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Abstract
We introduce a construction of subspaces of the spaces of tangential vector, n-vector, and tensor fields on surfaces. The resulting
subspaces can be used as the basis of fast approximation algorithms for design and processing problems that involve tangential
fields. Important features of our construction are that it is based on a general principle, from which constructions for different
types of tangential fields can be derived, and that it is scalable, making it possible to efficiently compute and store large subspace
bases for large meshes. Moreover, the construction is adaptive, which allows for controlling the distribution of the degrees of
freedom of the subspaces over the surface. We evaluate our construction in several experiments addressing approximation
quality, scalability, adaptivity, computation times and memory requirements. Our design choices are justified by comparing our
construction to possible alternatives. Finally, we discuss examples of how subspace methods can be used to build interactive
tools for tangential field design and processing tasks.

1. Introduction

Directional information along a surface is usually encoded as a tan-
gential vector, n-vector or tensor field. Many applications in com-
puter graphics, such as line art rendering, meshing, texturing, and
BRDF design, rely on techniques for the design and processing of
such tangential fields. A problem arises from the fact that the tri-
angular meshes describing the surface are usually of high resolu-
tion and the complexity of the tangential fields is connected to that
of the meshes. As a result, large-scale equations and optimization
problems have to be solved for field design and processing, while
the applications expect fast response times because workflows of-
ten involve user interaction. Established acceleration methods, such
as radial basis functions, which proved to be effective for problems
like interactive shape deformation, cannot be used for the process-
ing of tangential fields since the fields are defined on curved sur-
faces and the tangential bundles of the surfaces are non-trivial.

We introduce constructions of tangential vector, n-vector and
tensor fields on meshes and use them to construct subspaces for
design and processing tasks. By restricting the equations and opti-
mization problems to such a subspace, the degrees of freedom of
a design or processing problem can be adjusted detached from the
complexity of the triangle mesh representing the surface. This is
an important step towards enabling interactive techniques for the
design and processing of tangential fields on large meshes.

The idea underlying our approach is to construct tangential fields
by computing the lowest eigenfields of a suitable Laplace opera-
tor restricted to small disk-shaped subsets of the surface. Boundary
conditions on the eigenproblems are imposed to guaranty that each

of the resulting fields vanishes at the boundaries of its subset. The
construction of the individual fields is combined with a procedure
that defines the subsets in the surface so that useful bases of sub-
spaces are created. Important aspects of our construction are:

• Generality Our construction is derived from a general principle.
By choosing an appropriate Laplace operator, specific construc-
tions for the different types of tangential fields can be derived.
We explicitly describe constructions of vector, n-vector, and ten-
sor fields.
• Scalability We show that large subspaces with several thousand

dimensions on meshes with more than a million triangles can
be efficiently constructed and stored. A prerequisite for this is
the localization of the tangential fields, which facilitates the effi-
cient computation and storage of the individual fields. The cost
for field construction depends only on the size of the disk-like
subsets and storage requirements are low as the fields can be
represented by sparse vectors.
• Smoothness The construction is chosen so that the resulting

fields are smooth. The eigenproblems we solve can be written
as optimization problems, and, as minimizers, the lowest eigen-
fields are the smoothest fields that vanish outside their assigned
subsets. Here smoothness is measured by the Dirichlet energy
corresponding to the Laplace operator that is used.
• Approximation We show that the resulting subspaces can ap-

proximate smooth fields well. To evaluate this aspect, we com-
pute residuals when projecting fields into the subspace and when
solving optimization problems in the subspaces, and compare the
approximation results with results obtained using other possible
constructions of tangential fields.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



A. Nasikun, C. Brandt & K. Hildebrandt / Locally supported tangential vector, n-vector, and tensor fields

• Adaptivity We show that adaptivity can be effortlessly integrated
to the construction. This allows for controlling the distribution of
the degrees of freedom of a subspace over the surface. For exam-
ple, fields that include details in designated areas of the surface
can be better represented in the subspaces.

This is the first method for constructing tangential vector, n-
vector and tensor fields with these properties. In particular, scala-
bility and adaptivity distinguish the construction from alternative
vector field constructions. These two points are crucial for effi-
ciently generating subspaces with good approximation properties
and modeling capacity on larger meshes. To justify our design
choices for the proposed construction, we compare our construc-
tion with other existing and possible constructions in Section 7. In
addition, we evaluate the approximation quality of the subspaces in
different settings, Section 6, and show the benefits of the bases for
the applications in Section 8.

2. Related work

Tangential fields The efficient design and processing of tangen-
tial vector, n-vector and tensor fields is important for a broad
range of applications in computer graphics. Examples are tex-
ture generation [PFH00, Tur01, WL01, CYZL14, KCPS15], line
art [HZ00] and painterly rendering [ZHT07], anisotropic shad-
ing [MRMH12, RGB∗14], image stylization [YCLJ12], surface
segmentation [SBCBG11, ZZCJ14], surface construction [IBB15,
PLS∗15], meshing [RLL∗06, KNP07, BZK09, LLZ∗11, TPP∗11],
and the simulation of fluid and liquids on surfaces [AWO∗14,
AVW∗15]. Tangential field design and processing presents many
challenges, and different approaches have been proposed to address
these problems. In the following, we briefly discuss approaches that
are closely related to our work. For further background information
and references, we refer to the surveys [dGDT15, VCD∗16].

Variational approaches for the design and processing of tangen-
tial fields minimize an objective that combines a fairness measure
and functionals that penalize the deviation of the field from user
input or geometric properties of the surface like curvature direc-
tions. The fairness measures quantify the variation of the field along
the surface. For vector field design, quadratic objectives based on
the divergence and curl of the fields can be used [FSDH07]. Dis-
crete differentiable operators for tensor fields, based on Discrete
Exterior Calculus [DHLM05], are introduced in [dGLB∗14]. For
n-rotational symmetric vector fields (n-fields), the fairness mea-
sure introduced in [HZ00] measures the deviation in angle be-
tween close-by n-vectors. To disambiguate the definition of an-
gles between n-vectors, a periodic function is used in the fair-
ness measure. The concept of representation vectors correspond-
ing to n-vectors [RLL∗06, PZ07] allows to model n-vector design
using optimization of the representation vector fields. The repre-
sentation vectors can be used to define a linear structure on n-
vectors. This allows to model n-field design and processing prob-
lems using linear systems [KCPS13, LTGD16, BSEH18]. For the
design of general, not necessarily rotational symmetric, n-fields,
the polyvector representation [DVPSH14, DVPSH15, SFCBCV19]
was introduced. While typically fairness measures are modeled
as intrinsic objectives, an extrinsic objective was proposed in
[JTPSH15, HJ16]. The objective combines intrinsic fairness and

alignment to curvature, while at the same time avoiding the need
to use parallel transport on the surface for evaluation of the objec-
tive. In another line of work, explicit matchings that encode the n
pairs of corresponding vectors between neighboring n-vectors are
used [KNP07, RVLL08, BZK09]. In an optimization, the match-
ings are treated as variables which leads to mixed-integer prob-
lems that have to be solved. In addition to variational design of
vector fields, approaches that construct vector fields from user in-
put specifying the location and degree of singularities have been
proposed [ZMT06, PZ07, RVAL09, CDS10, LJX∗10]. A subdivi-
sion scheme for discrete differential forms on meshes was intro-
duced in [WYT∗06]. The scheme combines different subdivision
rules for the different k-forms such that the subdivision operations
commute with the exterior derivative. This approach was extended
to a subdivision exterior calculus [dGDMD16] that provides a way
to apply the numerical tools from Discrete Exterior Calculus to sub-
division surfaces. Among other applications, the approach can be
used for the design of vector fields on subdivision surfaces. In re-
cent work [CV20], a structure-preserving subdivision approach for
tangential direction fields was developed and used for directional
field design on subdivision surfaces.

