
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020
J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills

Zhaoming Xie† Hung Yu Ling† Nam Hee Kim Michiel van de Panne

University of British Columbia, Canada

Figure 1: Humanoid (left), Cassie (middle), and Monster (right) walk across randomly generated stepping-stone terrain.

Abstract

Humans are highly adept at walking in environments with foot placement constraints, including stepping-stone scenarios where
footstep locations are fully constrained. Finding good solutions to stepping-stone locomotion is a longstanding and fundamental
challenge for animation and robotics. We present fully learned solutions to this difficult problem using reinforcement learning.
We demonstrate the importance of a curriculum for efficient learning and evaluate four possible curriculum choices compared to
a non-curriculum baseline. Results are presented for a simulated humanoid, a realistic bipedal robot simulation and a monster
character, in each case producing robust, plausible motions for challenging stepping stone sequences and terrains.

CCS Concepts
• Computing methodologies → Reinforcement learning; Physical simulation;

1. Introduction

Bipedal locomotion is a fundamental problem in computer anima-
tion and robotics, and there exist many proposed data-driven or
physics-based solutions. However, a principal raison-d’Ãłtre for
legged locomotion is the ability to navigate over challenging ir-
regular terrain, and this is unfortunately not reflected in the bulk
of locomotion work, which targets flat terrain. Traversing irregular
terrain is challenging, with the limiting case being that of naviga-
tion across sequences of stepping-stones that fully constrain each
footstep. We wish to learn physics-based solutions to this classical
stepping stone problem from scratch, i.e., without the use of mo-
tion capture data,. The limits of the learned skills should ideally
stem from the physical capabilities of the characters, and not from
the learned control strategy.

We investigate the use of deep reinforcement learning (DRL) for
computing solutions to this problem. We find a curriculum-based

† These authors contributed equally to this work.

solution to be essential to achieving good results; the curriculum
begins with easy steps and advances to challenging steps. We eval-
uate four different curricula, which each advance the learning based
on different principles, and compare them against a no-curriculum
baseline. Challenging stepping stone skills are demonstrated on a
humanoid model, a fully-calibrated simulation of a large bipedal
robot and a monster model. Finally, we demonstrate that the step-
ping stone policies can be directly applied to walking on challeng-
ing continuous terrain with pre-planned foot placements.

Our contributions are as follows:

• We show how control policies for challenging stepping stone
problems can be learned from scratch using reinforcement learn-
ing, as demonstrated across 3 bipeds and 2 simulators. Leverag-
ing careful reward design, we are to learn control policies pro-
ducing plausible motions, without the use of reference motion
data.
• We demonstrate the critical role of a curriculum to circumvent

local minima in optimization and that support efficient learning

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ar
X

iv
:2

00
5.

04
32

3v
2

 [
cs

.G
R

]
 3

0
A

ug
 2

02
0

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

for this task. We evaluate four curricula in comparison to a no-
curriculum baseline.
• We demonstrate that the stepping stone control policies are di-

rectly transferable to locomotion on continuous terrain. The
learned stepping stone skills thus serve as a general solution for
navigating many types of terrain.

2. Related Work

The stepping stone problem is of interest to many, including: ani-
mation and robotics, as will be discussed in more detail below, gait
and posture, e.g., [LKBMN13, PHC∗14], and neuromotor control,
e.g., [PV03,MF14]. In what follows below, we focus principally on
related work in animation and robotics.

2.1. Learning Bipedal Locomotion

Considerable progress has been made towards learning control
policies for locomotion in the context of physics-based character
animation, often via deep reinforcement learning. In many cases,
these aim to satisfy an imitation objective and target motions on
flat terrain, e.g. [LPY16, PBYVDP17, LH17, PRL∗19, BCHF19].
Other solutions learn in the absence of motion capture data, also
for flat terrain, e.g., [YTL18, LPLL19, JVWDGL19]. Environment
information such as height maps [PBVdP16,PALvdP18] or egocen-
tric vision [MAP∗18] can be fed into the policy to adapt to some
degree of terrain irregularity. Learned kinematic locomotion con-
trollers have recently achieved impressive results for terrains that
includes hills and obstacles [HKS17, ZSKS18], although equiva-
lent capability has not been demonstrated for physically simulated
characters. The stepping-stone problem has also been tackled using
trajectory optimization, e.g., [SHP04].

2.2. Walking on Stepping Stones

Precise foot placement is needed to achieve stepping stone ca-
pability. There are many works in the robotics literature that
achieve this capability by utilizing path planning techniques, in-
cluding mixed integer programming [DT14] or variants of A*
search [CLC∗05, GWM∗19]. Such techniques are often limited
to flat terrain [CLC∗05] or to slow motions informed by quasi-
static solutions [TDPP∗18]. Another line of work uses a gait li-
brary [NAD∗17], consisting of trajectories for different steps that
are computed offline and are then used to achieve stepping stone
walking on a bipedal robot whose motion is restricted to the sagit-
tal plane.

3D stepping stones capability has been shown in several simu-
lated bipedal character models. [NHG∗16] approach this via the
use of control barrier function, although that heavily relies on
the feasibility of the resulting Quadratic Programming problem,
which is not always satisfied. Furthermore, while the simulated
model is 3D, the steps themselves are placed in a straight line
on a horizontal plane, i.e., only have distance variation, and thus
no height variation or turning. There are also works in com-
puter animation literature demonstrating 3D stepping skills, e.g.
[CBYvdP08] and [MDLH10], generally with limited realism and
capabilities. Terrain-adaptive motion has been tackled using end-
effector trajectory planning and quadratic programming to produce

Figure 2: Overview of our curriculum learning system. The cur-
riculum module improves learning efficiency by dynamically ad-
justing the terrain difficulty according to the progress of the policy.

controllers for navigating on uneven terrains, such as stairs and hur-
dles [WP10]. This uses manually-crafted representations and mo-
tion cycle phases. Our work differs in terms of its focus on the po-
tential of learning-based approaches and on high-difficulty stepping
scenarios. Lastly, foot placement has also been used as guidance for
reinforcement learning algorithms to achieve path following capa-
bility for a simulated biped [PBYVDP17]. It is used to parameterize
the possible steps, on flat terrain, and in practice it does not always
do well at reaching the desired foot placements.

