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Abstract
In character animation, direction invariance is a desirable property. That is, a pose facing north and the same pose facing south
are considered the same; a character that can walk to the north is expected to be able to walk to the south in a similar style.
To achieve such direction invariance, the current practice is to remove the facing direction’s rotation around the vertical axis
before further processing. Such a scheme, however, is not robust for rotational behaviors in the sagittal plane. In search of a
smooth scheme to achieve direction invariance, we prove that in general a singularity free scheme does not exist. We further
connect the problem with the hairy ball theorem, which is better-known to the graphics community. Due to the nonexistence
of a singularity free scheme, a general solution does not exist and we propose a remedy by using a properly-chosen motion
direction that can avoid singularities for specific motions at hand. We perform comparative studies using two deep-learning
based methods, one builds kinematic motion representations and the other learns physics-based controls. The results show
that with our robust direction invariant features, both methods can achieve better results in terms of learning speed and/or final
quality. We hope this paper can not only boost performance for character animation methods, but also help related communities
currently not fully aware of the direction invariance problem to achieve more robust results.

CCS Concepts
• Computing methodologies → Animation; •Mathematics of computing → Algebraic topology;

1. Introduction

In computer animation, digital characters are usually parameterized
by an articulated rigid body system with six Degrees of Freedom
(DoFs) at the root, and a tree of internal rotational joints. It is rela-
tively well-known, however, that the six DoFs at the root, although
necessary to fully specify a 3D pose for the character, are redundant
in terms of specifying the motion tasks. For example, a walk to the
north and a walk in the same style to the south are considered the
same walk even though the directions of motion are different. It is
thus a common practice to remove the root rotation about the grav-
itational direction, usually the Y -axis in computer graphics, before
further processing such as pose similarity computation in motion
retrieval or control learning in physics-based animation.

To remove the redundant Y -rotational DoF at the root, the cur-
rent practice is to define a “facing direction” by the X axis of a local
frame defined at the root, i.e., the sagittal axis, as shown in Figure 1
left. This facing direction usually corresponds to where the charac-
ter’s belly button points towards. By aligning the facing directions
of all frames to the same plane, poses and motion features such
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Figure 1: Left: root frame of the character model. The X axis cor-
responds to the sagittal axis; the Z axis is the lateral axis; and the
Y axis is the vertical axis. In human anatomy, the root XY plane is
referred to as the sagittal plane; the root XZ plane is the transverse
plane; and the root Y Z plane is the frontal plane. Right: Root frame
facing direction (X axis) during the course of a backflip.

as positions and velocities become Y -rotation free and can then be
compared or used in a more consistent way [KG04, PALvdP18].

The above defined facing direction works well for locomotion
tasks, which have been the focus of most character animation re-
search so far. There are cases, however, that the facing direction
as defined above is problematic. Figure 1 right shows a backflip
motion during which the root X axis aligns with the global Y axis
twice, around the moments denoted by the vertical dashed lines.
The computed Y rotations of the root frame will thus encounter
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singularities around these moments, as will be described in detail
in Section 3. The motion features after being transformed by these
derived Y -rotations will change wildly around these moments as
well. Such ill-behaved features can potentially degrade the perfor-
mance of various learning algorithms to certain degrees, as will be
shown in Section 5. We therefore wish to devise a robust scheme
that removes the direction of motion in a singularity free manner.

We formulate this problem using mathematical tools from al-
gebraic topology in Section 3. Then we prove that such a desired
singularity-free smooth mapping scheme actually does not exist in
general. We therefore propose a remedy to choose a well-behaved
“motion direction” to replace the “facing direction” for specific
motions at hand. The chosen motion direction should stay away
from the global Y axis during the full course of the motion. For
example, for the backflip shown in Figure 1, the root Z axis qual-
ifies as such a motion direction. We then formulate the calculation
of direction-invariant features based on a given motion direction,
either manually chosen or automatically computed, in Section 4.
In Section 5, we validate that a well-chosen motion direction and
its derived features are sufficient to avoid singularities in practice.
We also perform comparative studies using two state-of-the-art ani-
mation methods on direction-invariant features calculated from the
motion direction (DIM), direction-invariant features derived from
the conventional facing direction (DIF), and global features (GF).
Our results show that DIF features help achieve better performance
in terms of synthesized motion quality and/or learning speed.