Subspace methods Subspace methods can be used for the de-
sign of fast approximation algorithms for complex systems. In
the preprocessing stage, the subspace and additional structures
for evaluation the objective and its derivatives are constructed.
In the online stage, the precomputed structures are used to ac-
celerate computations. The low computational cost in the online
stage, makes subspace methods attractive for interactive graphics
applications. Reduced systems have been proposed for the simula-
tion of fluids [TLP06, LMH∗15, CSK18], elastic solids and shells
[BJ05, AKJ08, YLX∗15, BEH18], fluid-solid interaction [LJF16,
BSEH19], example-based elastic material [ZZM15], motion plan-
ning [BdSP09, HSvTP12, PM18], clothing [HTC∗14], and hair
[CZZ14]. In the context of mesh processing, subspace methods
have been introduced for surface modeling [HSL∗06, HSvTP11,
JBK∗12,WJBK15], shape interpolation [vTSSH15,vRESH16], in-
jective mappings [HCW19], motion processing [BvTH16], and
spectral mesh processing [NBH18]. The goal of this paper is to
explore subspace constructions for tangential vector, n-vector, and
tensor fields on surfaces and the use of subspace methods for the
design and processing of tangential fields.

Subspace methods for tangential fields For tangential vec-
tor fields, eigenfields of vector Laplace operators have been
used for defining functional operators on spaces of vector fields
[ABCCO13, AOCBC15], subspace fluid simulation on surfaces
[LMH∗15] and spectral vector field processing [BSEH17]. Eigen-
fields on an n-vector field Laplacian were used as the basis of an ap-
proach for interactive n-field design in [BSEH18]. Although eigen-
fields are useful for the construction of subspace in certain scenar-
ios, there are also fundamental limitations. We propose an alterna-
tive construction of subspaces that addresses these limitations. In
particular, we aim at reducing the memory requirements for storing
the bases and the computational cost for constructing the bases. In
Section 7, we compare the proposed subspaces to eigenspaces.
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3. Laplace operators

In this section, we briefly describe the discrete Laplace operators
for tangential vector, n-vector, and tensor fields that are needed for
the proposed construction of localized fields. To our knowledge,
the tensor field Laplacian we describe is novel.

Discrete Fields There are various possibilities for discretizing
fields on meshes. Degrees of freedom of the fields can be asso-
ciated with the meshes’ vertices, edges, faces or combinations of
these. We refer to the survey [dGDT15] for a detailed discussion
of the benefits and drawbacks of different discretizations. Our ba-
sis construction can be used with any discretization as long as a
Laplace operator on the space is available. For the evaluation of our
construction, we consider vector, n-vector, and tensor fields that are
constant and tangential in every face. We denote by k the dimension
of the space of fields we consider. For tangential vector fields, for
example, k equals twice the number of triangles of the mesh.

Laplacian for vector fields A discrete Hodge–Laplace operator ∆

for piecewise constant vector fields is discussed in [BSEH17]. The
operator combines discrete divergence and curl operators with the
gradient and a 90-degree rotation in the tangent plane, which we
denote by J,

∆ =−grad div− J grad curl∗. (1)

The divergence and curl operators map piecewise constant fields
to piecewise linear polynomials and the gradient maps piecewise
linear polynomials to piecewise constant vector fields. Matrix rep-
resentation of all involved operators are described in [BSEH17]

For the piecewise constant fields on a mesh, a Hodge decompo-
sitions can be defined [PP00,War06]. This is an orthogonal decom-
position of the space of piecewise constant fields in gradients and
co-gradients (J grad) and harmonic fields. For the decompositions,
two function spaces are needed: the space of continuous, piece-
wise linear polynomials (linear Lagrange finite elements) and the
space of edge-midpoint continuous, piecewise linear polynomials
(linear Crouzeix–Raviart elements). The Hodge–Laplacian can be
constructed such that it respects the decomposition, which means
that it maps gradient fields to gradient fields, co-gradient fields to
co-gradient fields, and has exactly the harmonic fields in its ker-
nel. To achieve this, one of the div and curl operators has to map
to the space of continuous, piecewise linear polynomials and the
other one to the edge-midpoint continuous, piecewise linear poly-
nomials. In equation (1), we indicate that the curl operator maps
to the space of edge-midpoint continuous functions by adding an
asterisk.

Laplacians for n-fields Laplace operators for n-fields were pro-
posed for a vertex-based representation in [KCPS13] and for face-
based representation in [DVPSH14, BSEH18]. For our experi-
ments, we use the face-based Laplacian. It computes differences
of the n-vectors of each triangle to the n-vectors of the neighbor-
ing triangles. For this, the n-vectors of the neighbor triangles are
parallelly transported to the corresponding triangle. In order to be
able to form differences between n-vectors, a linear structure for
n-vectors is required. This can be obtained using the concept of the
representation vector of an n-field [RLL∗06, PZ07]. The n-vectors

are first converted to the corresponding representation vectors, then
the difference is computed and the result is converted back to an n-
vectors. For the choice of weights for the differences and a matrix
representation of the Laplace operator, we refer to [BSEH18].

Laplacians for tensor fields We introduce a discrete Laplace op-
erator for piecewise constant tensor fields on surface meshes. In this
paragraph, we provide an overview of the construction and discuss
details in the appendix. The operator is a weighted finite difference
operator on the triangles of the mesh. To compute a difference be-
tween the tensor Ai of triangle Ti and the tensor A j of a neighbor
triangle Tj, we transport A j parallelly to triangle Ti. The transport
of a tensor to its neighboring triangle varies for the different ten-
sor types depending on how the tensor transforms from one basis
to another. We illustrate this at the example of (1,1)-tensors in the
appendix. To describe the construction of the Laplace operator, we
denote the transport of the tensor A j to the triangle Ti by τ ji. The
Laplacian of a tensor field A is again a tensor field. In the triangle
Ti the tensor field ∆A is given by

(∆A)i =
1
mi

∑
j∈Ni

wi j(Ai− τ ji(A j)), (2)

where Ni is the list of the three neighbors of triangle Ti and

wi j =
3(length(ei j))

2

area(Ti∪Tj)
and mi = area(Ti)

are weights depending on the geometry of the triangles Ti and Tj. In
the appendix, we show how Voigt’s notation can be used to derive
a linear representation of the tensors and the transport operator τi j.
This can be used to construct the stiffness and mass matrices for
this Laplacian.

4. Spaces of locally supported fields

In this Section, we describe our construction of subspaces of the
spaces of tangential vector, n-vector and tensor fields. Our con-
struction is based on a general principle that can be applied to the
different types of tangential fields. We first introduce the construc-
tion of individual fields, then we describe how the field construction
can be used to assemble bases of subspaces.

Field construction The input to the field construction are a
Laplace operator, given by a stiffness matrix S and a diagonal mass
matrix M, and a subset D of the set of triangles of the mesh that
serves as the support of the field. Depending on whether the Lapla-
cian operates on vector, n-vector or tensor fields, corresponding
fields are constructed. Our approach is to compute the m lowest
eigenfields of the Laplace operator subject to the constraint that the
field is zero for all triangles that are not in the subset D. These fields
can be characterized as the minimizers of the optimization problem

min
Φ∈Rk×m

tr
(

Φ
T SΦ

)
(3)

subject to Φ
T MΦ = Id and

Φi j = 0 if i belongs to a triangle not in D.

Each column of the minimizer Φ describes a localized field. The
first constraint ensures that the fields are M-orthonormal and the
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Figure 1: Examples of localized tangential vector fields computed
with our approach are shown. On the left, the locations of the sup-
port areas of the fields, and, on the right, four fields are shown.

second constraint ensures that the fields vanish outside of the spec-
ified region.

Since the second constraint is linear, we can specify a basis for
the space of vector fields that satisfy the constraints. We construct
a matrix V ∈ Rk×kD whose columns form a basis of the space of
admissible fields, where kD is the dimension of the space of admis-
sible fields. This matrix has one non-zero entry per column and the
entries are located at the degrees of freedom of the vector associ-
ated with the selected triangles. Each entry takes the value 1/

√
Mii,

where Mii is the diagonal entry of the mass matrix M and i is the
row index of the entry. The matrix V allows us to parametrize the
space of admissible fields, i.e. for any admissible field X ∈Rk there
is a corresponding x ∈ RkD such that

X =V x. (4)

We consider the restricted stiffness and mass matrices

S̄ =V T SV and M̄ =V T MV . (5)

By our construction of V , the restricted mass matrix M̄ is the kD×
kD identity matrix.