2.3. Curriculum-based Learning

Curriculum learning is the learning process where task difficulty
is increased overtime during training [BLCW09]. It has also been
applied for synthesizing navigation or locomotion policies, e.g.
[YCBvdP08, KvdP12, FHW∗17, HSL∗17, YTL18]. The task dif-
ficulty is usually determined by human intuition. Teacher-student
curriculum learning [MOCS19] uses the progress on tasks as a met-
rics for choosing the next tasks, and demonstrates automatic cur-
riculum choices on decimal number additions of different lengths
and Minecraft games. Intrinsic motivation [FMO17] can also help
to let robots begin from simple goals and advance towards com-
plicated goals. A curriculum policy [NS19] can further be learned
by formulating the curriculum learning process as a Markov Deci-
sion Process (MDP). More recently, [WLCS19] proposes the POET
algorithm that allows a 2D walker to solve increasingly challeng-
ing terrains by co-evolving the environment and the policy. Reverse
curriculum learning has been shown to be effective at balancing un-
even data generation in DRL. For example, [WL19] and [PRL∗19]
propose a form of adaptive sampling where more difficult tasks are
given higher priority during training.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

3. System Overview

An overview of our system is shown in Figure 2. The environment
consists of a physics simulator and a step generator. The step gen-
erator samples a random sequence of steps from a given probabil-
ity distribution of the step parameter space. In the case where no
curriculum is applied, the step distribution is uniform across the
parameter space for the entire duration of training. In contrast, a
curriculum dynamically adjusts the step distribution depending on
the progress made by the policy. We experiment with four differ-
ent curricula and a baseline, each having its own motivation and
benefits. We show experimentally that curriculum learning, when
applied appropriately, allows the policy to solve the stepping stone
task, which is otherwise very challenging with standard reinforce-
ment learning.

The remaining of the paper is organized as follows: stepping
stones task definition and character modelling (§ 4), reinforcement
learning and reward specifications (§ 5), learning curricula (§ 6),
experimental results (§ 7), and discussions (§ 8).

4. Simulation Environments

We now describe the stepping stones parameter space and character
models. We experiment with three different characters, Humanoid,
Cassie and Monster, to show that the proposed curricula provide a
robust approach for learning stepping stones skills.

4.1. Stepping Stones Generation

In the stepping stones task, the goal of the character is to make
precise foot placements on a sequence of discrete footholds. The
character receives foothold positions of the two upcoming steps in
its root space, i.e., (x1,y1,z1) and (x2,y2,z2) as shown in Figure 3.
We use two steps since two-step anticipation yields better perfor-
mance than a single-step [NAD∗17], and it has been found that
further anticipation may be of limited benefit [CBYvdP08].

Successive step placements are generated in spherical coordi-
nates, where the step length r, yaw ψ, and pitch θ relative to the
previous stone are the controllable parameters. This 3D parameter
space is also illustrated in Figure 3. We limit the distance, yaw,
and pitch to lie in the intervals [rmin,rmax], [−ψmax,ψmax], and
[−θmax,θmax] respectively. During training, we set ψmax = 20◦ and
θmax = 50◦, which we find experimentally to be the upper lim-
its of our character’s capability. For our 2D step-parameter tests,
step distance is sampled uniformly from [0.65,0.8] meters for the
humanoid and [0.35,0.45] meters for Cassie to account for the dif-
ferences in character morphology. A 5D parameter space includes
additional roll and pitch variations of the step surfaces, which sup-
ports transfer of the skills to smoothly-varying terrains. The roll and
pitch variation of a step, (φx,φy), is generated by first applying the
ψ rotation relative to the previous foothold, then subsequently ap-
plying the φx and φy rotations about its x-axis and y-axis. In effect,
this causes the step to become tilted as shown in Figure 7.

When the character successfully steps on the current target, its
position (x0,y0,z0) is immediately replaced by that of the next tar-
get (xy,y1,z1), and new target (x2,y2,z2) pops into view. We in-
troduce an artificial look-ahead delay to allow the stance foot to

next target

new target

x

y

z

Figure 3: Illustration of the stepping stone problem. The charac-
ter observes the position of the next two steps with respect to its
center-of-mass. The new target is generated from a distribution pa-
rameterized by three parameters: r,ψ and θ.

Figure 4: Character models for the Humanoid (left), Cassie (mid-
dle), and the Monster (right).

settle (see Table 1), by postponing this replacement process for a
fixed number of frames. In practice, the look-ahead delay impacts
the speed at which the character moves through the stepping stones
and also enables it to stop on a given step. Lastly, to ensure that
the character begins tackling variable steps from a predictable and
feasible state, we fix the first three steps of the stepping stones se-
quence. Specifically, the first two steps are manually placed slightly
below the character’s feet, and the third step is always flat and di-
rectly ahead.

4.2. Character Models

The character models are shown in Figure 4 and the detailed spec-
ifications is summarized in Table 1. We focus our experiment and
analysis on the Humanoid and Cassie model. However, we show
that the curriculum-based learning pipeline can be directly applied
to a third character, the Monster.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Table 1: Properties of the characters.

Property Humanoid Cassie Monster

Height (m) 1.60 1.16 1.15
Mass (kg) 59 33 33
Action Parameters 21 10 21
Degrees of Freedom 27 20 27
State Features 60 51 60
Maximum Torque (N·m) 100 112.5 100
Simulation Freq. (Hz) 240 1000 240
Control Freq. (Hz) 60 33 60
Look-ahead Delay (frames) 30 3 30

Humanoid. The Humanoid is simulated with 21 hinge joints using
PyBullet [CB19] and is directly torque-controlled. As is standard in
reinforcement learning, we normalize the policy output to be in the
interval [−1,1], then multiply the action value for each joint by its
corresponding torque limit. The state space contains the joint an-
gles and velocities in parent space, roll and pitch of the root orien-
tation in global space, and linear velocities of the body in character
root space. Furthermore, the state space also includes height of the
pelvis related to the lowest foot, as well as a binary contact indi-
cator for each foot. We use the height information to detect when
the character falls to early terminate the simulation. To improve the
motion quality, we generate mirrored roll-out trajectories using the
DUP method from [ALX∗19] to encourage symmetric motions.

Our humanoid character is carefully modelled to reflect joint
and torque limits that are close to those documented for humans
in [Gri15]. Humanoid characters with unrealistic torque limits of-
ten produce unnatural motions unless guided with reference mo-
tions, e.g. [PALvdP18, MAP∗18]. In our experiments, we find, as
in [JVWDGL19], that natural motion is easier to achieve with the
use of realistic torque limits.

Cassie. The action space of Cassie consists of the target joint angles
of the ten actuated joints for low-level proportional-derivative (PD)
controllers. More concretely, the policy outputs a target joint angle
αtarg at 33 Hz for each joint, then the joint torque is computed as
τ = KP(αtarg−α)−KDα̇ at 1000 Hz for simulation. We define the
proportional gain KP for each joint equal to its torque limit, and we
set the derivative gain KD = KP/10. The PD controller operates at a
much higher frequency than the policy to ensure stability in control
and simulation.