With recent advances and growths in machine learning and com-
puter vision, we have seen publications related to character anima-
tion in non-graphics communities [ZAv17, ZLX∗18]. These com-
munities seem to handle motion directions in many different ways.
We show that by using our robust direction-invariant features, some
of these algorithms can greatly boost their performance without
any change to their training or learning components. We hope
that our solution and comparative studies can help advocate robust
direction-invariant features to wider communities to facilitate faster
scientific advances in more related fields.

2. Related Works

2.1. Character Animation

Kinematic character animation has a long history of comparing
poses [KGP02] and modelling motions [HKS17, ACOH∗18] in a
direction invariant manner. It is known that “a motion is defined
only up to a rigid 2D coordinate transformation. That is, the motion
is fundamentally unchanged if we translate it along the floor plane
or rotate it about the vertical axis” [KGP02]. The rotation about the
vertical axis can be calculated from sampled point clouds on the
digital character [KGP02], or simply from the facing direction ex-
tracted from the root orientations [HSK16, HKS17]. In this work
we also use root orientations, but our framework can be applied to
other schemes as well.

Various physics-based animation methods also need to han-
dle the motion direction. In hand-crafted controllers such as
[HWBO95, YLvdP07, CBvdP10], features are transformed into
the sagittal plane and the lateral plane before applying controls
in each plane respectively, so that the simulated character can

walk in any direction. In [KH17], when the reference motion in-
volves a high speed rotation during the flight phase, the forward
facing direction is obtained by linearly interpolating the initial
and final forward facing directions to achieve more robust ref-
erence coordinate systems. Trajectory optimization methods usu-
ally optimize for a specific 3D trajectory with no direction invari-
ance [WK88, MTP12, ABdLH13, LK14]. Recently deep learning
and deep reinforcement learning (DRL) have been applied suc-
cessfully on learning physics-based controls for character anima-
tion [PALvdP18, LL18, YTL18, SLL19]. Features are usually con-
verted to be facing-direction invariant before being passed to the
deep neural networks (DNNs). We chose DeepMimic [PALvdP18]
as one of the two methods for our comparative study in Section 5.1,
as it produces state-of-the-art results in terms of motion variety and
quality, and its source code was released by the original authors and
readily available.

2.2. Related Fields

The computer vision and machine learning communities have
been investigating motion prediction and synthesis for some
time [WFH07, THR07, FLFM15, JZSS16, MBR17, GWLM18,
ZLX∗18]. Among these publications, some avoided using root
orientations at all [GWLM18, ZLX∗18]; some used incremental
changes around the gravitational vertical, and absolute pitch and
roll relative to the facing direction [THR07, MBR17]; some just
used root orientations as is [WFH07]; and some are not clear from
the writing how they dealt with the root orientations [FLFM15,
JZSS16]. We chose acRNN [ZLX∗18] as one of the two methods
for our comparative study in Section 5.1, as it generates the best re-
sults in terms of long-term motion quality and complexity, and its
source code was released by the original authors and readily avail-
able.

Human action recognition is also a classic problem in com-
puter vision [LGN14,SZ14,ZAv17]. Most work directly deals with
pixel features. A few choose to first reconstruct skeletal poses from
video, and then use features in the global frame for further learn-
ing [ZAv17]. We think such recognition tasks would also benefit
from using our robust direction-invariant features as well.

3. Nonexistence of a Singularity-free Mapping Scheme

We use g to denote an orientation in SO(3), and g1 ◦ g2 to de-
note composition of two orientations g1 and g2. Our derivations
and proofs are independent of the specific rotation parameteriza-
tion method. For example, g can be parameterized by quaternions
and rotation composition can be achieved through quaternion mul-
tiplication. We use g(m) to denote a vector m rotated by g.

3.1. Problem Formulation

We consider two orientations in SO(3) equivalent if they are con-
nected by a rotation with respect to the gravity direction, namely
a rotation gy about Y . We denote the set of all gy as RY , which is
isomorphic to SO(2). We also denote the orbit of an orientation
g ∈ SO(3) under rotations in RY as Ω(g):

Ω(g) = {gy ◦g|gy ∈ RY }. (1)
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Rotations in the same orbit are considered equivalent. Denote the
set of orbits as H. Then H is homeomorphic to the 2-sphere S2 with
a natural homogeneous space structure as the quotient of two Lie
groups SO(3) and SO(2):

H = {Ω(g)|g ∈ SO(3)} ∼= SO(3)/SO(2)∼= S2. (2)