Using (4) and (5), we can rephrase the optimization problem (3)

min
φ∈RkD×m

tr
(

φ
T S̄φ

)
(6)

subject to φ
T

φ = Id.

Benefits of this formulation are that we reduced the problem’s di-
mension to kD m, simplified the second constraint, and eliminated
the third constraint.

The problem (6) is a sparse eigenvalue problem and the solutions
are pairs (λi,φi) satisfying the equation

S̄φi = λiφi. (7)

The solutions φi ∈ RkD are mapped to the corresponding vectors
Φi ∈ Rk by multiplying them with the matrix V . Examples of local
vector and tensor fields are shown in Figures 1 and 2.

Subspace construction To construct subspace bases using the
field construction, we need to define the support regions for the

Figure 2: Examples of localized tensor fields computed with our
construction are shown. For each tensor, the shown sticks point in
the two eigendirections and the lengths of the sticks are propor-
tional to the absolute values of eigenvalues of the tensor.

individual basis fields. Our approach is to cover the surface with
disk-shaped regions. In this paragraph, we discuss a uniform distri-
bution of the regions and extend the approach to adaptive distribu-
tions of the regions in the last paragraph of this section.

Each region is an approximate geodesic disk. All disks have the
same radius r and the value of r is chosen such that the disks have
sufficient overlap. We will discuss the choice of r we used for our
experiments in Section 6. To place the disks on the surface, we
sample triangles of the mesh that serve as the centers of the disks.
To distribute the sampling uniformly, we use a furthest point sam-
pling scheme. The distance is measured by a weighted Dijkstra al-
gorithm that operates on the mesh’s dual graph. The nodes of this
graph are the mesh’s triangles and there are edges between nodes if
the faces are neighbors. The weights for the edges are the geodesic
distances of the barycenters of the triangles. Examples of resulting
samplings are shown in Figure 3. After placing the samples, we de-
fine the regions associated with the samples using a region growing
algorithm. The algorithm is using the Dijkstra distance and grows
the regions until the distance r is reached.

To ensure the geodesic disks cover the whole surface, we can use
the distance ρ of the last sample placed by the furthest point sam-
pling. If r is larger than ρ, then the disks cover the whole surface.
In practice, we choose r much larger than ρ as we want the disks to
have sufficient overlap.

Once the regions are defined, we compute m eigenfields for each
region by solving the sparse eigenvalue problem (7). The choice

Figure 3: Examples of farthest point samplings (1k-5k samples)
constructed on various mesh models (50k-2m faces).
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of m depends on the type of field. For example, for vector fields
and n-fields, we set m = 2, and, for (1,1)-tensors, we set m = 3.
This choice is based on the multiplicity the lowest eigenvalue of
the corresponding Laplace operator and our experimental results as
discussed in Section 6. The size kD of the sparse matrix occurring
in the eigenvalue problem depends on the number of triangles be-
longing to the region. The resulting kD-dimensional eigenvectors φi
describe the fields in the regions. We lift the φis to vector fields Φi
defined on the whole surface using (4) and stack the lifted fields Φi
as the columns of a k× d matrix U . Here d denotes the total num-
ber of fields that are constructed, which is m times the number of
regions. Since each Φi vanishes outside of its support region, the
matrix U is sparse.

Scalability Our subspace construction is designed to be scalable,
meaning that we want to be able to efficiently construct and store
large subspaces on large meshes. Our motivation to aim for a scal-
able construction is that we want to be able to obtain subspaces
that, on the one hand, include enough degrees of freedom to sup-
port general purpose design and processing tasks, and, on the other
hand, allow to control the size of the optimization problem inde-
pendently of the resolution of the meshes that are used.

One important feature that makes the method scalable is the lo-
calized support of the basis fields. For storing the basis, this means
that the vector representing the basis fields are sparse vectors. The
size of the support of the fields needs to be large enough such that
there is sufficient overlap of each basis field with some other fields.
On the other hand, a too large support is less efficient in terms of
storage requirements. This means that if we construct two spaces
with different dimension on the same surface, then the individual
basis fields of the larger space will have a smaller support. Since
the basis fields are stored as sparse vectors, this implies that the
higher dimensional space requires more basis fields to be stored
while each basis fields requires less storage. In our experiments,
we found that the storage requirements for storing spaces of dif-
ferent dimension on the same mesh are approximately the same.
This enables us to work with large subspaces with 500 to 5000 or
even more dimensions. In addition, the method allows us to con-
struct spaces on larger meshes, as the computation of the individ-
ual fields only requires solving an eigenvalue problem for a small
region of the surface (the support of the field). These properties
are advantages of our construction over eigenbases of Laplace op-
erators, which have higher storage requirements, as a large dense
matrix must be stored, and require higher computational costs for
solving the large scale eigenvalue problems.

Adaptive subspaces Adaptivity can be integrated to the basis con-
struction in a way that is simple to implement. The sampling
method and the size of the regions depend on the weighted Di-
jkstra distance on the dual graph. For the uniform construction,
the edge weights are chosen according to the geodesic distances
of the barycenters of the triangles. To make the method adaptive,
we change the edge weights in the dual graph. Changing the edge
weights in some part of the surface affects the sampling and the
sizes of the support regions of the basis fields. For example, when
the weights are increased in some part of the surface, the sampling
in the part of the surface becomes denser and the support regions of

the basis fields decrease. The resulting subspace has more degrees
of freedom in the part of the surface where the weight is increased,
and, therefore, can better represent fields that have high frequency
features and details in these areas. If the weights are reduced, fewer
and larger regions are constructed in the corresponding part of the
surface. For the subspaces, this means that fields with little detail
in the corresponding part of the surface are represented more effi-
ciently. The adaptive construction is simple to implement as after
rescaling of the edge weights of the dual graph, the same algorithm
as in the uniform case is executed. Scaling factors for the edges can
be obtained for example from user input or an analysis of example
fields.

5. Subspace methods

The main goal of our construction is to enable subspace methods
for vector, n-vector and tensor field design and processing. In this
section, we will discuss a model problem that we will later use as
part of the evaluation of our subspace construction.

We consider the following least-squares problem

min
X∈Rn

(
µSXT SX +µBXT BX +µC ‖CX− c‖2

)
, (8)

where C is a matrix that defines weak constraints, c specifies the
values of the constraints, the µs are a positive weights, M is the mass
matrix, S is the stiffness matrix of the Laplacian and B = SM−1S.
The first two summands are the harmonic and biharmonic ener-
gies of X , which act as regularizers. This type of problem arises
in field design tasks, for example, when fields are modeled with a
stroke-based user interface. The resulting fields should align with
the strokes but not follow them exactly. Other examples of appli-
cations that can be formulated as in (8) are smoothing of an in-
put fields and extrapolating fields that is given only on parts of the
surface to fields defined on the whole surface. For the smoothing
application, C is the identity matrix and c the input field. For the
stroke-based design and the extension of the field, C is a selector
matrix that selects the vectors (n-vectors, tensors) of the parts of
the surface where the input field is defined and c specifies the vec-
tors of the field in these regions. The minimizer of (13) satisfies

(µSS+µBB+µC CTC)X = µC CT c. (9)

The reduced minimization problem, which restrict the optimization
to the subspace, is

min
x∈Rd

(
µS xTUT SUx+µB xTUT BUx+µC ‖CUx− c‖2

)
. (10)

The solution can be computed by solving the system

UT (µSS+µBB+µC CTC)Ux = µC UTCT c. (11)

The advantage of the reduced problem is that (11) is a sparse low-
dimensional system. In particular, the system is independent of the
resolution of the mesh and only depends on the dimension of the
subspace. The scalability of our basis construction allows for work-
ing with spaces of several thousand dimensions, which provide a
rich space for design and processing problems. At the same time,
solving the reduced problems only takes few milliseconds which
enables interaction and interactive steering of parameters. For ex-
ample, a user can change the parameters µS, µB, and µC and receive
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immediate feedback. In contrast, without reduction, any parame-
ter adjustment requires solving a large-scale sparse linear system,
which is prohibitive for interactive applications.

