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Figure 1: MotionGlyphs allows biologists to visually explore and abstract dense spatio-temporal network data in collective animal behavior.

The figure presents the same time instance of golden shiner fish data in a node-link diagram (left), MotionGlyphs representation (middle), and

with additional clustering (right). The color of the movers displays the speed (blue to red), and the links (light blue to dark blue) encode the

similarity between movement properties (direction, speed, distance to each other). The example above shows how MotionGlyphs abstract

relationships and aggregate movers into groups to reduce visual clutter and highlight different group structures.

Abstract

Domain experts for collective animal behavior analyze relationships between single animal movers and groups of animals

over time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as a

spatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connected

node-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, we

developed glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clusters

of movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domain

experts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. By

means of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts,

and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.

1. Introduction

Collective animal behavior is an intriguing phenomenon appearing
in nature in many forms. Prominent examples are the collective
movement of fish schools, insect swarms, or flocks of birds [Gor14].
Research in biology and other fields aims to explain the mechanisms
by which group motion patterns emerge in natural and social
sciences [Cou09]. Such patterns can be, for instance, relationships
among multiple animals (e.g., social influences), temporal trends

(e.g., migrations), and sub-group behavior of animals (e.g., group of
leaders). These group patterns are yet not fully understood since the
movement depends strongly on influences and interactions between
possibly many animals (movers) [Cou09]. Recent research has
modeled collective behavior as spatio-temporal network data to
analyze the emergent properties of groups [FW15]. For example,
Rosenthal et al. [RTH∗15] analyze evolving interaction networks
in which they map movers to nodes and the sensory information
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of a mover to weighted links (edges). A purely statistical analysis
of such spatio-temporal networks (e.g., networks metrics) should
be avoided as the interpretation in the context of collective animal
behavior remains challenging [FW15]. The field, therefore, requires
tailored visual metaphors to analyze the evolving network structure
and highlight correlations between movers [FW15].

Spatio-temporal network data is a particularly challenging
type of data as it consists of evolving relationships between
spatially positioned entities (attribute-driven layout) [NMSL19].
Real-world applications are, for instance, traffic [PHT15], net-
work security [SSG11], and migration analysis [SBW15]. The
visualization of such data promotes the identification of spatial,
as well as topological patterns over time (e.g., spatio-temporal
network clusters). However, two main challenges limit the visual
exploration of such evolving patterns. First, the fixed network
topology of spatial networks often leads to node overlaps as well
as edge crossings in dense areas [WCG03]. Therefore, Nobre et
al. [NMSL19] recommend displaying spatial networks only for
small and sparse networks. Second, the additional temporal dimen-
sion poses a challenge to present the data in a readable, scalable,
and expressive manner [BBDW17]. Visualization techniques for
multivariate [NMSL19] as well as dynamic networks [BBDW17]
aim to reduce the complexity of such data (e.g., aggregation
[Wat06, DS13, KLS∗17] or filtering [PHE∗17, vdEvW13]). Yet,
such methods either change the positions of movers or reduce data
characteristics (e.g., filtering), which should be avoided in collective
animal behavior analysis as it can hide potential sub-patterns and
consequently decrease the interpretability [FW15]. An uncluttered
overview visualization of spatio-temporal networks in collective
animal behavior, therefore, can help domain experts analyze single
movers (ego-centric) and groups of movers (socio-centric).

In contrast to earlier work, our prototype (MotionGlyphs) focuses
on reducing visual clutter by abstracting a spatio-temporal network
to glyphs. We demonstrate the usefulness of our approach by con-
ducting expert interviews and pair analytics sessions [AHKGF11].
In summary, the primary contributions of this paper are: (1) A design
study with problem characterization, findings, and lessons learned
within the domain of collective animal behavior. (2) A glyph design
for the summarization and depiction of spatio-temporal networks at
multiple levels of granularity. (3) A visualization prototype for ex-
perts to explore local as well as global network properties over time.

2. Related Work

The visual identification of patterns (e.g., clusters or trends) in
spatio-temporal network data remains challenging due to the high
dimensionality and the scalability issues in space, time, and network
characteristics. We cover related visualization research, addressing
these challenges from different perspectives in the fields of spatial,
dynamic, as well as spatio-temporal network data.

2.1. Spatial Networks Analysis

Spatial networks (also known as geographic networks) are a way
to model relationships between spatial locations. Real-world
examples include the analysis of air traffic [KAW∗14] and
transportation data [AAFW16]. Nobre et al. [NMSL19] defined
spatial network data as a special type of multivariate network data
(attribute-driven layout). Multivariate network visualization can be

applied to spatial networks such as Pivot-Graphs [Wat06], Semantic
Substrates [SA06], GraphDice [BCD∗10], or dimensionality
reduction [DCW11]. However, the listed approaches focus on either
node or edge (link) attribute comparisons or abstract the spatial
positions. Matrix visualizations using geographical embeddings
(e.g., Yang et al. [YDGM16]) are not suited for the application
domain as the approaches do not scale to many time steps, and
the matrices grow quadratically with the number of movers. Other
visualization approaches for spatial networks aim to reduce the com-
plexity and visual clutter by either filtering [PHE∗17, vdEvW13],
aggregation [Wat06, DS13, KLS∗17], clustering [EDG∗08],
edge bundling [LHT17], deriving new attributes [DCW11] (e.g.,
node degree), or converting edges to nodes [JKZ13]. Filtering,
aggregation, clustering, and edge bundling techniques enable to
reduce the number of displayed nodes or links. However, this results
in information loss, which may lead to misinterpretations in the
application domain [FW15]. Furthermore, deriving new attributes
(e.g., node metrics) can lead to misleading information [FW15], and
the conversion of edges to nodes is not applicable in our application
domain as it would produce additional movers. For spatial network
visualization, Ko et al. [KAW∗14] analyzed flight journeys as
origin-destination data and introduced a petal glyph which displays
multivariate network features. The glyph enables to assess, for
example, the number of flight delays or security delays for airports.
However, the proposed glyph does not scale for dense areas. Zou and
Brooks [ZB19] present a visualization system to aggregate nodes
into hubs, which enables to display local and global information. The
authors propose a dynamic circular layout with new edge curving
and node positioning algorithms. The approach is, however, unsuited
for our application as the method does not allow displaying the
exact spatial position or adapting the applied aggregation method.