Calculating a Y -rotation invariant frame for an orientation g re-
quires projecting Ω(g) to a representative element g0 of the orbit,
so that all orientations in Ω(g) are aligned with g0. g0 is chosen
manually, such as the one described in Section 4. Formally speak-
ing, we wish to find a mapping schemeM from all orbits in H to
representative elements in SO(3) subject to certain constraints:

M : H 7→ SO(3),

s.t. Ω(M(h)) = h, ∀h ∈ H.
(3)

The question is whether there is a smooth singularity-free map-
ping f that satisfies the above property. We provide two proofs that
such singularity-free mapping does not exist. One proof follows the
Fiber Bundle theory [Hat02]. The other connects to the Hairy Ball
Theorem [EG79], which is more familiar to the graphics commu-
nity [FSMD07].

3.2. Proof 1: by Fiber Bundle Theory

Our orbit operator Ω defines a fiber bundle
(

SO(3),S2,Ω,SO(2)
)

.
In the quest of a smooth mapping M, we wish to find a globally
defined cross section of this fiber bundle. However,

SO(3) 6∼= SO(2)×S2, (4)

since SO(3) is homeomorphic to the 3-dimensional projective
space, which is not homeomorphic to SO(2)×S2. Thus there does
not exist such a global cross section [Hat02].

3.3. Proof 2: by Hairy Ball Theorem

Imagine a unit tangent vector t = (1,0,0) attached to the north pole
p = (0,1,0) of a unit sphere. Now we define a mapping F that
maps an element g ∈ SO(3) to a unit tangent vector g−1(t) located
at g−1(p) on the sphere, by rotating this sphere by g−1.

Lemma 3.1 The mapping F between SO(3) and unit tangent vec-
tors on the sphere is bijective.

Proof (a) Each element in SO(3) rotates t to a unique unit tangent
vector on the sphere, so the mapping is injective. (b) For any unit
tangent vector s on the sphere, there is always a g−1 that can rotate
t to s, so the mapping is surjective. Thus the mappingF is bijective.

Lemma 3.2 F is a bijective mapping between Ω(g) and the unit
tangent vector space at g−1(p).

Proof (a) ∀g̃ = gy ◦g ∈ Ω(g), g̃−1 sends p to a fixed point g−1(p)
on the sphere, and t to a unit tangent vector at this point, because

g̃−1(p) = (g−1 ◦g−1
y )(p) = g−1(p). (5)

(b) Any unit tangent vector s at g−1(p) corresponds to a rotation

Algorithm 1: Motion Direction Computation
Input: Root orientation frames {gt}, t = 1, . . . ,T
Output: The motion direction vector r
p← (0,1,0);
for t← 1 to T do

pt = g−1
t (p);

end
{ri}=UniformlySampleOnSphere(N), i = 1, . . . ,N;
for i← 1 to N do

di←+∞;
for t← 1 to T do

d+
it =ComputeGeodesicDistance(ri, pt );

d−it =ComputeGeodesicDistance(−ri, pt );
di = min{di, d+

it , d−it };
end

end
j← argmaxi∈1,...,N di;
return r j

in Ω(g). This is because for any unit tangent vector s at g−1(p), s
corresponds to a rotation gs ∈ SO(3) due to the bijection property
of F that we just proved in Lemma 3.1, and g−1

s also sends p to
g−1(p). Now we take a look at the point p:

p = (gs ◦g−1
s )(p) = gs(g−1

s (p)) = gs(g−1(p)) = (gs ◦g−1)(p),

p is invariant under the rotation gs ◦ g−1. We know that only gy ∈
RY can send north pole p to itself, thus gy = gs ◦g−1, and therefore
gs = gy ◦g ∈Ω(g).

Theorem 3.3 Under the mapping F , a solution of Equation 3 cor-
responds to a unit vector field on the sphere.

Proof Since there is a bijection between Ω(g) and unit tangent vec-
tors at g−1(p) according to Lemma 3.2, selecting a representative
element from each orbit Ω(g) ∈ H, as the mapping M in Equa-
tion 3 does, is equivalent to selecting one unit tangent vector for
each point g−1(p) on the sphere. Therefore M corresponds to a
unit tangent vector field on the sphere. Hereafter we denote this
corresponding vector field as VM.

This is exactly what the Hairy Ball Theorem concerns [EG79]:
you simply cannot comb a sphere without creating at least one
cowlick somewhere. That is, there is no singularity-free unit tan-
gent vector field on a sphere, which is relatively well-known in the
graphics community [FSMD07]. Therefore, there is no singularity-
free mapping that satisfies Equation 3.