The Cassie model is designed by Agility Robotics, simulated in
MuJoCo [TET12], and is validated to be very close to the physical
robot [XCD∗19]. Designing robust controllers for Cassie is chal-
lenging since it has 20-DoF while only having ten actuators. Fur-
thermore, due to the strong actuators on the robot, it is difficult to
obtain high quality motion directly with a simple reward specifica-
tion. To bootstrap stepping stones training, we follow [XBC∗18] to
first obtain a natural forward-walking policy by tracking a reference
motion. The reference motion contains a walk cycle with a period
of 0.84 seconds, or 28 control time steps. A phase variable is added
to the state space to track the timing in a gait cycle. In particular, it
increases linearly over time from 0 to 1, and resets to 0 at the end
of the 28 frames. Since only a single reference walk cycle is used,

the phase variable is purely a function of time, and is not depen-
dent on foot strike timings. The reference motion is discarded after
the base controller is trained, i.e., it is not used during training in
the stepping stone environment. However, the phase variable is still
used as input to the controller, which limits the stepping motion to
a fixed period. Since contact state can be estimated from the phase
variable, Cassie does not have the binary contact indicators used in
the Humanoid.

Monster. The third character, the Monster, is identical to the Hu-
manoid except for body morphology, mass distribution, and slightly
weaker arms.

5. Learning Control Policies

We use reinforcement learning to learn locomotion skills. How-
ever, as we show in Section 7, reinforcement learning alone,
without curriculum, is insufficient for solving the stepping stones
task. In this section, we provide the background for actor-critic-
based policy-gradient algorithms. Importantly, the critic module
can be used to estimate the performance of the policy, as shown
in [WL19,PRL∗19]. Our adaptive curriculum (§ 6.5) uses the critic
to adjust the task difficulty.

5.1. Proximal Policy Optimization with Actor-Critic

In reinforcement learning, at each time t, the agent interacts with
the environment by applying an action (at) based on its observation
(ot) from the environment and receive a reward, rt = r(ot ,at), as
feedback. Usually the agent acts according to a parametrized pol-
icy πθ(a|o), where πθ(a|·) is the probability density of a under the
current policy. In DRL, π is a deep neural network with parameters
θ. The goal is to solve the following optimization problem:

maximize
θ

JRL(θ) = Eat∼πθ(·|ot)

[
∞
∑
t=0

γ
tr(ot ,at)

]
,

where γ ∈ (0,1) is the discount factor so that the sum converges.

We solve this optimization problem with a policy-gradient actor-
critic algorithm, updated using proximal policy optimization (PPO)
[SWD∗17]. We choose PPO because it is simple to implement
and effective for producing high quality locomotion solutions, as
demonstrated in previous work, e.g. [PALvdP18, YTL18, PRL∗19,
WL19].

The critic, or the value function, computes the total expected re-
ward a policy can get when starting from an observation o. The
value function is defined for a policy π as:

V π(o) = Eo0=o,at∼π(·|ot)

[
∞
∑
t=0

γ
tr(ot ,at)

]
.

In DRL, the total expected reward can often only be estimated, and
so we collect trajectories by executing the current policy. Let an
experience tuple be et = (ot ,at ,ot+1,rt) and a trajectory be τ =
{e0,e1, . . . ,eT }, a Monte Carlo estimate of the value function at ot
can be recursively computed via

V πθ(ot) = γ V πθ(ot+1)+ rt ,

with V πθ(oT) = rT + γV πθold (oT+1). The value estimate is used to

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

train a neural network-based value function using supervised learn-
ing in PPO. In policy-gradient algorithms, the value function is usu-
ally only used for computing the advantage for training the actor.

The policy, or the actor, is updated by maximizing

Lppo(θ) =
1
T

T

∑
t=1

min(ρt Ât , clip(ρt ,1− ε,1+ ε)Ât),

where ρt = πθ(at |ot)/πθold (at |ot) is an importance sampling term
used for calculating the expectation under the old policy πθold and
At =V πθ −V πθold is the advantage estimation.

5.2. Reward Design

Despite recent advancements in DRL algorithms, it remains critical
to design suitable reward signals to accelerate the learning process.
We describe the reward specifications used for the stepping stones
environment below.

Hitting the Target. The immediate goal of the character is to place
one of its feet on the next stepping target. We define the target re-
ward as

rtarget = ktarget exp(−d/kd),

where d is the distance between the center of the step target and
its contacting foot. We use ktarget and kd to define the magnitude
and sensitivity of the target reward. To account for the differences
in body morphology of the Humanoid and Cassie model, we use
ktarget = 50 and kd = 0.25 for the Humanoid and ktarget = 20 and
kd = 0.1 for Cassie. The sensitivity term is chosen to reflect the
approximate length of the foot. Note that the character receives the
target reward only when contact with the desired step is made, oth-
erwise it is set to zero.

In the initial stages of training, when the character makes contact
with the target, the contact location may be far away from the cen-
ter. Consequently, the gradient with respect to the target reward is
large due to the exponential, which encourages the policy to move
the foot closer to the center in the subsequent training iterations.

Progress Reward. The target reward is a sparse reward, which is
generally more difficult for DRL algorithms to optimize. We pro-
vide an additional dense progress reward to guide the character
across the steps. More specifically, let dt−1 and dt be the distance
between the root of the character to the center of the desired step at
the previous and the current time step, as projected onto the ground
plane. A progress reward

rprogress = (dt−1−dt)/dt

is added to encourage the characters to move closer to the stepping
target. dt is the control period for each character in Table 1.

Additional Reward For Humanoid. It is common practice to in-
corporate task-agnostic rewards to encourage natural motion when
working in the absence of any reference motion, e.g. [DCH∗16,
YTL18]. We use similar reward terms to shape the motions for the
Humanoid:

raddition = renergy + rlimit + rposture + rspeed + ralive.

The four terms penalize the character for using excess energy,

reaching joint limits, failing to maintain an upright posture, and un-
naturally speeding across the steps. Most of the terms are adapted
from the reward implementation in [CB19].

For the energy penalty, we have

renergy =−4.5
1

N j
∑

j
| a j · v j | −0.225

1
N j

∑
j
| a j |2,

where N j is the number of joints on the Humanoid, a j is the nor-
malized torque for joint j, and v j is the joint velocity.

The joint limit penalty is used to discourage the character from
violating the joint limit, defined as

rlimit =−0.1∑
j
1 j /∈[0.99l j ,0.99u j](j),

where 1 j /∈[0.99l j ,0.99u j](j) is the indicator function for checking
whether joint j is beyond 99% of its natural range of motion de-
fined by limits l j and u j. In essence, this penalty is proportional to
the number of joints near the lower or upper limit.

The posture penalty is

rposture =− | αx | 1αx /∈[−0.4,0.4](α)− | αy | 1αy /∈[−0.2,0.4](α),

where αx and αy are the roll and pitch of the body orientation in
global frame. The penalty applies only when the character is lean-
ing sideways for more than 0.4 radians, or backwards beyond 0.2
radians or forwards by 0.4 radians.