2.2. Dynamic Network Visualization

Recently, the visualization of dynamic (temporal) networks has
gained research interest [BBDW17]. The automatic analysis of such
data enables to examine structural properties of the network, for
example, the temporal analysis of static network metrics (e.g., node
degree, centrality [BW04]) as well as dynamic network metrics
(e.g., change centrality [FPA∗12]). However, only analyzing such
automatically extracted structural properties in collective animal
behavior might hide specific local dynamic patterns and how such
local changes affected the overall dynamic phenomena [FW15].
Interactive visualizations try to overcome these challenges by al-
lowing users to visually analyze the changing relationships in
their evolving structural context. Beck et al. [BBDW17] catego-
rized dynamic network visualization into: animation (time-to-time
mapping) [DG02, PHG06, APP11], timeline (time-to-space map-
ping) [GBD09, BPF14, HBW14] and hybrid visualizations [HSS11,
BBV∗12, BHRD∗15]. Timeline mappings map the temporal dimen-
sion to a spatial axis (e.g., small multiples), which, however, does not
scale to long sequences [BBDW17]. Other approaches from this cate-
gory (e.g., NodeTrix [HFM07]), furthermore, do not preserve the po-
sition of each node (mover) over time. Similarly, the usefulness and
effectiveness of animation is still controversial [TMB02, RFF∗08].
While animation has been shown to be effective in some domains
such as flow visualization [WBM∗16], it does not scale to large
quantities of nodes and links, often higher cognitive load [TMB02].
For further reading, we refer to the survey of Beck et al. [BBDW17].
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In summary, the current visualization techniques either change
the positions of the movers (timeline mapping) or animate the
temporal evolution of the underlying dynamic data. Therefore, the
field of collective animal behavior requires new visual metaphors
that combine spatial and temporal abstraction methods to reduce
the presented data and highlight temporal and structural changes
(e.g., clusters splitting).

2.3. Spatio-Temporal Network Visualization

Recently, techniques for the analysis of spatio-temporal networks
(dynamic geographic networks) have been proposed (e.g., for
collective movement in transport [AAPS19]). These approaches
focus mainly on the study of origin-destination data. Frequently
in flow map visualization, movement data is discretized to highlight
the direction and magnitude of mobility patterns [AAFW16]. Kim et
al. [KJW∗17] propose a heatmap to display origin-destination data,
which can, for example, highlight the origins of disease outbreaks.
The approach, however, discards the movement (trajectory) data,
which is crucial in the analysis of collective animal behavior. Zhu
and Guo [ZG14] apply a hierarchical clustering method to identify
significant and dense flows in the traffic data. The approach scales
to large spatial data but does not scale for large time periods.
Andrienko et al. [AAFW16] proposed a method for spatial and
temporal abstraction, including a composite glyph to reduce clutter
and occlusion in the origin-destination data. The proposed compos-
ite glyph displays for each location the flow angle and the distance
between the locations to reveal regional mobility trends. The
approach highlights periodic patterns by aggregating overall spatial
events and then clustering the temporal dimension into periods.
A limitation of the approach is the information lost due to spatial
as well as temporal aggregation, and with an increasing number
of spatial locations, the glyph becomes challenging to interpret.

In summary, the listed approaches for spatio-temporal networks
focus on the visualization of flows in specific applications, for
instance, mobility trends in the form of flows between locations
(origin-destination data) [AAFW16]. In contrast to these approaches,
we focus on the visual exploration of changing relationships in
collective animal behavior, for which no design studies have been
carried out. In this design study, we address the needs of biologists
and propose a design to tackle the challenge of visualizing evolving
relationships between single movers, and groups of movers.

3. Application Background

The goal of this design study is to create a visual analysis design
supporting the identification of group patterns over time in a large
set of moving entities. We conducted interviews with two domain
experts (postdoctoral researchers) to clarify the user needs, under-
stand the workflow and requirements in the targeted domain. The
domain experts analyze spatio-temporal networks to discover similar
behavior, evolving group structures, and outliers.

3.1. Collective Animal Behavior

Collective animal behavior aims to understand the social influence
(relations) as well as information flow between individuals and
groups [Cou09]. The research field is lately observing and tracking
animal groups at larger scales in lab experiments or field studies
due to technological advances (e.g., small GPS devices) [KKA∗13].

Purely statistical approaches are usually used to analyze data gener-
ated by such experiments [SVL16]. While they support to verify a
single hypothesis, they are typically unable to observe potentially
interesting patterns in the data which fall outside the chosen param-
eters and scope of the selected statistics [DBC∗15]. In the research
field, a lot of effort is put into revealing evolving groups (clusters)
of animals that influence individual groups and vice versa how in-
dividuals affect internal group characteristics (e.g., through local
influences) [Cou09]. The analysis of influences between animals
(e.g., interactions) requires methods that display the spatial data
accurately and preserve local neighborhoods as this helps to fol-
low and interpret emerging group properties [CKJ∗02]. Clustering
local interactions enable, furthermore, to distinguish movers with
similar behavior [PAA∗12] at the loss of some spatial accuracy and
summarize group structures to reduce the complexity of the data.
The similarity between all movers for each time step is essentially a
weighted network (distance matrix). The visual exploration of such
evolving similarities can reveal underlying group characteristics of
collective animal behavior [DBC∗15]. For example, Rosenthal et
al. [RTH∗15] displayed communications networks to study behav-
ioral changes and social influences in collective evasion maneuvers.
For instance, we are visually exploring a real-world dataset con-
sisting of 151 Golden Shiner fish swimming through a depthless
fish tank (2.1m x 1.2m) for 12 minutes (18000 frames). The two-
dimensional dataset consists of 2.7 million data records and 18000
similarity matrices with more than 410 million links. A similarity
matrix is computed using the weighted Euclidean distance between
the features of a mover (see Sec. 4.1).