The reduction of the model problem (8) can be extended to
include more features. For example, hard constraints can be ef-
ficiently included using a Schur complement approach. We refer
to [BSEH17, BSEH18] for details. The subspaces can also be used
to reduce the complexity of general non-linear problems. Reducing
the problem’s dimension lowers the computational cost of mini-
mization steps and accelerates the convergence of solvers. How-
ever, a difference to the model problem is that the evaluations of
a non-linear objective and its gradient and Hessian still depend on
the complexity of the mesh. Methods for fast approximation of a
non-linear objective and its derivatives have been proposed, for ex-
ample, in the context of real-time simulation [AKJ08, vTSSH13,
YLX∗15, BEH18]. In this paper, we use the model problem (8) for
evaluating the quality of the proposed subspace basis and leave the
adaption of fast approximation schemes for non-linear objectives
as future work.

6. Experiments

In this section, we discuss our experimental evaluation of our
subspace construction focusing on scalability, approximation and
adaptivity. We tested our approach on different meshes including
some with low mesh quality exhibiting a large number of triangles
with acute angles. Figure 4 shows examples of meshes we used.

Implementation We implemented our subspace constructions us-
ing the Eigen [GJ∗10] and LibIGL [JP∗16] libraries. The basis
fields of the subspaces are constructed in parallel. To solve the local
eigenproblems, we use the SpectrA library [Qiu15] with Cholmod’s
supernodal sparse Cholesky decomposition [CDHR08] being ap-
plied to solve the linear systems. CUDA’s GPU-based cuSparse is
employed to lift the fields from the reduced space to the full space,
which requires matrix-vector multiplication with the sparse matrix
U that stores the subspace basis. To solve the linear systems in the
design and processing applications, we use Pardiso’s symmetric in-
definite factorization [KFS18].

Scalability In our experiments, we evaluated the memory require-
ments for storing the subspace basis and the computation times re-
quired for the construction of the basis for large subspaces and also
for larger meshes. When reporting results, we state the subspace
dimension we worked with. Since we compute a constant number

Figure 4: We tested our approach on irregular meshes having many
acute angles.

of basis fields per region, 2 for vector fields and n-fields and 3 for
(1,1)-tensor fields, the number of regions is half of the subspace
dimension for vector and n-fields and a third for the tensor fields.

In the first experiment, we constructed subspaces of different di-
mension d ranging from 500 to 20k on a mesh with 1m triangles
and report the number of non-zero entries of the subspace bases
as well as computational times required for basis construction. The
data is summarized in Table 1. For each subspace dimension, we
need to choose a proper value r for the radii of the geodesics disks.
It is important to choose r large enough such that the individual
vector fields can interact with their neighbors and information can
spread. On the other hand, a too large value of r makes the basis
less efficient as more storage is required. Explicitly, we set

r =

√
σA
dπ

, (12)

where A is the area of the surface, d the dimension of the subspace
and σ a parameter, which we set to 40 for this experiment. The mo-
tivation for using this formula is that we want to find the radius r
such that the combined area of all disks is σ times the area of the
surface. To arrive at a simple formula, we replaced the average area
of the geodesic disks by r2

π, which is the the area of the Euclidean
disk of radius r. In this experiment, setting σ = 40 results in matri-
ces U whose average number of non-zero entries per row is about
40. This means that in average every triangle is in the support of 40
basis fields.

The total time required for basis construction is listed in the fifth
column of the table. The higher the dimension of the subspace, the
more eigenvalue problems need to be solved. On the other hand,
each of the eigenvalue problems is smaller as the support of the
fields decreases. The total time for constructing the bases for the
different subspaces on a regular desktop computer is between 3.5
and 7 minutes. The dimensions are between 500 and 20k and the
underlying mesh has 1m triangles.

In the second experiment, we constructed 1k, 2k, and 10k-
dimensional subspaces on meshes with a number of triangles in
the range of 274k to 2.21m and measured the time needed for ba-
sis construction. Experimental results are summarized in Table 2.
As in the first experiment, we observe that the computation time

Basis construction (in seconds) Sparsity
Subs.
dim.

Samp-
ling

Construct
patches

Solve
eigenp.

Total #nnz U #nnz S̄

500 1.6 82.9 168.8 253.4 80.4m 78.3k
1k 1.9 84.0 125.9 211.8 80.4m 163.0k
2k 2.4 80.5 126.2 209.1 80.4m 333.0k
5k 3.5 77.2 152.1 232.8 80.4m 854.5k

10k 5.3 80.1 182.6 267.9 80.5m 1.7m
20k 8.4 103.1 283.7 395.3 80.5m 3.5m

Table 1: Scalability analysis of our basis construction. Computa-
tion times and numbers of non-zero entries (#nnz) of the matrices
storing the basis (U) and the restricted stiffness matrices (S̄) for
subspaces of different dimension on the Bimba model with 1m tri-
angles are shown.
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Figure 5: Visual comparison of a reference vector fields (blue) and
its projection to a 2k-dimensional subspace (red). The relative L2

approximation error is 1.93×10−2.

required for the construction of subspaces of different dimension
on the same mesh changes only slightly. When comparing the con-
struction time for the different meshes, we observe an increase in
computation time that is approximately linear in the number of tri-
angles.

Approximation In addition to the scalability of the basis construc-
tion, the approximation quality of the resulting subspace is impor-
tant. In the first series of experiments, we evaluate the approxima-
tion quality by projecting a set of tangential vector fields to the
subspace and computing the relative L2-norm of the difference be-
tween the input field and projected field. For different meshes, we
created sets of 50 test fields by placing 10-50 interpolation con-

Mesh #Faces Dim.
Basis Construction (in seconds)

Sampl. Patches Eig.solv. Total

Kitten 274k
1k 0.54 18.32 38.70 57.56
2k 0.67 18.88 34.83 54.37

10k 1.43 22.45 45.53 69.41

Fertility 483k
1k 1.10 35.63 64.42 101.16
2k 1.33 32.52 64.97 98.82

10k 2.70 41.67 77.95 122.33

Bimba 1m
1k 1.94 83.98 125.90 211.83
2k 2.41 80.48 126.20 209.09

10k 5.25 80.06 182.56 267.87

Ramses 1.65m
1k 4.50 178.81 261.89 445.20
2k 5.20 168.17 222.36 395.73

10k 10.70 159.61 347.29 517.61

Isidore
2.21m

1k 5.02 213.02 366.57 584.60
2k 6.10 203.36 286.89 496.35

horse 10k 13.25 199.49 457.64 670.38

Table 2: Timings for the constructions of subspaces of different
dimension on various meshes are shown. Computation times for
farthest point sampling (Sampl.), construction of the local patches
and corresponding matrices (Patches), solving the eigenproblems
(Eig. solv.), and the total time for all three steps (Total) are shown.

Mesh Method Ours Bihar-
monic

Variant
of ours

Patched
Eigenf.

Grad-
ients

Arma-
dillo

L2-proj. 0.02 0.05 0.06 0.14 0.16
Minim. 0.04 0.21 0.11 0.25 0.48

Chinese
Lion

L2-proj. 0.02 0.07 0.06 0.10 0.19
Minim. 0.03 0.18 0.09 0.18 0.46

Fertility
L2-proj. 0.02 0.03 0.04 0.71 0.59
Minim. 0.02 0.09 0.10 0.71 0.65

Table 3: Approximation errors of L2-projection of vector fields to a
2k-dimensional subspaces and solutions of the optimization prob-
lem (8) for subspaces resulting from the proposed subspace con-
struction and four possible alternative constructions.

straints at random locations on the surfaces and using the vector
field construction method from [BSEH17] to generate fields inter-
polating the constraints. For an input field X on the surface, the
projection x to the subspace with basis U is defined as the mini-
mizer of the quadratic objective

‖X−Ux‖2
M . (13)

The relative L2-error is ‖X−Ux‖M /‖X‖M . Table 3 shows the re-
sulting average errors for 50 test fields on three different meshes.
For all three models, the relative L2 error using a 2k-dimensional
subspace is 2 percent. Figure 5 shows an overlay of a test field and
its projection on the Armadillo mesh. In addition to evaluating the
projection error, we also compare the solutions of the optimiza-
tion problem (8) and solution of the corresponding reduced prob-
lem (10). The relative error of the optimization problem is between
2 and 4 percent as listed in Table 3 (rows labeled ‘Minim.’). Based
on the comparisons to alternatives and variations of our construc-
tion, which are discussed in Section 7, we consider this a very good
approximation quality.

