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Figure 1: Various musculoskeletal models of different body sizes and proportions. The full-body musculature of the reference model on the
left was retargeted to the others. (Left to right) Musculoskeletal model : reference model, Hulk, Dwarf, and Alien.

Abstract
We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with
different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original
musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are
estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset
and edited further for individual models. The retargeted model is simulation-ready, so we can physically simulate muscle-
actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be
simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of
individualized musculoskeletal models from bi-planar X-ray images and medical examinations.

CCS Concepts
• Computing methodologies → Physical simulation; Motion processing;

1. Introduction

The human body in computer graphics has evolved from a stick fig-
ure with torque actuators to a muscle-driven skeleton. The muscu-
loskeletal model for physics-based simulation includes many parts
and parameters that require careful orchestration to make it anatom-
ically plausible. Designing such a musculoskeletal model is labor-
intensive and hand-crafted models are often inaccurate to actuate an
anatomical body in physically simulated environments. We present
a new method that retargets a reference musculoskeletal model to
new bodies of different sizes, body proportions, muscle capability,
and joint Range of Motion (ROM).

The musculature is a system of muscles and tendons actuating

the skeleton. The motion of the skeleton is the result of the harmo-
nious coordination of many muscles. Muscles are correlated with
each other in various ways. A group of muscles works together to
actuate a single joint and the ROM around the joint is also deter-
mined by multiple adjacent muscles. Some adjacent muscles share
a tendon and thus the contraction of one muscle may affect the ac-
tivation of the others. A single (multi-articular) muscle may actuate
two or more joints simultaneously.

The functional role of each individual skeletal muscle is
thoroughly studied and well documented in anatomy text-
books [Gra09]. Each muscle is responsible for particular movement
(e.g., flexion/extension, adduction/abduction, internal/external ro-
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tation) of body parts. For example, the active contraction (shorten-
ing) of the rectus femoris (a muscle in the thigh) results in knee
extension and hip flexion. Even if the muscle is inactive, its back-
ground elasticity generates passive force to prevent the adjacent
joints from excessive movement, which influences the ROM around
the joints.

Our focus is on adapting the musculature of a reference anatom-
ical model to new bodies while preserving the functionality of the
musculature. The muscles are expected to perform the same func-
tional roles and have the same ROMs in the new body after retar-
geting. The key parameters that affect muscle functions and joint
ROMs are the length of musculotendons and their geometric rout-
ing paths. The core of our retargeting algorithm is a numerical
solver that optimizes the key parameters throughout the entire body.
The algorithm allows us to create a variety of musculoskeletal mod-
els including exotic creatures.

We also implemented a human body editing system that allows
the user to interactively edit the height, width, bone length, bend-
ing and torsion angles, and joint ROMs of the skeleton. The mus-
culature of the anatomical model is automatically retargeted to fit
the new skeletal body. Additionally, the user is allowed to edit
physics parameters, such as the mass and inertia of individual body
parts, and make the body stronger or weaker by adjusting Hill-type
muscle parameters, such as force-length curves and force-velocity
curves. The physics and muscle parameters are exploited in a phys-
ically based simulation of muscle-actuated characters.

The simulation and control of under-actuated biped locomotion
under gravity have been studied for decades in computer graphics
and robotics. The recent progress in deep reinforcement learning
research has been very successful in continuous control problems
and made it possible to simulate dynamic human activities without
compromising fundamental physics laws [PALvdP18, LPLL19].
We will demonstrate that our muscle-actuated anatomical model is
compatible with state-of-the-art simulation algorithms. Our retar-
geted characters with extreme body proportions can be physically
simulated and controlled to walk, run, kick, and jump while main-
taining balance under gravity.

2. Related Work

There has been a stream of studies for reproducing natural hu-
man motion by incorporating the increasingly more accurate mod-
els of human anatomy and the mechanics of anatomical structures.
Muscle-based anatomical modeling and simulation have been ex-
tensively explored and exploited in Computer Graphics and Biome-
chanics.

Muscle Modeling

The anatomical model includes an articulated skeleton driven by its
musculature. The Hill-type muscle model [Hil38,Zaj89,MUSD13]
has been broadly adopted to encode the nonlinear contraction dy-
namics of muscles. The geometry of a muscle is often simplified
into a sequence of line segments for the efficiency of computation.
There have been continuous efforts in Computer Animation and
Biomechanics to demonstrate the computational plausibility of vol-
umetric FEM muscles [LST09,SLST14,FLP14,BHGG14]. In vivo