3.2. Problem Description

During the interviews, we investigated how domain experts analyze
data, which tools they use, and what potential high-level problems
have to be addressed to understand collective animal behavior. We
considered movers (nodes) with similar behavior over time a group,
for instance, the aligned movement of multiple movers towards a
food source. The analysis of an appropriately constructed distance
matrix (based on similarity) for each time step provides a possibility
to identify groups of similar behavior and to investigate socio-centric
patterns (e.g., group leaders). For the visual analysis of such socio-
centric patterns in collective animal behavior, we have to address
the following high-level problems (P):

P1. Display the ego-centric relationships In the application do-
main, it is crucial to investigate the relations of one mover to all
other movers (ego-network). For example, to examine if there are
similar ego-networks in space or if ego-networks increase and de-
crease simultaneously over time. The visual analysis of relationships
between multiple evolving movers, however, remains challenging
due to visual clutter in spatially dense networks [ZB19]. A visualiza-
tion of the ego-centric network, therefore, should aim to provide an
uncluttered overview (summary) of such relations. A compact ego-
network visualization can help domain experts to identify similar
movers, compare movers, and to detect outliers.

P2. Identify groups of movers with similar behavior The vi-
sualization of movers is challenging as with a growing number
of movers, the clutter and overlap in dense areas increase, which
can hide spatio-temporal patterns [DBC∗15]. For such cases, often
visual data aggregation (e.g., clustering, density maps) is applied
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Figure 2: Comparison of key properties of related techniques, ordered by kind of spatial representation and presentation of temporal aspects:

Scalability concerning depictions of nodes and edges in small, medium and large networks; Explorability and Comparability of Nodes, Edges,

Neighbors, Clusters and Subnetworks, which denotes whether these network structures are explorable and comparable with the respective

technique; Temporal Representation, which describes how time is represented; Spatial Representation, which describes whether spatial

aspects are reproduced accurately, inaccurately (e.g., by aggregation) or displaced (e.g., by layout). Relational Representation explains,

whether nodes and edges are visualized explicitly, which means specific visual representation of nodes or edges as such, or implicitly, or

whether there is no visual reference for edges or nodes at all.

to reduce the number of movers [AA10a]. We consider two types
of clustering based on the spatial-temporal data and the evolving
network structure. The visual analysis of such clustering methods
should also involve domain experts to explore different parameter
settings for grouping elements together [AAFW16].

P3. Present the socio-centric relations in groups The display
of groups of movers, for example, through a meta-node, can help to
reduce the number of displayed movers and reduce clutter in dense
areas. However, through such a clustering, relevant information
within dense areas themselves, such as internal group dynamics, is
lost [AAFW16]. The visualization of intra-cluster relationships of
groups can present underlying socio-centric processes.

3.3. Requirements

Slingsby and van Loon [SVL16] held a workshop with multiple ani-
mal movement ecologists and described the requirements necessary
for the initial visual analysis of movement ecology. The research
disciplines of movement ecology and collective animal behavior
are related as both disciplines work on the analysis of collective
movement [WBTB18]. In discussion with our domain experts, we
selected and adapted key requirements, which are relevant for the
identification of group patterns in collective animal behavior, form
the proposed requirements of Slingsby and van Loon [SVL16]. As
well, we identify related key properties a technique needs to support
in order to satisfy these requirements, denoted in italic for each item.

R1: Display the original data Group patterns in collective
animal behavior emerge from local spatio-temporal interactions
between movers. Displaying the raw data is, therefore, essential as
it helps to interpret and understand the emergent group properties.
This means, the node representation needs to be explicit and
spatially accurate to enable node and neighbor comparability. Also,
since typical use cases range from small to large amounts of movers,
scalability towards a broad range of network sizes is required.

R2: Relate the time, space, and attribute dimensions Define
and present a summary of the multivariate relationships between the

dimensions space, time, and attributes of a mover (node). To do so,
node exploration by attributes and a dynamic temporal representa-

tion need to be provided.
R3: Enable the aggregation into groups Enable the aggregation

into “ecologically-meaningful“ units, which is crucial to abstract
and simplify large movement datasets. Consequently, the technique
needs to support the cluster and subnetwork explorability and com-

parability.
R4: Allow the exploration of the spatio-temporal network at

different scales Networks can be observed from an ego-centric
(low-level) perspective or a socio-centric (high-level) perspective.
The technique needs to support both perspectives, both for the global
view and local groups (subnetwork).

3.4. Gaps in Related Approaches

To illustrate the gap we intend to close, we compare a selection
of current approaches (see Fig. 2) to the key properties as speci-
fied in the requirements (see Sec. 3.3). The compared publications
were selected as a sample of established techniques based on re-
cursive scanning of references from the visualization technique
surveys for group structures in networks [VBW17], dynamic net-
works [BBDW17], and multivariate networks [NMSL19].