In the second experiment, we measured how the relative L2 ap-
proximation error changes with increasing size of the subspace.
The test fields were generated in the same way as in the previ-
ous experiment. We constructed 500-20k dimensional subspaces on
the Fertility mesh (483k triangles). To set the radii of the geodesic
disk, we use equation (12) and set σ = 80 for all spaces. Results
are shown in Figure 8. The results illustrate that the approximation
error can be reduced when subspaces of higher dimension are used.

Figure 6: Approximations of harmonic fields in subspaces on mod-
els with non-trivial genus (Kitten=1 and Fertility=4).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



A. Nasikun, C. Brandt & K. Hildebrandt / Locally supported tangential vector, n-vector, and tensor fields

Figure 7: Example showing the placement of singularities in the
subspace.

The approximation error will vanish once the subspace dimension
equals the dimension of the full space. As increasing the dimension
of the subspace causes higher computational cost for constructing
the subspace and solving the reduced problems, in practice one
needs to find a compromise between expressiveness of the space
on the one hand and computational costs on the other hand.

In the third experiment, we tested whether the subspaces of vec-
tor fields we construct include approximations of the harmonic
fields. On smooth surfaces the harmonic fields are the eigenfields
of the Hodge–Laplace operator with vanishing eigenvalue. A sur-
face of genus g has 2g linearly independent harmonic fields. The
discrete Hodge–Laplacian (1) is designed such that it preserves
this structure and has a 2g-dimensional kernel of discrete harmonic
fields. We wanted to test whether our subspaces contain approx-
imations of these fields. In our experiments, we obtained 2g ap-
proximate harmonic fields with very small, though not vanishing,
eigenvalues. Examples of these fields are shown in Figure 6. Ad-
ditionally, Figure 19 shows plots of the approximate eigenvalues
for some meshes, two genus zero meshes and the genus one Kitten
model. In the lower left corner, the first eigenvalues are shown. For
the Kitten model, the first two values are are the eigenvalues of the
approximate harmonic fields.

In the fourth experiment, we evaluated the capabilities of the
subspaces to support the placement of singularities. In Figure 7,
we show an example of a vector field in a 200-dimensional sub-

Figure 8: The relative L2 approximation error for subspaces of
different dimension is shown.

Figure 9: Results of an experiment with our adaptive subspace con-
struction. The figure shows (on top left) the Bimba mesh with 1m
triangles and a selected region on the surface, (a) a vector field
on the surface, (b) the sampling used for the adaptive subspace
construction, (c) an overlay of the vector field in blue and its L2-
projection to an adaptive subspace in green, and (d) an overlay of
the vector field in blue and its L2-projection to a uniform subspace
in red.

space on which singularities at certain locations on the surface are
enforced using the approach discussed in [BSEH18].

Adaptivity To explore the benefits of adaptive subspaces, we con-
ducted an experiment in which a vector field, which has many fea-
tures concentrated in some area of a surface and almost vanishes
away from that region, is projected to a uniform and an adaptive
subspace. The adaptive subspace is constructed by rescaling the
weights of the dual graph in a region of the surface, which we de-
fined by hand. Results of the experiment are shown in Figure 9. The
figure illustrates the benefits of adaptive subspaces for the approxi-
mation of the fields. As a quantitative evaluation, we computed the
relative L2 approximation errors. The adaptive subspace yields a
relative L2 error of 9.2×10−2, which compares to 35.2×10−2 for
the uniform subspace.

7. Comparisons

During the development of the proposed subspace construction, we
implemented and tested various possible alternatives. In this sec-
tion, we provide some comparisons of the proposed and possible
alternative constructions. In addition, we compare our subspace
construction with Laplace eigenfields.

Alternative constructions We report approximation results for
four alternative constructions in Table 3. The first alternative is to
use not only the lowest two eigenfields for every geodesic disk, but
more. The column “Variant of ours” shows results for the case that
the lowest 10 eigenfields are used for each geodesic disk. In order
to get a fair comparison, fewer disks are used in total such that the
dimensions of the subspaces are the same. The second alternative is
to solve two biharmonic problems on each geodesic disk instead of
the eigenproblems. For the biharmonic problems, we set interpola-
tion constraints: we specify a unit vector in the center triangle of the
geodesic disk and enforce that the field vanishes for all triangles not
in the geodesic disk. The latter constraint implements zero Dirich-
let and Neumann boundary conditions for the biharmonic problem.

c© 2020 The Author(s)
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Two fields are generated by specifying orthogonal vectors in the
center triangle. For details on how to solve biharmonic problems
with interpolation constraints for tangential vector fields, we refer
to [BSEH17]. The results for this construction are listed in the col-
umn labeled “Biharmonic”. The third construction makes use of
radial basic functions on surfaces as described in [NBH18]. The
radial basis functions are defined on the surface and are localized.
To obtain vector fields from the radial basis functions, we compute
the gradients and their co-gradients. This construction is labeled
“Gradients” in the table. The fourth alternative also uses the radial
basis functions. The idea is to compute two eigenfields of the whole
surface and to use the radial basis functions to scale the vectors of
the fields. This results in localized fields, which we use as sub-
space bases. The approximation results for these bases are listed in
the column labeled “Patched Eigenf.” in the table. The experiments
we performed are the same tests as discussed in the paragraph Ap-
proximation of Section 6. 2k-dimensional subspaces were used for
all tests. In our experiments, the proposed basis construction out-
performed the alternative construction by a large margin as also
documented in Table 3.

In the second experiment, we computed approximations of the
lowest eigenvalues of the Laplace operator in subspaces con-
structed with the different schemes. For quantitative evaluations,
we compare the results to the eigenvalues computed in the full
space. Results are shown in Figure 11. Our construction very
closely matches the true eigenvalues and outperforms all other con-
structions. Examples of basis fields resulting from the different con-
structions are shown in Figure 10. Though at first sight the fields
obtained solving a biharmonic problem look similar to the field re-
sulting from the proposed construction. A closer look reveals differ-
ences in the scaling of the vectors, which turns out to be important
for the performance of the resulting subspaces.

Figure 10: Examples of basis fields resulting from the alternative
constructions we compare to in Table 3. For the construction that
involves 10 eigenfunctions per geodesic disk (“Variant of ours”),
the 3rd, 4th, 9th and 10th eigenfields on a geodesic disk are shown.

Figure 11: Approximation of eigenvalues using various alterna-
tives of locally supported basis functions.