We also observe that the Humanoid tends to move unnaturally
fast to achieve a good progress reward. We add a velocity penalty

rspeed =−max(‖vroot‖2−1.6,0),

to discourage the character from exceeding root speed of 1.6 me-
ters per second. The issue does not effect Cassie since its speed is
predetermined by the fixed gait period.

Finally, we add an alive bonus

ralive = 2

for every time step that the Humanoid is able to keep its root 0.7
meters above the lower foot, otherwise the episode is terminated.
This reward encourages the Humanoid to maintain balance and pre-
vents it from being overly eager to maximize the progress reward.

6. Learning Curricula

The learning efficiency for the stepping stones task is strongly cor-
related to the distribution of the step parameters. In this section,
we describe five different sampling strategies, including uniform
sampling for baseline comparison. For clarity, we focus on the 2D
parameter subspace of (ψ,θ), which are the relative yaw and pitch
of consecutive steps shown in Figure 3. However, we further extend
this strategy to 3D and 5D step parameter spaces.

Except for uniform sampling, other strategies require dynami-
cally adjusting the step parameter distributions. As such, we first
discretize the sampling space evenly into an 11×11 grid inside the
region defined by [−ψmax,ψmax]× [−θmax,θmax]. The midpoint of
the grid is precisely ψ = 0 and θ = 0. Also note that the granularity
of the ψ-axis and θ-axis is different since ψmax is not equal to θmax.
The discretization process is illustrated in Figure 5.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Figure 5: Left: The fixed-order curriculum advance evenly through the sampling space. Middle: The fixed-order boundary curriculum
advance evenly, but only samples step on the boundary of the parameter space. Right: The adaptive curriculum is free to explore the
parameter space at its own pace.

6.1. Uniform Sampling (Baseline)

The simplest strategy is to sample the parameters uniformly dur-
ing training. This is effective if the sampling space only spans easy
steps, e.g. steps with small yaw and pitch variations. As the step
variations become larger, it becomes less likely for the policy to
receive the step reward during random exploration, and so the gra-
dient information is also reduced. We also refer this strategy to as
the no curriculum baseline, since it does not adjust step parameters
distribution during training.

6.2. Fixed-order Curriculum

This curriculum is designed based on our intuition of tasks diffi-
culty. We first divide the 11× 11 grid into six stages, from the
easiest to the most challenging. In stage k, ψ and θ are sampled
uniformly from the (2k− 1)× (2k− 1) grid centered at the mid-
dle point. E.g. in the first stage, we only sample the center point
of the grid, which means that every step is generated with ψ = 0
and θ = 0. The curriculum advances when the average total reward
during a training iteration exceeds a threshold (see Table 2). The
curriculum becomes equivalent to uniform sampling when the last
stage is reached, i.e. k = 6, and is fixed until the end of the training.
The process is illustrated in Figure 5. We call this the fixed-order
curriculum because the stages proceed in a predefined order, al-
though the progression from one stage to the next is still tied to the
performance. Similar approaches have been shown to be effective
for learning locomotion tasks, e.g. [YTL18].

6.3. Fixed-order Boundary Curriculum

This strategy is similar to the fix-order curriculum with one impor-
tant modification: Instead of sampling uniformly in the rectangular
domain, it only samples in the boundary regions. Please refer to
Fig 5 for visual illustration of the differences. The premise is that
the policy can remember solutions to previously encountered step
parameters, or that the solution which solves the new parameters
also solves the inner region, and so it is more efficient to sample
only on the boundary.

6.4. Difficult-tasks-favored Sampling

This strategy is equivalent to the adaptive sampling introduced
in [PRL∗19] and [WL19]. The idea is that during task sampling,

more difficult tasks will cause more failure, leading to more fre-
quent early termination. Because of this, even though the tasks are
sampled uniformly, the data collected will be more biased towards
easier tasks. To counter this, the sampling distribution is updated
based on the current value function estimate of each task. This re-
sults in more difficult tasks being sampled more frequently, thus
balancing the data distribution observed during training. In many
ways, this strategy takes the opposite approach of the fixed-order
curriculum, where the policy focuses on easy steps in early stages
of training and moves progressively into more difficult settings. We
describe the implementation together in Section 6.5.

6.5. Adaptive Curriculum

The motivating philosophy of our adaptive curriculum is that it is
beneficial to avoid scenarios that are either too easy or too chal-
lenging during learning. Most of the trajectory samples should be
devoted to medium difficulty steps that the policy can improve on
in the short term.

We define the capability of a policy π for parameters ψ and θ as

Cπ(ψ,θ) =
∫

s
V π(s,δ1(r,0,0),δ2(r,ψ,θ))ds,

where r is fixed to be (rmax + rmin)/2 and δk(r,ψ,θ) converts the
step parameters to Cartesian vectors used by the policy and value
function. In simple terms, the capability metric is an answer to the
question: Given two upcoming steps, what is the average perfor-
mance of the current policy across all observed character states?

Evaluating Cπ is generally intractable, so we estimate it by ex-
ecuting the policy on an easy terrain, i.e. the terrain generated by
the first stage defined in Section 6, once per episode. Each time
the character makes contact with the target foothold, the curricu-
lum evaluates the capability of the current policy for each (ψ,θ)
pair in the grid by imagining their placements. We refer to these
step parameters as imagined since they are only used for comput-
ing the policy capability and do not reflect the actual placements of
the physical footholds. The process is repeated for five steps to ac-
cumulate different character states, and the mean result is used as a
proxy for capability. Also, note that only the parameters of the sec-
ond step are used for evaluating the capability, i.e. the first step is
always fixed. It is possible to use both steps for evaluation, but the
second step will be replaced when the character makes contact with

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Table 2: Curriculum and learning parameters.

Property Humanoid Cassie

Fixed-order reward threshold 2500 1000
Adaptive curriculum β 0.9 0.85
Exploration noise (logstd) −1.5 −2.5
Samples per iteration (×104) 5 4

the first, since new steps are generated on every contact. Lastly, we
observe that the value function is less sensitive to the second step
for Cassie, possibly due to the pre-trained imitation controller, and
so we vary the first step instead.

We then define the sampling probability of a set of parameters
(ψi,θ j) in the parameter grid to be proportional to

f (ψi,θ j) = exp(−k |
Cπ(ψi,θ j)

Cπ
max

−β |),

where Cmax = maxψ,θ Cπ. Finally, this proportionality is normal-
ized into a probability distribution p(ψi,θ j) = f (ψi,θ j)/∑ f (ψ,θ).
Here k > 0 controls the sensitivity to differences in capability val-
ues and β∈ [0,1] decides the difficulty setting of the curriculum. In
our experiments, we use k = 10 and β = 0.9 for the Humanoid and
β = 0.85 for Cassie.

