dataset, see Fig-
ure 4), their approach requires 0.64 seconds on average for each 
user stroke while our approach requires around 1.56 seconds on av-
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Ours Cambra et al. [CMM18] Ours Liu et al. [LSH14]

Figure 8: Comparison between our depth propagating and other
superpixel based state-of-the-art depth computing techniques. Top
row: Full size of propagated additional per-pixel values. Bottom
row: Insets. Our approach enables smooth and continuous per-
pixel value, while other approaches produce artificial discontinu-
ities especially among superpixels.

side a superpixel, while they defined constant values. However, by
comparing the top two rows and the bottom two rows of [CMM18],
it is clear that when we reduce the superpixel number (154 super-
pixels for ours, 376 superpixels for theirs), our method uses much
less time for each interactive while still producing more accurate
results. The efficiency and interactivity can be further analyzed in
the supplemental video.

Not only we are faster in terms of computational speed, but
also our proposed workflow includes more intuitive and semantic
brushes, including gradient similarity and edge brushes, which in
turn enable a more efficient interaction paradigm in terms of user
time. Our tests show that several scenes require fewer user strokes
and therefore less user time compared to previous work with fewer
brush options [CMM18]. As future work, it would be interesting
to perform a more formal user study that statistically validates this
claim.

6. Conclusion and future work

This paper proposes a general image editing paradigm, which gen-
erates a set of continuous additional per-pixel values from a set of
meaningful user strokes. The advantages of our approach are that
the paradigm is very intuitive to use, and that is interactive even
when including many user scribbles for complex brushes. There-
fore, by some easy scribbles, users can iteratively refine the results
thanks to the fast feedback.

This approach is based on a new propagation scheme which
spreads the additional per-pixel values of an image at interactive
speeds (less than a second independently of image resolution). The
propagation is a linear optimization system and constructed on top
of a superpixel representation that instead of a single value includes
an order two multinomial (for each superpixel). Compared with
other approaches (that only give a single value for the whole super-
pixel) our paradigm is able to overcome most of the limitations and
artifacts than such approaches yield, and is, therefore, both more
accurate and enables higher meaning strokes. Several kinds of con-
straints are defined for the propagation to make it more robust and
flexible including the constraints from per-pixel value continuity

in color and gradient fields and the constraints from the meaning
inputs of users.

The limitations in our approach come from the static superpixel
segmentation: some times a poor segmentation might lead to sub-
optimal results and sloppy user interaction in specific regions of the
image. Still, the artifacts given by our application are meaningless
compared to other superpixel-based approaches. In the future, we
would like to provide a dynamic segmentation, so that the boundary
brush would not only generate new equations but also modify the
superpixel structure.

We illustrate the advantages of our paradigm through three ap-
plications: depth of field blurring, dehazing and tone mapping.
Each of such applications requires different additional per-pixel
values (depth, transmittance and constant and brightness) and our
paradigm works for all three cases. Our paradigm produces in all
the three applications results that are on-par with the state of the
art, with the additional advantage that they can be interactively
refined by the user. To illustrate this, we provide a supplemental
video and the source code of the applications†. As further research,
it would be exciting to explore other more advanced applications
such as intrinsic image decomposition, and also evaluate the in-
teraction paradigm more formally through a user study. We expect
that this paradigm will enable more generic and sophisticated edit-
ing applications in the future.
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Figure 10: The efficiency comparison between our method and the interactive method proposed in [CMM18]. Using a similar superpixels
number, our method produces better depth map while it performs little slower. However, after reducing the superpixels number (from 383 to
154), our method not only produces a better work but also uses less time.
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