The comparison provides several insights. First, it becomes ap-
parent that techniques which scale to large networks often do
not regard a temporal dimension (R2, e.g., [DS13, ZB19, LBW17,
YWZ∗19]), or resort to a static time representation such as timelines
(e.g., [DCW11,AA10b,HSS∗19,PNK19,KAW∗14,AAFW16,GZ14,
KJW∗17]), which is not adequate to display live group dynamics.
If animation is provided (e.g., [AAFW16, SVDWVW14]), node or
edge aggregations are introduced to reduce the visual complexity
at the loss of some spatial accuracy (R1) between the moving en-
tities. In animation, however, the identification of temporal trends
over short timescales remains difficult [RFF∗08]. It becomes ap-
parent that the focus of aggregation-based approaches does not
lie in the display of dynamic movements. Rather, many of these
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Figure 3: The glyph panel shows a subset of the 151 golden shiner fish school data, the attribute color displays the speed (blue to red), and

clustering is applied. The fish school has a fast (red group on the left) and a slower subset (blue groups on the right). Multiple groups with

different characteristics are visible (e.g., number of movers, density, number of links), which enables to analyze them over time. The granularity

of the aggregation can also be changed at any time to allow analyzing detailed group structures or abstract movers into larger groups.

techniques use aggregation to summarize static spatial contexts or
the developments on a global scale, neglecting individual nodes
( [DS13, AA10b, YWZ∗19, AAFW16]). Yet, being able to explore
clusters and to identify what properties they share are essential
tasks when trying to identify common behavior (R3). Finally, those
approaches considering temporal aspects are often more catered
explicitly to either larger or smaller networks, which violates R4,
requiring that the method needs to be scalable towards different
sizes of networks and to enable the exploration of substructures as
well. For example, techniques that only work for smaller networks
may employ network layouting to optimize the depiction of clusters,
coming at the cost of losing some spatial accuracy.

In summary, the comparison shows that there is a gap concerning
approaches that satisfy the requirements fulfilled by MotionGlyphs:
Most related approaches are not suitable for the exploration of tem-
poral dynamics of movers, or they do not support an accurate spatial
representation of participating nodes. Other properties, such as node
aggregation or fixed spatial clusterings as an integral part of an
approach, further restrict the usefulness of related approaches in the
context of the described requirements. In contrast, MotionGlyphs is
designed to fulfill the requirements, coming only at the cost of im-
plicit edge representations and some spatial accuracy for interactive
exploration of group structures.

4. Visual Design

MotionGlyphs was designed over the course of five months in close
collaboration with two domain experts from the field of collective
animal behavior. We followed the design guidelines by Lloyd and
Dykes [LD11] to make the design process interactive, including real-
world data, developed digital sketches, allowing the free exploration

of prototypes, and think-aloud protocols. MotionGlyphs is a web
prototype to visually explore group patterns spatio-temporal net-
work data, which consists of two components for data modeling and
visualization. The data model is responsible for feature extraction
(e.g., speed of a mover), computation of similarities matrices, and
spatio-temporal clustering. The visual interface of the prototype (see
Fig. 3) consists of the navigation panel to change the temporal di-
mension, feature panel to adapt the visual variables (e.g., clustering
scale), and the glyph panel to display the single and cluster glyphs.

4.1. Data Model

We briefly describe the functionality and choices we made for the
feature extraction, spatio-temporal networks, spatio-temporal clus-
tering. The data model component aims to model interactions be-
tween movers by enabling domain experts to compute specific evolv-
ing networks and clusters. The input file for the prototype has a
standard domain-specific format (time, animal-id, x, y). Domain
experts suggested data cleaning methods (e.g., interpolation) and
feature extraction (e.g., average speed, direction, and distance to the
centroid). For the extraction of features, domain experts have to de-
fine the temporal scales (e.g., per second, per minute), which usually
depends on the tracking resolution. A network for each time step
can be defined by a user-defined similarity metric based on the ex-
tracted features (e.g., weighted euclidean distance) or the segmented
trajectories of the mover (e.g., Fréchet distance). Such a similarity
metric can be, for instance, the weighted euclidean distance between
all (or a subset) of the extracted features. Varying combinations of
weights in the euclidean distance metric generate different networks,
which can be used to highlight specific patterns. For example, using
the direction, speed, and acceleration of each mover, the aligned
movement of a group towards a particular target can be emphasized.
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The network for each time step includes the temporal information as
derived features (e.g., average speed) are computed using a rolling
window approach. The usage of temporally smoothed features (e.g.,
average heading changes per second) improves the interpretation as
noise is smoothed out (e.g., small tracking errors).

Domain experts can, furthermore, use either the network weights
(distance matrices) or another similarity metric for the computations
of spatio-temporal clusters. The spatio-temporal clustering helps to
summarize as well as examine the temporal evolution of relation-
ships and highlight the changes of group properties in the data. We
apply the density-based clustering proposed by Peca et al. [PFV∗12]
as the algorithm scales to large datasets. The proposed algorithm
has two parameters εtime and εspace, which we discussed in detail
with the domain experts. By default, the εtime is set to the tempo-
ral scale of the extracted features (e.g., average speed per minute).
Additionally, the clustering is applied several times with a varied
εspace, which results in clusterings with different spatial densities.
The default values of εspace are defined by the maximum distance
a mover can travel between two consecutive time steps, which is a
useful heuristic to determine the possible spatial changes between
two points in time.

4.2. MotionGlyphs

MotionGlyphs allows visualizing single (single glyph) and groups
of movers (cluster glyph) (see Fig. 4). The single glyph displays
the spatio-temporal network using the spatial positions (geospatial-
layout) (R1) and abstracts network links by mapping them to a
radial representation (outer-ring) of the glyph. The inner-circle of
the glyph allows to display characteristics of the mover (e.g., speed),
and the glyph arrow depicts the movement direction (R2). The
outer-ring of a single glyph is essentially a doughnut chart with
segments (link abstraction arcs) that aim to summarize the direction
and median link weights to other movers that lie in that direction.
The segments preserve link characteristics, such as the direction and
strength (weight) (R2). By default, we segment the outer-ring into
12 segments of 30 degrees. Domain experts can, furthermore, adapt
at any time the segment width. The abstraction of links to segments
prevents edge crossings, and was inspired by the work of Ko et
al. [KAW∗14] in which the authors simplify origin-destination. Two
color scales from ColorBrewer [HB03] are used to encode values:
For the inner-circle attributes, a divergent color scale from blue to
red is used to highlight low and high attribute values. For example,
in some fish schools, the animals are continually moving, therefore
usually values below and above the mean speed are interesting for
domain experts. The link weights are mapped to the outer-ring using
linear light blue to dark blue color scale.