Mesh coarsening In addition to the four alternatives discussed
above, we can also use mesh coarsening for constructing sub-
spaces. We compared the performance of the proposed construc-
tion to a mesh coarsening scheme that we developed. As for the
approximation experiments in Section 6, we evaluated the rela-
tive approximation error for L2 projection and the residual for the
minimization problem (8). Results are shown in Table 4. In all
our experiments, the results of the proposed method are signifi-
cantly better than those of the coarsening approach. Figure 12 il-
lustrates the coarsening-based subspace construction and includes
a visual comparison of results obtained with our construction and
the coarsening-based construction. The coarsening-based approach
starts with coarsening of the mesh. To map a vector field on the
coarse mesh to the fine mesh, we find for every triangle on the fine
mesh the closest triangle of the coarse mesh and project the vector
of the coarse mesh to the plane containing the fine triangle. The

Figure 12: Comparison to a subspace construction based on mesh
coarsening. The coarsening approach is illustrated in images (a)-
(d). For comparison, a smooth tangential field (e) is projected onto
the coarsening-based subspace (f), and onto the subspace proposed
in this paper (g).
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Model Basis L2 Proj. Mimimization

Kitten
Ours 1.77×10−2 2.75×10−2

Coarsening 14.8×10−2 48.5×10−2

CDragon
Ours 6.67×10−2 3.12×10−2

Coarsening 25.6×10−2 70.0×10−2

Fertility
Ours 1.76×10−2 2.27×10−2

Coarsening 20.0×10−2 51.2×10−2

Table 4: The comparison of the proposed subspace construction
and a possible alternative construction based on mesh coarsening.

images of the canonical basis fields on the coarse mesh provide us
with a subspace on the fine mesh.

Laplace eigenbasis To our knowledge, the only alternative con-
struction of subspace of spaces of tangential vector and n-vector
fields on surfaces are the eigenfields of vector field Laplacians and
n-field Laplacians. In our experiments, we compared the eigen-
bases against our construction. The approximation quality of the
eigenbases also serves as a baseline as using eigenmodes is a com-
mon subspace construction method in other contexts. While low-
dimensional subspaces constructed from eigenfields can approx-
imate smooth fields well, the eigenfields are globally supported.
This means storing an eigenbasis is expensive as a large dense ma-
trix must be stored. As a result, the eigenbasis cannot compete with
the proposed construction in terms of scalability. In addition to stor-
age requirements, the computation of the eigenfield is more costly
than the local eigenproblems we need to solve for our construc-
tion. Table 5 shows results of our experiments that compare L2 ap-
proximation error and residuals of the minimization problem (8)
as well as the number of non-zero entries of the matrix storing the
basis. For our construction the radius of the geodesic balls is set
using formula (12) with σ = 40. The results show that an eigenba-
sis with just 40 eigenfields has similar storage requirement as our
basis spanning a 2000-dimensional subspace. Concerning the ap-

Model #Faces Basis Dim. #NNZ L2 proj.
error

Minimi-
zation

Kitten 274k
Eigenf.

40 2.19 ·107 0.42 0.40
250 1.37 ·108 0.06 0.06
667 3.66 ·108 0.02 0.02

Ours 2000 2.19 ·107 0.02 0.03

Fertility 483k
Eigenf.

40 3.87 ·107 0.37 0.36
250 2.42 ·108 0.21 0.21
667 6.45 ·108 Mem. bound

Ours 2000 3.87 ·107 0.02 0.02

Bimba 1m
Eigenf.

40 8.04 ·107 0.33 0.33
250 5.03 ·109 Mem. bound
667 1.34 ·109 Mem. bound

Ours 2000 8.04 ·107 0.02 0.03

Table 5: Comparison to eigenfields. Given the same storage, our
locally supported bases outperform the eigenbases. Our method
can achieve similar performance while requiring less storage.

Figure 13: Comparison of smooth, curvature-aligned 4-fields com-
puted on different meshes that approximate the same surface us-
ing the proposed techniques (top row) and the approach proposed
in [JTPSH15].

proximation quality, however, a 2000d subspace resulting from our
construction is much better than a 40d space spanned by the lowest
eigenfields. To achieve a comparable approximation quality, more
than 600 eigenfields are necessary. The storage requirements for
such an eigenbasis is more than an order of magnitude higher than
for 2000 basis fields computed with our construction.

Comparison to Instant Field Aligned Meshes In this paragraph,
we discuss how our approach compares to the approach for real-
time n-fields design that was introduced in [JTPSH15]. They use
an extrinsic energy, which combines fairness of the field and align-
ment to the surface curvature directions, to guide their n-field
construction. In a precomputation, a multilevel hierarchy is con-
structed. Then, for field design, minimization steps with respect to
the extrinsic energy are performed on the different levels of the hi-
erarchy from coarse to fine. When used as an interactive design
tool, the number of minimization steps per level are fixed in order
to get fast responses. Due to the strict time constraint, the num-
ber of steps is typically not sufficient for the solver to converge
to a minimum. We show a comparison of results in Figure 13. In
the shown example, we compute smooth curvature aligned 4-fields
on different meshes that approximate the same rockerarm surface.
One can see that our approach produces more consistent fields for
the different meshes compared to the approach from [JTPSH15].
We refer the reader to [BSEH18] for additional evaluation of the
Instant Field Aligned Meshes approach.

8. Applications

In this section, we discuss some applications of the proposed sub-
space construction.

Vector fields design The tangential vector field design approach
proposed in [FSDH07] computes fields that are on the one hand
smooth and on the other hand align with input data such as strokes
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drawn by a user and an input field. This is modeled as a mini-
mization problem similar to problem (8). Computing the minimizer
requires solving a sparse linear system, whose size depends on
the number of triangles of the surface. For fast solving, a sparse
Cholesky factorization of the system is computed once and used
for solving the systems. Cholesky updates are applied to update
the system’s matrix when the user changes the constraints. Though
backsubstitution and the Cholesky updates are fast, they still scale
with size of the mesh. As a result this approach enables interactive
design only for a limited mesh resolution. Moreover, the interac-
tion is limited to those operations that can be treated with Cholesky
updates of the system’s matrix. In contrast to this, the reduced sys-
tem (10) is independent of the mesh’s resolution. The proposed
subspace construction allows the construction of subspaces that
are large and therefore provide a rich modeling spaces to design-
ers while keeping the computational cost for solving the reduced
systems low. Figure 15 shows results of a modeling session using
our approach, on the Antique Head model of 1.3m faces with a 2k-
dimensional subspace. Our subspace methods provides interactive
feedback. Timings are: 45ms for computing a factorization of the
reduced system, which includes the harmonic and biharmonic en-
ergies, 1.4ms for solving a system using the factorization and 23ms
for mapping the reduced coordinates to a vector field on the sur-
face. For comparison, we list corresponding timings for the unre-
duced system: 43s for computing the sparse factorization and 2.2s
for solving a system using the factorization.

Fur design An application of the vector field design is fur edit-
ing. We used our subspaces in the fur editing approach proposed
in [BSEH17]. Results for a modeling session that involves a Wolf
mesh with 1m triangles and a 2000-dimensional subspace are
shown in Figure 14. The tools allows to specify hard constraints
and a Schur complement approach is used for solving the result-
ing reduced linear systems. The system requires less than 40ms for
computing a solution when the interpolation constraints are modi-
fied.

n-field design The n-field design approach proposed in [BSEH18]
computes fields that minimize a biharmonic energy subject to in-
terpolation constraints imposed by a user. Additionally, a penalty
for deviation from an input field can be included to the optimiza-

Figure 14: Interactive vector field editing on the Wolf mesh (left,
1m triangles, 2k dimensional subspace) and the resulting fur ren-
dering (right).

Figure 15: Interactive stroke-based vector field design on the An-
tique Head model (1.3m triangles, 2k subspace).

tion. The approach requires solving a linear system and a reduc-
tion of the problem using eigenfields of the biharmonic energy is
discussed in the paper. Since our subspace construction is more ef-
ficient for larger meshes and larger subspaces than the eigenbasis,
see Section 7, our construction can be used to improve the scala-
bility of the n-field design approach. Figure 16 shows results for
n-fields design using our subspaces. In our experiments, the design
tool achieved 30 fps when working with a 2k-dimensional subspace
on a model with 1m triangles.

Hatching n-field design can be used to control the stroke direc-
tions of line art renderings. We used our subspaces in combina-
tion with the approach for controlling hatchings of surfaces from
[BEH18]. The approach uses 2-fields to control hatching directions.
The fields are first aligned to the maximum principal curvature di-
rections of the surface. Then, the users can use interpolation con-
straints to modify the 2-field. Results are shown in Figure 17.