estimation of muscle parameters relies primarily on medical 3D
imaging. Matias et al. [MAV09] studied the estimation of muscle-
bone attachments based on bony landmarks. Levin et al. [LGMP11]
studied the estimation of muscle fiber directions from diffusion ten-
sor images. Arnold et al. [AWLD10] and Holzbaur et al. [HMD05]
provided a comprehensive reference of muscle modeling param-
eters for lower and upper limbs. Anatomical modeling for spe-
cific body parts, such as face [SNF05, IKKP17], feet [PYL18],
hands [SKP08, SSB∗15], shoulders [VdH94, KVdH04, MT00],
tongue [SLF12], and jaw [ZBBB18], has been explored for last two
decades. Comprehensive full-body musculoskeletal modeling and
simulation systems are also available freely [DAA∗07] and com-
mercially [DRC∗06]. Muscle routing plays an important role in
muscle-actuated full-body simulation. Many modeling approaches,
such as conditional waypoints [DLH∗90], obstacle sets [GP00],
surface SSD [MET16], and wrapping surfaces [RDD∗16], have
been exploited to improve the estimate of muscle lengths during
joint motion.

Joint Modeling

The joints of a skeletal model are often simplified as either revo-
lute (1 degree of freedom) or ball-and-socket (3 degrees of free-
dom) joints, though anatomical joints are structurally more com-
plicated than simple mechanical joints [LT08]. Maurel and Thal-
man [MT00] designed a skeletal model of human shoulders and
represented the flexibility of the ball-and-socket joint by a com-
bination of the sinus cone and an interval of the arm twist angle.
Lee [Lee00] studied a general approach of describing the range of
motion around a joint based on quaternion half-spaces and their
boolean combination. Akhter and Black [AB15] collected a mo-
tion capture dataset that explores a wide range of human poses,
and learned the pose-dependent range of motion around each joint.
Jiang and Liu [JL18] represented the boundary of valid human joint
configurations by using a fully-connected neural network. Measur-
ing the joint range of motion and muscle lengths are of great clinical
interest. A variety of clinical examination techniques are performed
frequently in clinical practice [RB16].

Muscle-Driven Simulation and Control

Recent accomplishments in Computer Animation made it possi-
ble to reproduce realistic human motion in physics-based simula-
tion [LYvdPG12, CBVdP10, LKL10, SKL07]. The emergence of
deep reinforcement learning accelerated the progress and success-
fully simulated skillful actions, such as jump, flip, cartwheel, bas-
ketball dribbling, and even aerobatic flapping flight [PALvdP18,
LH18, YTL18, WPL18, LPLL19]. Muscle-driven anatomical sim-
ulation poses further challenges of dealing with the complexity
of anatomical modeling and scalability in physics-based simula-
tion. Wang et al. [WHDK12] demonstrated a muscle-actuated biped
with eight musculotendon units on each leg. The biped was essen-
tially two-dimensional because all muscles are aligned in the sagit-
tal plane. Geijtenbeek et al. [GVDPVDS13] improved the flexi-
bility in biped design by allowing off-sagittal muscles and opti-
mizing muscle-attachments sites for locomotion control. Compre-
hensive 3D musculoskeletal models with up to 120 musculotendon
units were successfully simulated and controlled using a two-level
control architecture that consists of low-level muscle coordination

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



Ryu et al. / Functionality-Driven Musculature Retargeting

Figure 2: Our reference musculoskeletal model.

based on quadratic programming and higher-level gait modulation
based on stochastic optimization [LPKL14]. Lee et al. [LYP∗18]
demonstrated that volumetric FEM muscles are viable for dextrous
manipulation, such as juggling, that requires a high level of con-
trol precision. Nakada et al. [NZC∗18] built a comprehensive full-
body neuromuscular system to learn biomimetic sensorimotor con-
trol of human animation. Seth et al. [SHU∗18] built an open-source
software OpenSim which provides extensible neuromusculoskele-
tal models of humans and animals. The system allows the creation,
physical simulation, and biomechanical analysis of neuromuscu-
loskeletal models. The muscle-actuated control system proposed
by Lee et al. [LPLL19] employed a hierarchical deep reinforcement
learning algorithm to cope with the full details (46 joints and 346
muscles) of the musculoskeletal model and successfully simulated
dynamic motor skills. They also demonstrated pre-operative and
post-operative simulation of pathologic gaits. We built our mus-
culoskeletal model on top of their simulation system, which pro-
vides favorable features such as analytic differentiation of muscle-
actuated dynamic systems, muscle routing based on LBS (linear
blend skinning), and efficient handling of joint ROMs based on
LCP (linear complementary problem). LCP provides an effective
way of dealing with inequality conditions which prevent muscle
over-extension in the simulation of muscle contraction dynamics.