MotionGlyphs allows to abstract groups of movers into a cluster
glyph (see Fig. 4) to present the underlying group structure (R3).
The cluster glyph is a disjoint flat group structure visualization,
which is, to the best of our knowledge, the first node glyph proposed
for this category [VBW17]. The cluster glyph size is normalized
and mapped to the number of nodes in the group. The maximum
size (all movers) of the cluster glyph is five times the size of a single
glyph. The outer-ring of the cluster glyph displays the abstracted
links to all other glyphs. The inner-circle depicts the underlying
spatio-temporal network of the group as an animated node-link dia-
gram. We visualize the underlying group structure as an additional

Figure 4: Glyph for single movers (left) and for group of movers

(right). The inner-circle display attributes (e.g., speed) and the outer-

ring abstracted links to other movers.

level of detail view for cluster interpretation to allow the explo-
ration of the data at different scales (R4). The spatial centroid of
the group defines the position of a cluster glyph. The inner-circle
also enables to display average attributes of the group (e.g., aver-
age speed) as the background color of the inner-circle (R2). The
node-link diagram in the center of the cluster glyph is also colored
and encodes attribute information (e.g., speed) for the nodes and
the links (weights) (R2). The color encoding in the cluster glyph
allows comparing the group nodes with the average attribute values
of the spatio-temporal group (R4). The cluster glyph also has an
arrow, which indicates the average movement direction of the group
(R2). By default, the prototype only uses the spatial positions for
the spatio-temporal clustering [PFV∗12] due to the preference of
domain experts (R1). Domain experts can, furthermore, adapt, and
explore the spatial scale of the clustering as we pre-compute the
clustering with varying input parameters (R4).

4.2.1. Design Rationale

In the following, we describe our design rationales to facilitate
transferability to other domains with similar tasks and requirements.

Why are we using a glyph visualization? The complexity of
spatio-temporal networks poses a challenge for the visual explo-
ration of group patterns in collective animal behavior. Typically,
methods like clustering [AAB∗10], which aggregate and abstract
the nodes into meta-nodes, and edge-bundling techniques [LHT17],
which display flow patterns in dense areas, are used to reduce the
complexity of such data. In edge-bundling, the links between pairs
of nodes are difficult to perceive [GZ14], and the artifacts produced
by such methods often lead to misinterpretations [AAFW16].
Glyph-based visualizations depict multivariate data as visual
objects to enable the discovery of patterns (e.g., anomalies,
clusters) [BKC∗13]. A glyph maps data characteristics to visual
variables to provide a compact view of such multivariate records and
to enable interpretation as well as comparison of the data records
(e.g., star-glyph [FIB∗14]). Recent approaches of Scheepens et
al. [SVDWVW14] and Andrienko et al. [AAFW16] highlight
how glyphs can be used to reduce visual clutter for scalable
visualization of large datasets (e.g., through aggregation). Dunne
and Shneiderman [DS13] also show how different glyphs can be
used to improve network readability. Based on these methods, we
decided together with domain experts to develop sketches and
design a glyph [LD11] to reduce visual clutter and to highlight
group structures in collective animal behavior.

Visual variables used: Multiple visual variables (e.g., size, color)
can be used to design a glyph. We chose to keep the number of vi-
sual variables low to maximize the discriminatory factor between
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such visual variables. We decided to use a circle for the single glyph
design and to display the temporal dimension of the data using an-
imation. We choose not to adapt the shape and size of the single
glyph as such distortions modify the spatial positions of movers
(nodes) and could be misinterpreted as physical sizes of movers. We
also incorporated two other visual variables, an arrow for direction,
and color the circle based on movement characteristics (e.g., speed).
The visual variable color (hue) is selective and associative [Ber83].
These features are usually used in the visualization of movement
data [SVDWVW14] and the application domain [LLEK10]. We
use color and orientation as visual variables to draw attention to
changes in these attributes [BKC∗13]. We abstract and encode the
links in an outer-ring of the glyph to summarize and highlight the
relationship characteristics of a node (direction and weight). For the
design choice of the outer-ring, we used the design space described
by Andrienko et al. [AAFW16] and decided to use the combina-
tion of a circle and juxtaposition components (CJ flow diagram).
A drawback of abstracting the links is that the detailed connection
information (e.g., the distance between movers) is lost, which can
be incorporated by using multiple outer-rings that also encode the
distance to the target node (e.g., CJ glyph [AAFW16]). In collective
animal behavior, however, showing multiple outer-rings is not use-
ful as movers are usually uniformly distributed and retain similar
distances to each other [Sum10, Chapter 2]. We chose to keep the
complexity of the glyph low and only to display one ring.

Why is a cluster glyph useful? Based on the requirements R3

and R4, we iteratively designed another glyph to allow domain ex-
perts to abstract movers into groups. The goal of the cluster glyph
is to reduce the number of displayed glyphs, clutter in dense areas,
and the cognitive load for the user. The cluster glyph, furthermore,
summarize and presents the structural properties of the group, the
segments of the nested glyphs, and displays internal links in such
groups. We discussed with our collaborators the idea to aggregate,
and show multiple single glyphs in the inner-circle of a bigger
group glyph (nested design) and created a digital sketch as pro-
posed by Lloyd and Dykes [LD11]. This first alternative cluster
design (see Fig. 5), however, was complex as the nested glyphs
were hardly readable and difficult to interpret since the segments of
nested glyphs could be misinterpreted as links to movers outside of
the group. Additionally, there is a minimal amount of space required
to communicate color, which is not given in such a small-sized
glyph [FFM∗13]. We chose to show and animate a simple node-link
diagram in the inner-circle of the glyph, which downsizes and dis-
plays all the movers of the cluster. For this, we map the spatial extent
of the nodes in a cluster to the inner-circle of the cluster glyph. Us-
ing such a mapping, we retain the spatial distances between movers
(R1). The node-link diagram also encodes additional attributes (e.g.,
speed) and link weight (R2). The directional arrows for the internal
node-link diagram are not displayed, as they are barely readable
after mapping the movers to a smaller scale.