When β = 1, the curriculum prefers step parameters such that
Cπ(ψ,θ) = Cπ

max, i.e. steps where the policy has high confidence.
In practice, these usually correspond to the easiest steps, e.g. ones
without roll and pitch variations. Conversely, if β = 0, the curricu-
lum samples steps that are beyond the capability of the current pol-
icy. We use this as our implementation of difficult-tasks-favored
sampling, as they are similar in spirit.

7. Results and Evaluations

We train stepping stone policies for the Humanoid, Cassie and
Monster. We then quantitatively evaluate and compare the differ-
ences between sampling strategies. Since the Humanoid and the
Monster are similar in terms of control and reward specifications,
we focus our evaluation on the Humanoid and Cassie.

7.1. Summary

We first summarize the high-level findings. All three curricula that
gradually increase the task difficulty are able to do well at solv-
ing the stepping stone tasks. This include the fixed-order, fixed-
order boundary, and adaptive curricula. The remaining approaches,
uniform sampling and difficult-tasks-favored sampling, each pro-
duce conservative policies that simply learn to stand on the first
step when the alive bonus is present, and otherwise yield much less
robust and less capable policies. The performance of the policies is
best demonstrated in the supplementary video.

The differences between fixed-order, fixed-order boundary, and
adaptive curricula is small in terms of learning speed and control
performance. One practical advantage of fixed-order curricula is
that they are intuitive and simple to implement. The computational

overhead for implementing these curricula is negligible compared
to simulation and controller inference. In comparison, the adaptive
curriculum is more flexible in two aspects. First, it uses implicit
parameter β to adjust the difficulty of the task, rather than task-
dependent reward thresholds. Additionally, it allows for more fine-
grained curriculum control for independent task parameters, such
as yaw and pitch in our experiments. In summary, we suggest adap-
tive curriculum be used for tasks for which the difficulty cannot be
intuitive assessed, especially when multiple tasks parameters are
involved. For other tasks, fixed-order curricula may be more suit-
able due to their simplicity.

7.2. Policy Structures

All policies in our experiments are represented by two five-layer
neural networks, each hidden layer has 256 neurons, and trained
with PPO. One network is the actor that outputs the mean of a Gaus-
sian policy and the other is the critic that outputs a single value
which indicates the value function estimate of the current policy.
The first three hidden layers of the actor use the softsign [TBB09]
activation while the final two layers use ReLU activation. We apply
the hyperbolic tangent function (Tanh) to the final output to nor-
malize the action to have a maximum value of one. For the critic,
we use ReLU for all the hidden layers. The policy parameters are
updated using Adam optimizer [KB14] with a mini-batch size of
1024 and a learning rate of 3× 10−5 for 10 epochs in each roll-
out. The learning pipeline is implemented in PyTorch [PGM∗19].
For fixed-order curricula, training a single policy takes about 12 to
24 hours on a GPU, with simulation running in parallel on a 16-
core CPU. For the adaptive curriculum, the training time depends
heavily on the dimensionality of the step parameter space, since
the capability is evaluated prior to each roll-out. In the 5D param-
eter case, the value function is evaluated 5× 115 ≈ 8× 105 times
for each policy update. However, this computation can be done in
parallel using batched evaluations on a GPU.

To reduce the amount of computation, we pre-train an initial,
straight line and flat terrain, locomotion controller for both the hu-
manoid and Cassie. The step length r is sampled from [0.65,0.8]
for the humanoid and [0.35,0.45] for Cassie. These controllers are
used as the starting point for all subsequent experiments. This also
means that we are directly comparing different sampling strategies
on their performance for the stepping stones task. For the experi-
ments described in this section, we use ψmax = 20◦ and θmax = 50◦

unless otherwise specified. Other character-specific curriculum and
learning parameters used for training are summarized in Table 2.

7.3. Learning Curves for 2D Parameter Space

The performance of different sampling strategies is shown in Fig-
ure 6. To ensure fairness in the learning curves comparison, we use
uniform sampling to evaluate all policies. It is important to note that
the learning curves may not reflect the performance of the policies
as precisely as visual demonstrations. In particular, due to the pres-
ence of the alive bonus for the Humanoid, a simple policy can re-
ceive a maximum reward of 2000 by standing still on the first step.
Please refer to the supplementary video for further details.

For the Humanoid, the learning curves capture the phenomenon

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Table 3: Performance evaluation of policy under different settings, for Uniform (U), Fixed-Order (FO), Fixed-Order Boundary (FOB), and
Adaptive (A) curricula. The performance numbers represent the maximum radial distances r achievable. Please see the text for a detailed
explanation of the performance numbers. Larger is better. Bold indicates best compared to alternative. Entries marked with a dash indicate
the policy fails for all r ∈ [rmin,rmax].

Humanoid Cassie

Task Parameter U FO FOB A U FO FOB A

Flat (θ = 0)
ψ = 0 1.20, 1.20 1.20, 1.25 1.35, 1.35 1.45, 1.50 0.85 0.90 0.95 0.95
ψ = 20 1.15, 1.20 1.15, 1.20 1.25, 1.35 1.35, 1.40 0.75 0.80 0.85 0.90

Single-step (ψ = 0)
θ = 50 — 0.75, 0.80 — 0.80, 0.80 0.80 0.80 0.85 0.60
θ = −50 1.30, 1.50 1.50, 1.50 0.75, 1.00 0.90, 0.95 0.80 0.85 0.80 0.75

Continuous-step (ψ = 0)
θ = 50 — — — —, 0.65 — 0.40 0.45 0.40
θ = −50 — 0.75, 0.80 —, 0.65 0.65, 0.70 — — — 0.35

Spiral (ψ = 20)
θ = 30 — 0.75, 0.80 — 0.80, 0.85 — 0.50 0.65 0.60
θ = −30 0.65, 0.70 1.40, 1.50 0.65, 0.75 1.00, 1.10 — 0.55 — 0.60

Uniform
Difficult-tasks-favored
Fixed-order
Fixed-order Boundary
Adaptive

Figure 6: Learning curves for different sampling strategies, aver-
aged over five runs. Left: Humanoid. Right: Cassie.

of local and global optima, where the sampling strategies fall into
two categories. In the first category, both the uniform and difficult-
tasks-favored sampling strategies quickly achieve decent perfor-
mances, but eventually converge to lower final rewards. The com-
bination of difficult steps and sparse target reward discourages the
policies trained with these two methods to make further progress
after learning to balance on the first step. In contrast, the policies
steadily improve under the fixed-order, fixed-order boundary, and
adaptive curricula, due to the gradual build-up of steps difficulty.
These three curricula were able to guide the policies to solve the
stepping stones task, and the difference in learning speed is in-
significant. The distinction between these three curricula is more
clear in their use cases, which we discuss in the next section.

7.4. Curriculum Progress for 2D Parameter Space

The fixed-order curriculum is developed based on our intuition of
task difficulty. However, the relationship between a task parameter

and difficulty is not always obvious. The benefits of the adaptive
curriculum are that it yields a smoothly-advancing curriculum with
fine-grained step distribution control based on the policy’s local
capability.