4. Robust Direction-invariant Features

In order to map all motion features into a direction invariant set, we
need to first calculate the Y -rotation of the root frame g, so that the
transformed features become invariant to the direction of motion.
We formulate one of the typical algorithms used in the animation
community for this purpose in Section 4.2, but generalize it by re-
placing the facing direction with motion direction. The motion di-
rection r can be either manually selected for simple rotational tasks,
or automatically computed as described in Section 4.1.
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Figure 2: Calculation of gy using a chosen motion direction r.

4.1. Motion Direction Computation

Following the proof in Section 3.3, we derive an algorithm as
shown in Algorithm 1 to automatically choose the best motion di-
rection r for a given root orientation trajectory {gt}. The idea is
to maximize the geodesic distance from p = (0,1,0) to gt(r) and
gt(−r) to stay away from singularities for the full course of the mo-
tion, which is equivalent to maximizing the geodesic distance from
g−1

t (p) to r and−r. We will also use the trajectory g−1
t (p) and the

vector field VM in our visualizations in Figure 3 and 6.

4.2. Direction-invariant Features

Assuming the current root frame orientation represented in the
global world frame is g. Its Y -rotation gy induced by motion di-
rection r can be derived as follows as illustrated in Figure 2. First,
rotate the motion direction r by g to get r′ = g(r). Second, calculate
the dihedral angle θ between the two planes with normals Y×r and
Y × r′. Then gy equals (Y,θ), which is a rotation that rotates r′ onto
the plane Y × r and parameterized in the axis-angle representation.
Finally, g0 = gy ◦ g, and all orientations in orbit Ω(g) are mapped
to the same representative element g0. The VM that corresponds
to the mappingM induced from a motion direction r can then be
calculated as g−1

0 (t) for point g−1(p) on the sphere. Note that we
only need gy and not g0 to transform a motion feature m into its
direction invariant version gy(m). In our experiments in Section 5,
motion direction r is chosen as follows: by default we choose the
original facing direction X axis; if it does not work, we choose the
lateral Z axis; when both fail, we compute another axis as described
in Algorithm 1.

As we have proved in Section 3.3, one direction-invariant map-
ping scheme M corresponds to one unique unit vector field VM
on the sphere. We thus visualize two mapping schemes in Figure 3.
Figure 3 (a) is induced by choosing the conventional facing direc-
tion (root X axis) as the motion direction. Figure 3 (b) is induced
by choosing the lateral direction (root Z axis) as the motion direc-
tion. We also visualize the trajectory of root frames {gt} by plotting
g−1

t (p) on the unit sphere. The singularity points are calculated by
Helmholtz decomposition [KC13] from the vector field VM. As we
can see, different mapping schemes put singularity points onto dif-
ferent locations on the sphere, while the trajectories of root frame
orientations remain the same. Thus we can strategically avoid sin-

     Y   

     Z        X   
(a) (b)

Figure 3: Visualization of two mapping schemes: (a) Facing di-
rection (root X axis) as the motion direction. (b) Lateral direction
(root Z axis) as the motion direction. The curves on the sphere are
the mapped trajectories of the root orientations in a backflip (red)
and a jump twist (green). They pass the singularities in only one of
the mapping schemes but not the other.

gularities by choosing an appropriate motion direction for a specific
motion task.

5. Results

We perform comparative studies on motion synthesis tasks us-
ing one kinematic method [ZLX∗18] and one physics-based ap-
proach [PALvdP18]. In both studies, we compare performance
using global features (GF), direction-invariant features calculated
from the facing direction (DIF), and direction-invariant features
calculated from the motion direction (DIM). Note that DIF is a spe-
cial case of DIM. So we first compare GF vs. DIF, and if DIF per-
forms better than GF, DIM will too. Then we compare DIF vs. DIM
for those motions that DIF is problematic. In the paper, we report
the performance in terms of motion quality and learning speed. We
encourage the readers to also watch the supplemental video demo to
better judge the differences visually. We use the same color scheme
for all the figures and video clips: the green character shows the
ground truth captured reference motion; the red character visual-
izes results from GF; the blue character shows motions synthesized
from DIF; and the yellow character presents motions from DIM.