Figure 16: Example of 4-field design with interpolation con-
straints. Fields can be aligned to the curvature directions (left).
Additional interpolation constraints allow users to modify the 4-
field such that it better aligns to surface features (right). Our tool
provides interactive responses when interpolation constraints are
added, removed or modified.
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Figure 17: Hatching of the Blade model (390k faces) generated
from 2-fields aligned to the maximal principal curvature (left).
Modified fields, subject to interpolation constraints (right). The
constraints are shown in the middle.

Tensor field smoothing We implemented a tensor field smoothing
tool that minimizes a weighted sum of a function penalizing the
deviation from the input field and the harmonic and biharmomic
energies for tensor fields as fairness energies. The resulting opti-
mization problem is analogous to problem (8). The tool uses our
subspace construction to build a subspace and solves the reduced
problem. This allows users to interactively adjust the weights for
the three terms. To realize this, we precompute the reduced matri-
ces for the three terms during the preprocessing stage, and, in the
online stage, we build the weighted sum of the matrices and solve
the resulting sparse linear system, whose size equals the dimension
of the subspace.

We used the tool for smoothing the shape operator, whose eigen-
vectors are the principal curvature directions. Results are shown in
Figure 18. We found this a useful tool for curvature computations,
which usually need to be smoothed and require users to specify how
strongly the field should be smoothed. With the tool, users receive
immediate feedback when adjusting the smoothing parameters. For
example, in the case of the Oil Pump model (1.1m faces) shown in
Figure 18, our reduced system (using a 2k dimensional subspace)
requires 45ms to compute a factorization, 1.5ms to solve using the
factorization, and 55ms to lift the reduced solution to a tensor field
defined on the whole surface. For comparison, the timings for solv-

Figure 18: Results of our tensor smoothing tool. Curvatures com-
puted on a mesh with 1m triangles (left). Smoothing results for dif-
ferent parameter settings (middle and right). When parameters are
changed, new solutions are computed at interactive rates.

Figure 19: Approximation of eigenvalues of the Hodge–Laplace
operator. For different meshes, approximated and reference eigen-
values are shown.

ing the unreduced system are: 49s to compute a factorization and
2.7s to solve using the factorization. We want to emphasize that
many operations, such as changing the weights for the harmonic
or biharmonic energy, require computing a new factorization as the
system’s matrix changes.

While we show an example, in which the user can only mod-
ify the weights, a more sophisticated interactive tool that allows
users to specify different weights for different areas of the surface
can be realized in a similar way. Another possible extension of this
smoothing method would be a fast non-linear smoothing scheme
that iteratively solves linear systems in the subspace.

Laplace spectrum Our subspaces can be used to efficiently com-
pute approximations of the eigenvalues and eigenfields of Laplace
operators. For computing approximations of m eigenfields, we con-
struct a 2m-dimensional subspace and compute the restricted eigen-
value problem in the subspace. This technique has been recently
introduced for the case of eigenfunction of the Laplace–Beltrami
operator in [NBH18]. We refer to this paper for a description of
the reduced eigenvalue problem, which is analogous to the reduced
eigenvalue problem for eigenfields. Table 6 compares timings for
solving the reduced and unreduced eigenproblems. Figure 19 com-
pares the reference and approximated eigenvalues.

Model Faces Basis Red.
Syst.

Solve
Eigenp.

Ref. Speed
up

Armadillo 86k 9 3.5 3.4 419 26.1
Ch.Dragon 255k 42 10.1 3.3 1376 25.0
Fertility 483k 99 17.7 3.4

Mem.
Inf.

Ramses 1.6m 401 84.4 3.3 Inf.
Neptune 4.0m 1200 212.6 4.8 bound Inf.

Table 6: Timings (in seconds) for the approximation of 500 eigen-
fields are shown (3-5th) columns). For comparison timings for
computing the unreduced reference eigenvalues (6th column) using
MATLAB’s sparse eigensolver are shown.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



A. Nasikun, C. Brandt & K. Hildebrandt / Locally supported tangential vector, n-vector, and tensor fields

9. Conclusion

We introduce a construction of subspaces of tangential vector, n-
vector, and tensor fields that is scalable and results in subspaces
that can approximate smooth fields well. The construction can eas-
ily be extended to a construction of adaptive subspaces. We ex-
perimentally evaluate the approach and justify our construction by
comparing it to possible alternative constructions. Finally, we dis-
cuss applications of our approach.

Challenges and limitations Our goal is to develop the techniques
that enable interactive field design and processing tools that work
on large meshes. The proposed subspace construction takes a step
in this direction by enabling us to decouple the resolution of the
meshes from the degrees of freedom used for the design and pro-
cessing problems. In this work, we limit our focus to optimization
problems with quadratic objectives. For more general problems, ad-
ditional techniques need to be developed that allow us to approxi-
mate the objective and its gradients at a cost that does not depend
on the mesh resolution. Developing such techniques for field de-
sign and processing problems poses interesting challenges that are
beyond the scope of this paper. Another potential use of the pro-
posed fields would be to build subspaces for a multilevel solver
for problems involving tangential fields. Due to the scalability of
our approach, it could be used to build subspaces of different res-
olution in which systems are solved and solutions are propagated.
Finally, our approach could be extended to include more sophis-
ticated boundary conditions for the eigenvalue problems we use
for field construction. For example, boundary conditions that fit
to the Hodge decomposition of vector fields have been proposed
in [PP16].
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O.: Fast automatic skinning transformations. ACM Trans. Graph. 31, 4
(2012), 77:1–77:10. 2

[JP∗16] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2016. http://libigl.github.io/libigl/. 6

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG
O.: Instant field-aligned meshes. ACM Trans. Graph. 34, 4 (2015),
189:1–189:15. 2, 10

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally optimal direction fields. ACM Trans. Graph. 32, 4 (2013), 59:1–
59:10. 2, 3

[KCPS15] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Stripe
patterns on surfaces. ACM Trans. Graph. 34 (2015). 2

[KFS18] KOUROUNIS D., FUCHS A., SCHENK O.: Towards the next
generation of multiperiod optimal power flow solvers. IEEE Transactions
on Power Systems PP, 99 (2018), 1–10. 6

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: Quadcover - sur-
face parameterization using branched coverings. Comp. Graph. Forum
26, 3 (2007). 2

[LJF16] LU W., JIN N., FEDKIW R.: Two-way coupling of fluids
to reduced deformable bodies. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (2016), pp. 67–76. 2

[LJX∗10] LAI Y.-K., JIN M., XIE X., HE Y., PALACIOS J., ZHANG E.,
HU S.-M., GU X.: Metric-driven rosy field design and remeshing. IEEE
Trans. Vis. Comput. Graph. 16, 1 (2010). 2

[LLZ∗11] LI E., LÉVY B., ZHANG X., CHE W., DONG W., PAUL J.-
C.: Meshless quadrangulation by global parameterization. Computers &
Graphics (2011). 2

[LMH∗15] LIU B., MASON G., HODGSON J., TONG Y., DESBRUN M.:
Model-reduced variational fluid simulation. ACM Trans. Graph. 34, 6
(2015), 244:1–244:12. 2

[LTGD16] LIU B., TONG Y., GOES F. D., DESBRUN M.: Discrete
connection and covariant derivative for vector field analysis and design.
ACM Trans. Graph. 35, 3 (2016), 23:1–23:17. 2

[MRMH12] MEHTA S. U., RAMAMOORTHI R., MEYER M., HERY C.:
Analytic tangent irradiance environment maps for anisotropic surfaces.
Comp. Graph. Forum 31, 4 (2012). 2

[NBH18] NASIKUN A., BRANDT C., HILDEBRANDT K.: Fast approxi-
mation of Laplace–Beltrami eigenproblems. Comp. Graph. Forum 37, 5
(2018). 2, 9, 12

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped textures. In
Proc. SIGGRAPH (2000), pp. 465–470. 2

[PLS∗15] PAN H., LIU Y., SHEFFER A., VINING N., LI C.-J., WANG
W.: Flow aligned surfacing of curve networks. ACM Trans. Graph. 34,
4 (2015). 2

[PM18] PAN Z., MANOCHA D.: Active animations of reduced de-
formable models with environment interactions. ACM Trans. Graph.
37, 3 (2018), 36:1–36:17. 2