Figure 5 shows the relative progress of the fixed-order and adap-
tive curriculum, where the heatmaps of the latter were captured at
the end of each of the six stages. From the adaptive curriculum
heatmaps, it is clear that the competency in the yaw dimension ex-
pands much faster than in the pitch dimension. This observation is
consistent with our intuition that variations in the yaw dimension
should be easier to learn. Furthermore, the high-probability, ring-
structured region of each heatmap resembles that in the fixed-order
boundary curriculum. Overall, the adaptive curriculum is flexible
and has similar features to the fixed-order and fixed-order boundary
curricula. One disadvantage is that it requires more computation to
evaluate the capability of the policy.

7.5. 3D Parameter Space

We extend the evaluation of fixed-order, fixed-order boundary, and
adaptive curriculum to the 3D parameter space, now including step
distance r. The step distance is sampled from 11 uniformly dis-
cretized values between [0.65,1.5] meters for the Humanoid and
[0.35,1.0] for Cassie. For the fixed-order curriculum, in addition to
the parameters defined Section 6.2, it starts at r = rmin in the first
stage and expands the sampling space by two grid points every time
the reward threshold is met. The fixed-order boundary curriculum
is similarly extended. For the adaptive curriculum, the capability of
the policy defined in Section 6.5 is modified to take an additional
parameter r.

For the fixed-order curriculum, it may be impossible to progress
to the final stage due to the physical capability of the characters.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Figure 7: Steps with roll and pitch variations.

However, it is entirely possible that a parameter choice, e..g, (r =
rmax,ψ = 0,θ = 0), is within capability limit, and that the fixed-
order curriculum will never have the chance to attempt it, while the
adaptive curriculum is free to advance unevenly in the parameter
space. We observe this phenomenon in our experiments.

Policy Capability Limits. We also examine the performance of the
policies by fixing ψ and θ while pushing r to the limit. The test sce-
narios are summarized in Table 3. The single-step scenario means
one inclined or declined step at the start, followed by horizontal
straight-line steps until the end. The continuous-step variation is
where all steps are on a constant incline or decline. The motions
for some of the scenarios can be visualized in Figure 9.

We test whether the policy can sustain the performance level for
ten consecutive steps. For the Humanoid, the simulation is not fully
deterministic due to an observed underlying stochasticity in PyBul-
let’s contact-handling, and so we repeat each scenario five times
and record two numbers. The first represents the maximum value
of r for which the policy succeeds for all five runs, and it thus pro-
vides a conservative estimate. The second number represents the
maximum value of r for which the policy succeeds in at least one
of the runs. We observe empirically that the policies work consis-
tently when r is less than the maximum value recorded, and thus
the learned policies are generally quite robust.

When we change θ to −40 degrees in the single-step and
continuous-step decline scenarios for the Humanoid, the adaptive
curriculum is able to perform consistently for all five runs at 1.5
meters and 0.8 meters respectively. This suggests that θ = −50
may be near the physical limit of the Humanoid. Since the adap-
tive curriculum prioritizes medium difficulty settings, e.g. β = 0.9,
the most extreme scenarios are likely to be sampled very rarely.
The fixed-order curriculum does not suffer from this issue since it
is forced to sample the extreme scenarios as long as the final stage
is reached.

Figure 8: Stepping-stone policy applied to continuous terrain.

7.6. 5D Parameter Space

For the 5D parameter space, we also include the pitch and roll of
each step, as measured in their respective local frames, so that the
generated steps are tilted. We sample φx,φy ∈ [−20,20] degrees,
where φx and φy are the roll and pitch of the steps. Each new di-
mension is discretized into 11 intervals as before and the adaptive
curriculum is applied to train a new policy for each character. For
comparison with their respective 3D policy, we evaluate the num-
ber of steps each policy can handle on ten randomly sampled 5D
stepping stone sequences, each with 50 steps. The mean and stan-
dard deviation of successful steps is reported in Table 4. In general,
the 5D policies are significantly more robust than their 3D coun-
terparts, since they are aware of the roll and pitch variations of the
individual steps. A snapshot of the motion on tilted steps can be
seen in Figure 7.

Table 4: Robustness of 3D and 5D policies on 5D stepping stone se-
quences. The numbers represent the number of steps before falling.

Parameters Humanoid Cassie

3D Policy 25.9±14.6 22.0±15.8
5D Policy 50±0 45.7±8.6

7.7. Walking on Variable Terrain

Given the considerable abilities of the characters to realize chal-
lenging stepping stone scenarios, we expect that the same control
policies can execute similar steps on continuous terrain as it does
on isolated footholds. The primary difference between the two sce-
narios is that the continuous terrain might present tripping hazards
for the swing foot that are not present in the case of isolated step-
ping stones. Also, the continuous terrain may demand more pre-
cise foot placements since the surfaces near target locations have
non-uniform slopes. We use the height field primitive in PyBullet
to model continuous terrains generated using Perlin noise. We first
synthesize a footstep trajectory on the xy-plane starting from the
character’s initial position, and turning five degrees every step to
ensure that the entire trajectory remains on the height field. Then
we project the footstep trajectory onto the height field to create 5D

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

stepping stone sequences for the control policies. Note that the pol-
icy perceives discrete steps, as before, while the simulator sees only
the height field. While we find height fields in PyBullet to have
slightly different contact dynamics than the discrete footholds we
used for stepping stones, our policies are robust enough to handle
the differences without further training. Figure 8 shows the Hu-
manoid walking on continuous terrain.

To demonstrate the generality of our approach, we apply the
same learning pipeline to train a policy for the Monster with the
same 5D parameter space. This policy achieves the same robustness
and capabilities on the continuous terrain. Please refer to the sup-
plementary video for visual results. For the Monster character, the
control policy finds gaits that perform tiptoe walking. We attribute
this to several possible reasons. First, the character weighs com-
paratively less than the Humanoid, thereby making this strategy a
feasible option. Additionally, the alive bonus (§ 5.2) encourages the
policy to maintain a minimum torso height of 0.7 meters relative to
the lower foot. A toe walking gait emerges as the benefit of the in-
creased height margin outweighs the cost of the increased energy
expenditure. Lastly, the final behavior of the policy may show some
variations across different runs, due to the stochastic nature of the
policy initialization and the optimization.

8. Discussion and Limitations

During training, we use stepping stone blocks which are five times
wider than the ones used for rendering. We find this to improve
the training consistency, as it makes the sparse target reward more
discoverable during random exploration. However, it also causes
the characters to occasionally miss the step for some extreme sam-
pling parameters when testing on narrower steps. This issue could
be addressed by adding step width as a curriculum parameter and
decrease it over time during training.