5.1. Kinematic Character Animation

We chose acRNN [ZLX∗18] as the kinematic motion synthesis
method to perform the comparative study, as it is the only one
that can synthesize long-term and complex motions, to the best of
our knowledge. Trained acRNN (auto-conditioned Recurrent Neu-
ral Net) can generate long motions of style similar to those in the
training set given an input short motion clip. We use the code re-
leased by the original authors and all training settings and param-
eters remain the same, except for the input motion features which
we use three different sets: GF, DIF, and DIM. The features used in
the original paper, including the root velocity and relative positions
of internal joints wrt. the root, are represented in the global world
frame and thus used as the GF set. We further convert all features
to the DIF and DIM sets, with an addition of the root’s angular ve-
locity around the Y axis to generate the full motion trajectory by
integration. All models with different input feature sets are trained
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Figure 4: Comparison of motion synthesis models trained with
GF vs. DIF. f is the frame index. The green character on the top
row shows the ground truth motion capture data (GT). The blue
character in the middle row shows poses generated by the DIF-
trained model. The red character on the bottom row shows poses
generated by the GF-trained model.

for the same amount of time. We use the publicly available CMU
motion capture database and downsample the selected motions to
60 Hz as our training data.

5.1.1. GF vs. DIF

To compare models with GF vs. DIF, we choose the original In-
dian Dance Motion Sets used in the original paper [ZLX∗18]. This
dataset contains roughly 421 seconds of training motion, and we
trained both models for 50 hours. Figure 4 shows several snapshots
taken from synthesized motions generated by the trained models.
The model trained with rotation-invariant features DIF can gener-
ate significantly longer motions in higher qualities, in contrast to
motions generated by GF, which tend to become unrealistic after
a few seconds. The rotation-invariant feature representation greatly
reduces the complexity of the models that need to be learned.

Figure 5: Comparison of motion synthesis models trained with
DIF vs. DIM. The green character on the top row shows the ground
truth motion capture data (GT). The blue character in the middle
row shows poses generated by the DIF-trained model. The yellow
character on the bottom row shows motions generated by the DIM-
trained model.

5.1.2. DIF vs. DIM

To compare models learned with DIF vs. DIM features, we pre-
pared a dataset of about 203 seconds which consists of various
rotational behaviors such as break dance and acrobatics motions.
We trained both models for 40 hours. Figure 5 shows snapshots of
synthesized motions. The model trained with DIF fails to generate
some rotational motions, while the DIM model using the root Z axis
as the motion direction can successfully reproduce these behaviors.

We further note that when the facing direction root X axis does
not work as a valid motion direction, the next direction we try is
the lateral direction root Z axis. However, there are rotational be-
haviors that neither direction qualifies as a good motion direction.
Figure 6 shows one example with a spin dance motion. Features
derived from both the X axis and the Z axis are bad. We thus use
Algorithm 1 to automatically compute a robust motion direction
for this motion: (−sin(30◦),cos(30◦),0). As shown at the top of
Figure 6, features derived from this axis are much smoother. In the
supplementary video, we also visualize all the transformed posi-
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Figure 6: Comparison of motion features derived from DIM, DIF
(the X axis) and the Z axis for a spin dance motion. The specific
feature visualized here is the z coordinate of the relative position
from the chest to the root. phase is the current time divided by the
total length of the motion.

tional features, and those derived from the X axis and Z axis will
cause the character to rotate wildly.

5.2. Physics-based Character Animation

We chose DeepMimic [PALvdP18] as the physics-based motion
synthesis method to perform the comparative study, as it produces
the best results in terms of motion quality and motion variety. Deep-
Mimic combines a motion-imitation objective with a task objective,
and train characters using DRL to, say, walk in a desired direc-
tion. The input features are of high dimensions, and we only alter
the state that describes the configuration of the character’s body,
including relative positions of each link with respect to the root,
their rotations expressed in quaternions, and their linear and angu-
lar velocities. We refer interested readers to the original paper for
more details [PALvdP18]. We run the code released by the origi-
nal authors on a machine with an 18-core i9-7980XE CPU, and can
draw about five million samples per hour. We keep all other training
parameters the same. The training motion capture clips are either
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Figure 7: Training curves of a walk. The control policy trained
using GF cannot walk without falling while the policy trained using
DIF can walk indefinitely.
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Figure 8: Training curves of a backflip. The control policy trained
using GF cannot reproduce the backflip while the policy trained
using DIF can backflip indefinitely.

from the data downloaded together with the code, or selected from
the CMU mocap database.