[PP00] POLTHIER K., PREUSS E.: Variational approach to vector field
decomposition. In Symposium on Data Visualization (2000), Springer,
pp. 147–155. 3

[PP16] POELKE K., POLTHIER K.: Boundary-aware Hodge decomposi-
tions for piecewise constant vector fields. Computer-Aided Design 78
(2016), 126–136. 13

[PZ07] PALACIOS J., ZHANG E.: Rotational symmetry field design on
surfaces. In ACM Trans. Graph. (2007), vol. 26, ACM, p. 55. 2, 3

[Qiu15] QIU Y.: SpectrA: C++ library for large scale eigenvalue prob-
lems, 2015. https://github.com/yixuan/spectra/. 6

[RGB∗14] RAYMOND B., GUENNEBAUD G., BARLA P., PACANOWSKI
R., GRANIER X.: Optimizing brdf orientations for the manipulation of
anisotropic highlights. Comput. Graph. Forum 33, 2 (2014), 313–321. 2

[RLL∗06] RAY N., LI W. C., LÉVY B., SHEFFER A., ALLIEZ P.: Pe-
riodic global parameterization. ACM Trans. Graph. 25, 4 (2006), 1460–
1485. 2, 3

[RVAL09] RAY N., VALLET B., ALONSO L., LÉVY B.: Geometry-
aware direction field processing. ACM Trans. Graph. 29, 1 (2009). 2

[RVLL08] RAY N., VALLET B., LI W. C., LÉVY B.: N-symmetry di-
rection field design. ACM Trans. Graph. 27, 2 (2008). 2

[SBCBG11] SOLOMON J., BEN-CHEN M., BUTSCHER A., GUIBAS L.:
Discovery of intrinsic primitives on triangle meshes. Comp. Graph.
Forum 30, 2 (2011), 365–374. 2

[SFCBCV19] SAGEMAN-FURNAS A., CHERN A., BEN-CHEN M.,
VAXMAN A.: Chebyshev nets from commuting polyvector fields. ACM
Trans. Graph. 38, 6 (2019). 2

[TLP06] TREUILLE A., LEWIS A., POPOVIC Z.: Model reduction for
real-time fluids. ACM Trans. Graph. 25, 3 (2006), 826–834. 2

[TPP∗11] TARINI M., PUPPO E., PANOZZO D., PIETRONI N.,
CIGNONI P.: Simple quad domains for field aligned mesh parametriza-
tion. Proc. SIGGRAPH Asia 2011 30, 6 (2011). 2

[Tur01] TURK G.: Texture synthesis on surfaces. In Proc. SIGGRPAH
(2001), pp. 347–354. 2

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. Comp. Graph. Forum 35, 2 (2016),
545–572. 2

[vRESH16] VON RADZIEWSKY P., EISEMANN E., SEIDEL H.-P.,
HILDEBRANDT K.: Optimized subspaces for deformation-based shape
editing and interpolation. Computers & Graphics 58 (2016), 128–138. 2

[vTSSH13] VON TYCOWICZ C., SCHULZ C., SEIDEL H.-P., HILDE-
BRANDT K.: An efficient construction of reduced deformable objects.
ACM Trans. Graph. 32, 6 (2013), 213:1–213:10. 6

[vTSSH15] VON TYCOWICZ C., SCHULZ C., SEIDEL H.-P., HILDE-
BRANDT K.: Real-time nonlinear shape interpolation. ACM Trans.
Graph. 34, 3 (2015), 34:1–34:10. 2

[War06] WARDETZKY M.: Discrete Differential Operators on Polyhedral
Surfaces–Convergence and Approximation. PhD thesis, Freie Univer-
sität Berlin, 2006. 3

[WJBK15] WANG Y., JACOBSON A., BARBIČ J., KAVAN L.: Linear
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A. Construction of the tensor field Laplacian

In this section, we provide details on the construction of the tensor
field Laplace operator that is introduced in Section 3. We describe
the construction at the example of second-order symmetric (1,1)-
tensors. For other types of tensors, the Laplacians are constructed
analogously. The tensor fields we consider are constant in every
triangle of the surface mesh.

Transport of tensor We fix the coordinate system in every triangle
by taking the first oriented normalized edge vector as the x-axis and
the 90-degree rotated edge vector as the y-axis. Let A be the matrix
representing a tensor in a triangle Ti. We want to transport the tensor
to triangle Tj. In the case that the x-axes of the local coordinate
systems in both triangles Ti and Tj are aligned with common edge
ei j , the transport is simply the identity. In general, this is not the
case. Then, to transport A from Ti to Tj, we first transform the tensor
in Ti to the ei j-aligned coordinate system in Ti. Let Ri be the rotation
matrix that maps the coordinates of vectors in the coordinate system
in Ti to the coordinates of the vectors in the ei j-aligned coordinate
system. Then the transformation of A is RiART

i . The transport of
RiART

i to the ei j-aligned coordinate system in Tj is the identity.
Finally, we transform to the non ei j-aligned coordinate system in
Tj. Denoting the rotation matrix that transforms the coordinates in
Tj to the ei j-aligned coordinate system by R j, the transported tensor
in the coordinate system of Tj is RT

j RiART
i R j.

Mandel–Voigt notation When working with a linear operators on
tensor fields, it is convenient to represent the tensors as vectors
instead of matrices. Any matrix representing a symmetric (1,1)-
tensor is a linear combination of the three matrices(

1 0
0 0

)
,

(
0 0
0 1

)
, and

(
0 1/

√
2

1/
√

2 0

)
, (14)

which are orthonormal with respect to the Frobenius norm. The
vector a that stacks the coefficients of a symmetric matrix A with

respect to the three matrices (14),

A =

(
a1 a2
a2 a3

)
7→ a =

 a1
a3√
2a2

 , (15)

is called the Mandel–Voigt representation of the matrix A.

Transport in Mandel–Voigt notation To write the tensor field
Laplacian in Mandel–Voigt representation, we need to describe
the transport of tensors in this representation. Let G = RT

i R j, then
the transport of A is given by GT AG. We want to find the matrix
P ∈ R3×3 such that for any tensor A with Mandel–Voigt represen-
tation a, Pa is the Mandel–Voigt representation of GT AG.

Let G =

(
g1 g2
g3 g4

)
, A =

(
a1 a2
a2 a3

)
, B = GᵀAG, and b the

Mandel–Voigt representation of B. Then,

B = GᵀAG

=

(
g1 g3
g2 g4

)(
a1 a2
a2 a3

)(
g1 g2
g3 g4

)
(16)

=

(
g1

2a1 +2g1g3a2 +g3
2a3 g1g2a1+(g2g3+g1g4)a2+g3g4a3

g1g2a1+(g2g3+g1g4)a2+g3g4a3 g2
2a1 +2g2g4a2 +g4

2a3

)
.

In Mandel–Voigt notation

b =

 g1
2a1 +2g1g3a2 +g3

2a3
g2

2a1 +2g2g4a2 +g4
2a3√

2(g1g2a1 +(g2g3 +g1g4)a2 +g3g4a3)

 (17)

=

 g1
2 g3

2 √
2g1g3

g2
2 g4

2 √
2g2g4√

2g1g2
√

2g3g4 g1g4 +g2g3

 a1
a3√
2a2

 (18)

= Pa. (19)

Laplacian for tensor fields A benefit of using the Mandel–Voigt
representation is that the transport of tensors is realized by matrix
multiplication. This gives the tensor field Laplacian (2) a structure
that is similar to the usual structure of discrete Laplace operators.
Let Pi j ∈ R3×3 denote the matrix realizing the transport of tensors
from triangle Ti to Tj. Then the tensor field Laplacian in Mandel–
Voigt notation is

(∆a)i =
1
mi

∑
j∈Ni

wi j(ai−Pjia j). (20)

A matrix representation of the Laplace operator can be obtained by
collecting the wi j and Pi j in a stiffness matrix S and the mi in a
diagonal mass matrix M.
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