The Humanoid and Cassie appear to use different anticipation
horizons. Although we provide a two-step look-ahead for both the
Humanoid and Cassie, the value function estimates indicate that
Cassie’s policy considers only the first step while the Humanoid
uses both. This may be because Cassie has a fixed step-timing, en-
forced by the phase variable, which limits the policy to take more
cautious step. For the Humanoid, we observe that its step-timing
depends on the combinations of the two upcoming steps. For ex-
ample, the character prefers to quickly walk down consecutive de-
scending steps, while taking other combinations more slowly. This
gives the policy more flexibility and makes the second step infor-
mation more meaningful.

For the adaptive curriculum, we estimate the difficulty of a step
by imagining it while traversing horizontal and straight steps. One
limitation of this method is that it ignores the influence of step tran-
sitions. For example, it is generally easier to make a right-turning
step if the swing foot is the right foot, and vice versa. A natural
way to take the transition into account is to estimate the difficulty
of the step before the step generation within the training episode.
However, this requires additional computation.

The purpose of look-ahead delay was to emulate human reaction
time to produce more conservative motions. With the default delay
of 30 frames, the Humanoid walks across the stepping stones at an

average speed of 1.35 m/s, similar to typical human walking pace.
We can control the walking speed by adjusting the look-ahead delay
and disabling the speed penalty. When the look-ahead delay is set
to 2 frames, the Humanoid traverses the terrain at an average speed
of 2.10 m/s, which is closer to jogging.

Despite being able to control arm movements, the Humanoid
prefers to maintain a tucked position for its arms, as a result of the
energy penalty. The Humanoid also may briefly stub its toes on the
upcoming step when climbing up steep step sequences. To further
improve the motion quality of the Humanoid, it should be possi-
ble to pre-train a locomotion controller using motion capture data.
This pre-trained controller should then retain the basic motion style
when it is subsequently optimized for the stepping stones task, as
was the case for the Cassie results. Further stylistic rewards may be
helpful for fine-tuning the motion quality.

Lastly, our policies come close to reaching the physical lim-
its achievable with a normal stepping gait. Alternate locomotion
modes are required to solve even more drastic terrain variations,
e.g., the Humanoid can use hands to clamber up steeper inclines.
Addressing the clambering problem may also pave way to extend-
ing our approach to learning stepping stone skills for quadruped
characters.

9. Conclusions

We have presented a general learned solution capable of solving
challenging stepping stone sequences, as applicable to physics-
based legged locomotion. To this end, we evaluated four different
curricula and demonstrated that the key to solving this problem is
using suitable learning curricula that gradually increase the task
difficulty according to the capability of the policy. In the future we
wish to integrate these stepping capabilities with a step planner, to
rapidly generalize the capabilities to new characters, to support true
omni-directional stepping, to integrate hands-assisted locomotion
modes such as clambering, and to test the capabilities on physical
robots. We believe that the simplicity of our key findings, in retro-
spect, makes them the perfect stepping-stone to future research on
generalized locomotion.

References
[ALX∗19] ADBOLHOSSEINI F., LING H. Y., XIE Z., PENG X. B.,

VAN DE PANNE M.: On learning symmetric locomotion. In Proc. ACM
SIGGRAPH Motion, Interaction, and Games (MIG 2019) (2019). 4

[BCHF19] BERGAMIN K., CLAVET S., HOLDEN D., FORBES J. R.:
Drecon: data-driven responsive control of physics-based characters.
ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–11. 2

[BLCW09] BENGIO Y., LOURADOUR J., COLLOBERT R., WESTON J.:
Curriculum learning. In Proceedings of the 26th annual international
conference on machine learning (2009), ACM, pp. 41–48. 2

[CB19] COUMANS E., BAI Y.: Pybullet, a python module for physics
simulation for games, robotics and machine learning. http://
pybullet.org, 2016–2019. 4, 5

[CBYvdP08] COROS S., BEAUDOIN P., YIN K. K., VAN DE PANNE M.:
Synthesis of constrained walking skills. In ACM Transactions on Graph-
ics (TOG) (2008), vol. 27, ACM, p. 113. 2, 3

[CLC∗05] CHESTNUTT J., LAU M., CHEUNG G., KUFFNER J., HOD-
GINS J., KANADE T.: Footstep planning for the honda asimo humanoid.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://pybullet.org
http://pybullet.org

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

Figure 9: Snapshot of the motions on different test scenarios.

In Proceedings of the 2005 IEEE international conference on robotics
and automation (2005), IEEE, pp. 629–634. 2

[DCH∗16] DUAN Y., CHEN X., HOUTHOOFT R., SCHULMAN J.,
ABBEEL P.: Benchmarking deep reinforcement learning for continu-
ous control. In International Conference on Machine Learning (2016),
pp. 1329–1338. 5

[DT14] DEITS R., TEDRAKE R.: Footstep planning on uneven terrain
with mixed-integer convex optimization. In 2014 IEEE-RAS Interna-
tional Conference on Humanoid Robots (2014), IEEE, pp. 279–286. 2

[FHW∗17] FLORENSA C., HELD D., WULFMEIER M., ZHANG M.,
ABBEEL P.: Reverse curriculum generation for reinforcement learning.
arXiv preprint arXiv:1707.05300 (2017). 2

[FMO17] FORESTIER S., MOLLARD Y., OUDEYER P.-Y.: Intrinsically
motivated goal exploration processes with automatic curriculum learn-
ing. arXiv preprint arXiv:1708.02190 (2017). 2

[Gri15] GRIMMER M.: Powered lower limb prostheses. PhD thesis, Tech-
nische Universität, 2015. 4

[GWM∗19] GRIFFIN R. J., WIEDEBACH G., MCCRORY S.,
BERTRAND S., LEE I., PRATT J.: Footstep planning for autonomous
walking over rough terrain. arXiv preprint arXiv:1907.08673 (2019). 2

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Transactions on Graphics (TOG)
36, 4 (2017), 42. 2

[HSL∗17] HEESS N., SRIRAM S., LEMMON J., MEREL J., WAYNE

G., TASSA Y., EREZ T., WANG Z., ESLAMI S., RIEDMILLER M.,
ET AL.: Emergence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286 (2017). 2

[JVWDGL19] JIANG Y., VAN WOUWE T., DE GROOTE F., LIU C. K.:
Synthesis of biologically realistic human motion using joint torque actu-
ation. arXiv preprint arXiv:1904.13041 (2019). 2, 4

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 7

[KvdP12] KARPATHY A., VAN DE PANNE M.: Curriculum learning for
motor skills. In Canadian Conference on Artificial Intelligence (2012),
Springer, pp. 325–330. 2

[LH17] LIU L., HODGINS J.: Learning to schedule control fragments for
physics-based characters using deep q-learning. ACM Transactions on
Graphics (TOG) 36, 3 (2017), 1–14. 2