5.2.1. GF vs. DIF

To compare controllers learned from GF vs. DIF, we used two
cyclic motion tasks that slowly turn in the XZ plane: a walk (∼8.8s)
and a backflip (∼10.6s). The original DeepMimic code used fea-
tures in the facing frame, i.e., the DIF scheme. We further tested
features in the global frame GF. As there is some randomness in
deep reinforcement learning, we trained each task three times with
different random seeds, and evaluated the policy every 100th iter-
ation as in DeepMimic. Figure 7 and 8 show the training curves
for the walk and backflip, respectively. Solid curves correspond to
mean returns and shaded regions correspond to minimal and maxi-
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Figure 9: Comparison of DIF and DIM features for a backflip. The
x and z coordinates of the relative position of the neck to the root
are visualized. There are two moments where the DIF features are
discontinuous while the DIM features are always smooth.

mal returns among the three trials. Using GF largely slows down the
training and results in failure in both tasks, i.e., the character loses
balance and falls to the ground. In contrast, the DIF features fa-
cilitated learning of direction-invariant locomotion controllers. We
also encourage readers to refer to our supplement video to see the
animated results. Note that there is little difference in training of a
short straight walk though, for example. In such cases the controller
does not need to be invariant to different facing directions, and both
schemes can be successful.

5.2.2. DIF vs. DIM

To compare DIF vs. DIM, we tested rotational motions such as
crawl, roll and backflip. We first plot and compare the DIF and
DIM features for a backflip in Figure 9. There are severe disconti-
nuities in the motion features in the DIF scheme. We also trained
DRL policies with DIF and DIM features. The DIM motion direc-
tion is chosen to be the root Z axis in all test cases. Learning with
DIM features results in faster training and better motion quality as
shown in Figure 10. In these tasks, the mapped root frame crossed
the singularities on the unit sphere in the DIF scheme (e.g., Fig-
ure 2), while the DIM scheme successfully avoided them. Note that
for certain cases, such as backflip, learning with DIF and DIM fea-
tures presented little difference. We conjecture that the controller is
easy to be successful at the moment of singularity crossing, due to
the inertia of motion in the midair.

6. Discussion

To conclude, we have proved that in general there is no singularity-
free scheme to achieve direction invariance in character animation.
However, a properly-chosen motion direction and its derived fea-
tures can stay far away from singularities for specific motions and
work well in practice. The traditionally-chosen facing direction has
worked so far because locomotion tasks, which have been the focus
of character animation research, generally only involve rotations
around the gravitational direction. Our robust direction invariant
features derived from motion directions will enable better results
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Figure 10: Top: training curves of a crawl. Training using DIM
features gain higher reward faster. Bottom: the policies after 2000
training iterations (∼ eight million samples) produce motions of
different quality. The policy trained from DIF features cannot crawl
in a straight line and may get stuck at certain moments.

for modelling and synthesis of more versatile behaviors such as
gymnastic and dance motions. A good motion direction can be ei-
ther selected manually, or computed automatically for complex ro-
tational behaviors that contain rotations around multiple axes.

We note that even though kinematic character controllers are
usually facing direction invariant today, most physics-based con-
trollers are not. For example in DeepMimic, the learned controller
tries to track the absolute root orientation in the reference motion.
If the reference character faces north and walks north, the simulated
character will always try to face north. Even if the simulated char-
acter is initially positioned facing south, it will still try to turn north
and walk north. This will result in either a fall or an awkward sharp
turn to the north. If this global orientation constraint could be lifted
in the DRL learning, we would expect greater performance gaps
among GF, DIF and DIM schemes. Optimization-based control
methods such as trajectory optimization also have mainly worked
on direction-specific controllers. We expect that our DIM features
will achieve performance gains over DIF as well for optimization-
based methods, as they usually need to calculate derivatives, and
DIM features are simply smoother and more well-behaved than
DIF. Lastly, we note that although transformed rotations in SO(3)
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are smooth using our DIM scheme, widely used rotation represen-
tations such as quaternions can still have discontinuities and pose
difficulty for learning. We recommend using continuous rotation
representations such as the ones recently proposed in [ZBJ∗19].

In the future, we wish to examine how to achieve direction in-
variance for end-to-end computer vision systems such as for hu-
man activity recognition. In such systems, only pixel data and/or
2D positions are available as input features, and the DNN needs to
learn direction invariance somehow. 3D direction-invariant features
will definitely accelerate this process, but it is not obvious how to
derive such features from 2D inputs without another layer of 2D to
3D pose lifting [TRA17].
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