Why do we use animation? We display data by animation,
as this is the conventional method to display temporal data in
the domain of collective animal behavior (e.g., in Rosenthal et
al. [RTH∗15]). Visualizing the data through animation remains chal-
lenging due to change blindness [SFR00] and our limited short-term
memory [HE11]. We aim to overcome these challenges by reducing
the number of nodes through clustering, and we highlight merges

or splits of movers in groups by coloring the single glyph (merge)
or a node in a cluster glyph (split) pink (0.5 seconds). The goal of
the highlighting is to help experts to maintain a mental map of the
changes. The identification of such group changes, such as split,
merge, and swappings between groups, remains challenging due to
noisy real-world data and the animation speed.

How to interact with the glyph? To further facilitate the visual
exploration of group patterns, MotionGlyphs enables a set of inter-
actions. The glyph depicts the abstracted links during a mouseover
to investigate the links of a specific node, which was suggested by
domain experts in a free exploration of the prototype [LD11]. The
prototype also enables filter links, limit the overall presented number
of segments in the outer-ring, and modify the width (in degrees) of
the displayed segments. The prototype implements a zoom and the
option to adapt the spatial clustering scale using a slider (R4).

4.3. Design Alternatives

Many glyph visualization techniques for either spatio-temporal
or network data have been proposed. A possible design alterna-
tive to simplify the spatio-temporal network is to apply motif
simplifications [DS13]. The approach replaces motifs in the net-
works (e.g., fan and cliques) with glyphs (e.g., rhomboids or cir-
cles sectors). The primary problem of motif simplification for col-
lective animal behavior is that the interpretation of such motif
glyphs over time is difficult as the approach abstracts structural
motifs (fan and parallel motif). The single glyph has a similar
design as the proposed petal glyph [KAW∗14], rose or sunburst
diagrams [EST08, SM08, AAFW16] which are used to present
origin-destination data [KAW∗14]. The design space analysis by
Andrienko et al. [AAFW16] for origin-destination data provided us
with a structured way of thinking about the possibilities of abstract-
ing links. The proposed variants of flow diagram designs examine
different glyphs to reveal mobility trends between regions. The us-
age recommendation for the CJ glyph (circle and juxtaposition),
which is similar to the single glyph design, is to highlight details
for individual regions [AAFW16]. We discussed many alternative
sketches and designs with domain experts to encode attributes as
visual variables. For example, we explored different background
colors, different hues, shapes, and the usage of small multiples.
Through the usage of these digital sketches [LD11] we learned that
the domain expert (biologists) prefer rather simple glyph designs
to identify behaviorally similar movers. Two examples of such de-
sign alternatives for the encoding of the links can be seen in Fig. 5.
Off-screen visualization techniques inspire the first alternative glyph
in which the linked movers are mapped to circles in the outer ring.
The design was inspired by the work of Farrugia et al. [FHQ11] in
which they displayed ego-network neighborhoods in concentric cir-
cles, which are mapped to a time step. In contrast to a single glyph,
the first design alternative animates and places the ego-network
nodes based on the distance and the direction to the linked mover.
The color of each node in the outer-ring encodes the weight of the
abstracted link. The second design alternative extends the first alter-
native further and displays the whole ego-network with links. The
two design alternatives allow displaying evolving ego-networks of
movers in more detail. However, identifying changes and comparing
values in the relatively small and complex outer-rings would have
been difficult due to clutter resulting from the detailed information.
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Figure 5: The first design of the cluster glyph (left) and two alternative designs for single glyph (middle, right) which also enables to encode

the distance information to other nodes and present the ego-network in an off-screen outer-ring.

4.4. Design Process

We conducted contextual interviews to understand the data analysis
workflow of our collaborators. During these interviews, our collabo-
rators described examples of challenges as well as common features
and methods (e.g., spatio-temporal clustering) used in the domain.
We identified that the main focus of the domain is to verify a single
hypothesis with statistical tools, with only a few tools to display
spatio-temporal data (e.g., Animal Ecology Explorer [SBJ∗11]).
Standard network visualization tools (e.g., Gephi [BHJ09]), further-
more, have limited support for dynamic networks and do not support
any abstraction methods over time. We did not find any specifically
tailored visualization tools to present and analyze spatio-temporal
data in the application domain. Afterward, we discussed potential
abstractions methods and designs in the form of slides with our
collaborators [LD11]. Based on the feedback we received, we im-
plemented a prototype to visualize the spatio-temporal network by
a first simple glyph design. In later iterations, we redesigned the
cluster glyph based on the feedback we received and added more
features (e.g., filter links) to the prototype. Finally, we conducted a
user evaluation to understand how users perform real tasks.

5. Evaluation

To show the effectiveness and usability of the MotionGlyph system,
we conducted audio-recorded interview sessions of 60-90 minutes
with five expert participants. Before using the application, we inter-
viewed the participants on their background, expectations for the
application, and their impressions of the design. Then, the applica-
tion was used during a screen-recorded pair analytics session [KF14].
After the pair analytics session, we reviewed the initial expectations
in comparison to the actual tool.

5.1. Participants

All participants (P1-P5) are involved in researching the collective
behavior of animals. None of the participants had used or seen the
tool before entering the study. The gender distribution was four
male and one female participant. The educational distribution was
one master’s student, three PhD researchers, and one postdoctoral
researcher. Four of the five participants were between 20 and 30
years old, and one between 30 and 40.