[LKBMN13] LINDEMANN U., KLENK J., BECKER C., MOE-NILSSEN
R.: Assessment of adaptive walking performance. Medical engineering
& physics 35, 2 (2013), 217–220. 2

[LPLL19] LEE S., PARK M., LEE K., LEE J.: Scalable muscle-actuated
human simulation and control. ACM Trans. Graph. 38, 4 (July 2019). 2

[LPY16] LIU L., PANNE M. V. D., YIN K.: Guided learning of control
graphs for physics-based characters. ACM Transactions on Graphics
(TOG) 35, 3 (2016), 1–14. 2

[MAP∗18] MEREL J., AHUJA A., PHAM V., TUNYASUVUNAKOOL S.,
LIU S., TIRUMALA D., HEESS N., WAYNE G.: Hierarchical visuomo-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Zhaoming Xie & Hung Yu Ling & Nam Hee Kim & Michiel van de Panne / ALLSTEPS

tor control of humanoids. arXiv preprint arXiv:1811.09656 (2018). 2,
4

[MDLH10] MORDATCH I., DE LASA M., HERTZMANN A.: Robust
physics-based locomotion using low-dimensional planning. In ACM
SIGGRAPH 2010 papers. 2010, pp. 1–8. 2

[MF14] MATTHIS J. S., FAJEN B. R.: Visual control of foot placement
when walking over complex terrain. Journal of experimental psychology:
human perception and performance 40, 1 (2014), 106. 2

[MOCS19] MATIISEN T., OLIVER A., COHEN T., SCHULMAN J.:
Teacher-student curriculum learning. IEEE transactions on neural net-
works and learning systems (2019). 2

[NAD∗17] NGUYEN Q., AGRAWAL A., DA X., MARTIN W. C., GEYER
H., GRIZZLE J. W., SREENATH K.: Dynamic walking on randomly-
varying discrete terrain with one-step preview. In Robotics: Science and
Systems (2017). 2, 3

[NHG∗16] NGUYEN Q., HEREID A., GRIZZLE J. W., AMES A. D.,
SREENATH K.: 3d dynamic walking on stepping stones with control
barrier functions. In 2016 IEEE 55th Conference on Decision and Con-
trol (CDC) (2016), IEEE, pp. 827–834. 2

[NS19] NARVEKAR S., STONE P.: Learning curriculum policies for rein-
forcement learning. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems (2019), International
Foundation for Autonomous Agents and Multiagent Systems, pp. 25–33.
2

[PALvdP18] PENG X. B., ABBEEL P., LEVINE S., VAN DE PANNE M.:
Deepmimic: Example-guided deep reinforcement learning of physics-
based character skills. ACM Transactions on Graphics (TOG) 37, 4
(2018), 143. 2, 4

[PBVdP16] PENG X. B., BERSETH G., VAN DE PANNE M.: Terrain-
adaptive locomotion skills using deep reinforcement learning. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 1–12. 2

[PBYVDP17] PENG X. B., BERSETH G., YIN K., VAN DE PANNE M.:
Deeploco: Dynamic locomotion skills using hierarchical deep reinforce-
ment learning. ACM Transactions on Graphics (TOG) 36, 4 (2017), 41.
2

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
ET AL.: Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems (2019),
pp. 8024–8035. 7

[PHC∗14] POTOCANAC Z., HOOGKAMER W., CARPES F. P., PIJNAP-
PELS M., VERSCHUEREN S. M., DUYSENS J.: Response inhibition
during avoidance of virtual obstacles while walking. Gait & posture 39,
1 (2014), 641–644. 2

[PRL∗19] PARK S., RYU H., LEE S., LEE S., LEE J.: Learning predict-
and-simulate policies from unorganized human motion data. ACM Trans.
Graph. 38, 6 (2019). 2, 4, 6

[PV03] PATLA A. E., VICKERS J. N.: How far ahead do we look when
required to step on specific locations in the travel path during locomo-
tion? Experimental brain research 148, 1 (2003), 133–138. 2

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD N. S.: Synthesizing
physically realistic human motion in low-dimensional, behavior-specific
spaces. In ACM Transactions on Graphics (ToG) (2004), vol. 23, ACM,
pp. 514–521. 2

[SWD∗17] SCHULMAN J., WOLSKI F., DHARIWAL P., RADFORD A.,
KLIMOV O.: Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347 (2017). 4

[TBB09] TURIAN J., BERGSTRA J., BENGIO Y.: Quadratic features
and deep architectures for chunking. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers (2009), Association for Computational Linguis-
tics, pp. 245–248. 7

[TDPP∗18] TONNEAU S., DEL PRETE A., PETTRÉ J., PARK C.,
MANOCHA D., MANSARD N.: An efficient acyclic contact planner for
multiped robots. IEEE Transactions on Robotics 34, 3 (2018), 586–601.
2

[TET12] TODOROV E., EREZ T., TASSA Y.: Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2012), IEEE, pp. 5026–5033. 4

[WL19] WON J., LEE J.: Learning body shape variation in physics-based
characters. ACM Trans. Graph. 38, 6 (2019). 2, 4, 6

[WLCS19] WANG R., LEHMAN J., CLUNE J., STANLEY K. O.: Paired
open-ended trailblazer (poet): Endlessly generating increasingly com-
plex and diverse learning environments and their solutions. arXiv
preprint arXiv:1901.01753 (2019). 2

[WP10] WU J.-C., POPOVIĆ Z.: Terrain-adaptive bipedal locomotion
control. In ACM SIGGRAPH 2010 Papers (New York, NY, USA, 2010),
SIGGRAPH âĂŹ10, Association for Computing Machinery. 2

[XBC∗18] XIE Z., BERSETH G., CLARY P., HURST J., VAN DE PANNE
M.: Feedback control for cassie with deep reinforcement learning. In
Proc. IEEE/RSJ Intl Conf on Intelligent Robots and Systems (IROS 2018)
(2018). 4

[XCD∗19] XIE Z., CLARY P., DAO J., MORAIS P., HURST J., VAN DE
PANNE M.: Learning locomotion skills for cassie: Iterative design
and sim-to-real. In Proc. Conference on Robot Learning (CORL 2019)
(2019). 4

[YCBvdP08] YIN K., COROS S., BEAUDOIN P., VAN DE PANNE M.:
Continuation methods for adapting simulated skills. In ACM Transac-
tions on Graphics (TOG) (2008), vol. 27, ACM, p. 81. 2

[YTL18] YU W., TURK G., LIU C. K.: Learning symmetric and low-
energy locomotion. ACM Transactions on Graphics (TOG) 37, 4 (2018),
144. 2, 4, 5, 6

[ZSKS18] ZHANG H., STARKE S., KOMURA T., SAITO J.: Mode-
adaptive neural networks for quadruped motion control. ACM Trans.
Graph. 37, 4 (July 2018), 145:1–145:11. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