5.2. Dataset and Tasks

To provide a realistic setting for the pair analytics session, we pre-
pared a dataset of 151 golden shiner fish moving inside a tank. To
facilitate the exploration of all application aspects, we provided the
participants with a list of six tasks to be solved:
1. Introduction - Familiarize with all interactions using a test dataset

2. Temporal - Identify and analyze an interesting point in time
3. Spatial - Find an outlier fish and analyze its characteristics
4. Network - Find a group and analyze its characteristics
5. Find at least one meaningful single behavior pattern
6. Find at least one meaningful group behavior pattern
The first task aimed at exploring all facets and interactions of the ap-
plication. Additionally, the participants were encouraged to compare
the network and glyph view. All other tasks 2-6 should be conducted
on the real-life dataset of 151 fish. The second task should encour-
age the exploration of the animation feature. The third task aimed at
filtering the network connections and changing the features to get
insights into one mover/glyph. The fourth question encouraged the
use of the cluster glyphs at different granularity levels. Finally, task
five and six aimed at interpreting the results of the visual analysis
concerning real animal behavior.

5.3. Background and Domain Characteristics

Of the five participating experts, three had already worked with data
on fish behavior, while two had only worked on insects and mam-
mals. All five experts were familiar with the analysis of collective
behavior, but only three focused explicitly on the movement of a col-
lective. The main goals of data analysis were split between finding
clusters (2), finding interactions of individuals (3), and finding differ-
ences between groups (2). The majority of experts solved their tasks
by programming analyses (4). Some experts had used visual tools
for exploring their data (3), while others had primarily used visual-
ization to present the final analysis outcomes (3). The most critical
variables for either analyzing the data were social interactions (5),
movement metrics (2), and vision fields (2).

5.4. Expectations and First Impressions

The main goals for using an explorative visualization were the iden-
tification and extraction of essential data subsets (5), the interactive
filtering of relevant information (3), and the comparison between
different groups or subgroups of the cohort (3). Other aspects that
were mentioned concerning confirmative visualization were aggre-
gation/comparison of data subsets (2), prediction of behavior (2),
and analysis of contextual influence (2). When first shown the design
of the individual and cluster glyphs, all participants agreed that the
design is clear and intuitive. Two questions that were raised were
the interpretability of the glyph within the collective (2) and the
possibility of extensions. Two critical interaction features were the
adaptability of the view using zooming (3) and the adaptability of
the glyph using self-defined parameters (3). Some of the partici-
pants stated that the design is similar to their current approaches at
exploring the data (3).
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Figure 6: The presented use case in Sec. 5.7 from the 151 golden shiner. The color of the glyph is mapped to the speed of movers. The time

steps show how two groups merge initiated by an influencer fish. The example illustrates how the designed glyphs display relations between

movers and group structures to identify patterns and generate new insight using the proposed glyphs.

5.5. Pair Analytics Session

The relevant features that were discussed are the temporal represen-
tation via animation, the comparison between node-link and glyph
representation, and the clustering of groups. The animation was seen
as a central element of the analysis. To finetune the findings, the
speed of animation should be adaptable (4). Furthermore, interesting
movers or groups need to be followed during the animation (4) either
by highlighting them or by centering them in a zoomed view. Finally,
the details of an individual behavior need to be retrieved from the
original video (4), which should be synchronized with the animation.
Most participants agreed that the network is too confusing and over-
loaded with information (4). However, while some appreciate the
glyph design as a clean solution (2), others were happy to include the
edge information on hovering a glyph (2). Despite some differences
in the overall acceptance of the glyphs, all participants agreed that
the aggregation is helpful and necessary in large groups or dense
areas of the network (5). One participant summarizes this nicely:
"Even when proper filtering is applied, there is no way to see the
interactions of a fish in the center [of a cluster]. Then the glyph is
way better. [...] In high-density formations, the glyphs are awesome.
In low-density formations, the network is much more important".
The cluster glyph was helpful for the participants to identify the
groups and outliers in their analysis.

Some improvements were suggested to increase the benefit of
the cluster glyph. Due to the scaling of the internal cluster network
within the cluster glyph, the spatial extent of the cluster was not eas-
ily visible in the overall dataset (3). The scale of clustering strengths
should be adaptable (2). Finally, opinions diverged between too
little or too much information on the representation of the internal
cluster network, leading to a wish for further adaptability in both
cases (2). The most common extension suggestion was an interac-
tive parametrization of the links (4), distance metric (4), and their
granularity (3). A second extension was the labeling or individu-
als, groups, and timestamps for tracking and comparison (4). Other
wishes regarded the selection of sweet spots on each of the scales

via distribution and unit information (2), the scalability to long time
sequences (2), and the display of exact values on hovering nodes in
the network (2).

5.6. Expectation Review and Future Use

Overall the participants’ experience with the application was posi-
tive. They were able to identify several interesting patterns. Most
commonly, they could easily spot outliers (4), larger groups (3), and
transitions in groupings (split or join) (3). Some participants went
even deeper into the analysis and identified roles such as leader and
follower (2), and behaviors, such as outlier groups joining the larger
group (2), groups circling a center point (2), and groups following
a formation (2). Regarding their projects, most participants saw
the applicability of MotionGlyphs (4), and some were especially
intrigued by the use of a simple web interface (2). However, all
participants requested additional contextual information (5), such as
3D movement, in place motion, or geographical context, and some
wanted to export the identified relevant subsets of data into statistical
programs for retrieving their final results (2).

5.7. Use-Case

The selected use-case (see Fig. 6) highlights the merging process
of two fish groups and shows how MotionGlyphs can be used to
identify structural and temporal patterns. The use-case is adapted
from a pair analytics session and shows the 151 Golden Shiner fish
data (color mapped to speed). (A-B) display the same time moment
as a node-link diagram (A) and as MotionGlyphs with clustering
(B). The left group in (A) and (B) reveals how MotionGlyphs helps
to reduce clutter and emphasizes movers with different behaviors
(see left red box in (B)). Also in (B), there is an apparent mover (in-
fluencer) who is going to initiate the merging process of both groups.
The influencer mover leads between (B-C) a subgroup from the main
group (right) towards the smaller group (left). The merging process
between the two groups is reflected by the movers being added into
the left cluster glyph (see merging in (C-E)), which indicates that the
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in-between subgroup of movers imitates the behavior from the left
group. The merged group moves, afterward, towards the larger group
on the right (see (E-F)). In (C-F), furthermore, a group of followers
trying to catch up with the left cluster glyph is visible. The follower
movers in (C-F) group accelerate, and some followers catch-up with
the group and merge into the cluster glyph. However, in (F) still, two
follower movers, as well as an outlier fish below, are visible, which
did not yet manage to catch up and integrate into the merging cluster
group. In (C-F), a fish in-between the groups is apparent, and the
temporary influences onto the in-between mover are visible through
the as abstracted links. The in-between fish moves in (D-E) towards
the left group and adapts his behavior in (F) towards the direction of
the right group. In Fig. 6 (F), the cluster granularity was also adjusted
to aggregate the movers further into groups to reduce overlapping
glyphs and presents higher-level patterns in the merging fish swarm.

The use-case shortly describes how MotionGlyphs can be uti-
lized to analyze the temporal evolution of interactions and group
structures in collective behavior. In the use-case, more patterns are
visible (e.g., outlier movers), which allows further detailed analysis
to understand the influences among the movers. Experts can perform
such an investigation by tracking the movers or groups over time
and examining the links between them.

5.8. Lessons Learned

Domain experts are used to testing hypotheses and applying famil-
iar visualizations (e.g., heatmaps) for presenting statistical results.
The interactive aggregation and disaggregation of data helps them
to unveil behavior processes in space and time. Domain experts,
however, need the original video in addition to the animation, as
the individual behavioral traits of movers are also dependent on
the posture and visual field of movers. The animation rate seems
to influence the perceived patterns heavily and should, therefore,
automatically adapt to a user-defined metric so that the animation
plays faster for intervals in which the change is minimal. There was
also an emphasis to include an export functionality for data subset
to verify the identified pattern with statistical tools. This shows that
visual exploration and statistical analysis are seen as complementary
and require new methodologies combining both perspectives.

6. Limitations

The cornerstone of our design is the visual abstraction of spatio-
temporal network links and group structures. The approach consists
of the basic steps, (1) to define a spatio-temporal network based on
a similarity metric, (2) the spatio-temporal clustering, and (3) the vi-
sual exploration using MotionGlyphs. There are multiple parameters
to set for the steps (1-2), for example, choosing what features to use
in the similarity metric and the range of spatial densities for the clus-
tering. The meaningfulness of the network and the clustering, there-
fore, depends on the input parameters and the similarity metric (Eu-
clidean or cosine distance) [RT14]. Many of these parameter choices
have to be defined by a domain expert and depend on the data char-
acteristics (e.g., tracking resolution). We consider the flexibility of
computing different networks and clusterings an advantage of our ap-
proach and a possibility for future work to explore which similarity
metric works best for particular patterns (e.g., following of a leader).

The choice of encoded attribute poses another challenge, as
there are multiple alternative designs possible. The downside of

the link abstraction is that the aggregated segments are harder to
interpret and that minimal variations and changes in segments are
hardly readable. In the application domain, however, such minimal
variations result from noise, and the main focus of domain experts is
rather to visually identify evolving structural properties (e.g., group
changes). The identification of changes (e.g., movers frequently
swapping between groups) in the evolving data poses a challenge
and requires further visual support (e.g., temporal smoothing of the
animation). The cluster glyph aims to reduce clutter and the number
of displayed movers, however, the mapping results in a small visual
space in which changes are difficult to interpret. Visual indicators
such as highlighting changes (e.g., mover leaving a group) intend
to point out evolving structural properties in the group. The cluster
glyph placement (centroid of the group) distorts the positions of
the individual movers and can create overlaps between groups
and single movers. Such an overlap between a group and a single
mover is an indicator that the single mover is a local outlier as the
movement characteristics differ from the spatially related neighbors.

We consider two types of scalability: the network size and the
number of time steps. The approach is robust to a larger group of
movers (e.g., 800 movers) as the proposed glyph designs reduce
the number of displayed network links. MotionGlyphs is, however,
currently not fully able to cover datasets with different spatial dis-
tributions, which can be supported by applying other density-based
clusterings (e.g., ST-OPTICS [AGSP16]). We also used agent-based
models (e.g., Couzin et al. [CKJ∗02]) to investigate the temporal
scalability (6000 time steps) of the approach and identified that
the current prototype scales up well to 25 million network links.
The glyphs are less useful in the application domain if the number
of movers and links is below a certain threshold as we rely on the
visual abstraction of links as well as groups.

7. Conclusion

We present a design study for the visual exploration of spatio-
temporal networks and group structures in collective animal be-
havior. The result of our iterative design process is a glyph that
enables us to display a visual summary of dense spatio-temporal
network data, which are typically hard to visualize. MotionGlyphs is
iteratively designed by a series of discussions with our collaborators.
We validate our design with an expert evaluation, which highlights
how the design and prototype can be used to gain insights about the
underlying evolving data. We learned that the glyph design is appro-
priate and can be extended for a range of potential analysis use cases
(e.g., context analysis). Even though the application domain moti-
vated the design of MotionGlyphs, the design is suitable to visualize
any spatio-temporal networks. We plan to, furthermore, evaluate the
designed glyph for similar analysis tasks (e.g., identification of net-
work attacks) in other domains (e.g., network security). Finally, we
also plan to combine a semantic zoom with a hierarchical clustering
by modifying AGNES [KR90] to work with spatio-temporal data
to split groups interactively during a semantic zoom into smaller
subgroups and to adapt the proposed glyph to the size of the groups.
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