Anatomy Transfer and Retargeting

Constructing a high-fidelity anatomical model is time-consuming
and labor-intensive. Therefore, there has been a series of studies
that retarget a geometry of reference anatomical model to a range of
target bodies. Dicko et al. [DLG∗13] transferred the geometry of in-
ternal anatomy from an input template to a target body while main-
taining anatomic constraints. Saito et al. [SZK15] generated a spec-
trum of human body shapes with various degrees of muscle growth.
Kadleček et al. [KIL∗16] generated a personalized anatomic model
by retargeting a template model to fit full-body 3D scans while ac-
counting for body shape variations and pose variations. Our work
is on the line of these approaches with emphasis that our retargeted
model is optimized to function as closely as possible to its reference
model in the realm of muscle-driven simulation and control.

Figure 3: Hill-type model of musculotendon units. The force-length
curve plots maximum isometric force of the active fiber and passive
fiber force as a function of normalized muscle fiber length.

3. Musculoskeletal System

Our musculoskeletal model has an articulated skeleton with 5 rev-
olute joints, 13 ball-and-socket joints, and 6 DoFs (Degrees of
Freedom) at the skeletal root yielding 50 DoFs in total (see Fig-
ure 2). Our work is focusing on simulating human motion driven
by four limbs and spinal joints. The model includes 282 musculo-
tendon units corresponding to skeletal muscles, which are attached
to bones on each end by tendons. The attachment site on the prox-
imal end is called the origin of the muscle, while the attachment
site on the opposite end is called its insertion. Muscle contraction
pulls the attached bones and moves the joint between them. Our
model comprehensively includes skeletal muscles that contribute
to the motion in any limb joints. Since our model has no fingers or
toes, the muscles that originate and insert within hands or feet are
omitted.

3.1. Muscle Model

The Hill-type muscle is a three-element scheme that models the
muscle contraction-force relation (see Figure 3). A musculoten-
don unit is defined by an active contractile element (CE), a pas-
sive parallel element (PE), and a passive serial element (SE). The
active force of the contractile element comes from muscular con-
traction. All skeletal muscles have a rest length. When the muscle
is stretched to its ideal length, it can maximize muscular contrac-
tion. The serial element represents the tendons on either side of the
contractile segment of the muscle. The tendon is a tough band of
fibrous connective tissue that connects muscle to bone. The parallel
element models the background elasticity of the muscle. The par-
allel element is responsible for muscle passive behavior when it is
stretched.

Let lm, lt and lmt be muscle fiber length, tendon length, and the
total muscle-tendon length, respectively. Optimal fiber length l0

m
is the length of muscle fibers when it develops maximum isomet-
ric force. Let l0

t be tendon slack length. Pennation θ is the angle
between the muscle fibers and the tendon axis. Assuming a quasi-
static setting, the tension in muscle fibers is a function of muscle
length and its activation a, while the tension in the tendon is a func-
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Figure 4: Polyline approximation of (Top) Vastus Intermedius and
(Bottom) Gluteus Maximus. Since the waypoints are represented
in LBS coordinates, they move during knee/hip flexion to better fit
muscle deformation.

tion of only muscle length. The tension in the three elements holds

F =
(

fCE(l̃m,a)+ fPE(l̃m)
)
· cosθ = fSE(l̃t), (1)

where l̃m = lm/l0
m and l̃t = lt/l0

t are normalized muscle and tendon
lengths, respectively. Here, we assume that the pennation angle is
constant regardless of muscle contraction.

Actual muscles wrap around bones and soft tissues during joint
motion and they are also constrained by surrounding ligaments and
skin tissue layers. Therefore, the straight line segment between
the origin and insertion sites of a muscle is a lousy approximator
of its actual length. Better approximators can be achieved by ex-
ploiting geometric proxies, such as waypoints [DLH∗90], obstacle
sets [GP00], and wrapping surfaces [RDD∗16], that approximate
muscle deformation during joint motion. We use waypoints as ge-
ometric proxies and expressed the location of a waypoint relative
to nearby bones using the idea of linear blend skinning (LBS) to
improve the accuracy and flexibility over bone-attached waypoints
(see Figure 4).

p = ∑
j

w jT jx j (2)

where T j ∈ R4×4 is the transformation matrix of j-th bone, w j

is skinning weight, and x j ∈ R3 is the coordinates relative to j-th
bone. Since the derivatives of LBS-based waypoints can be derived
in an analytic form, they are well-suited for efficient dynamics sim-
ulation with inequality constraints [LPLL19].

3.2. Parametric Skeleton Model

The skeletal body is a parametric model that can generate a wide
variety of human body shapes (see Figure 5). The model has a ref-
erence shape and a set of shape parameters. The trunk and four
limbs are parameterized to have variations in their length, size, and

Figure 5: Parametric modeling of the trunk and limbs.

alignment relative to the reference shape. The limb bones includ-
ing Femur, Tibia, Humerus, Ulna exhibit an elongated shape with
its proximal head, long shaft, and distal head. The limb bone has
four parameters: proximal head scale, distal head scale, shaft elon-
gation, and torsion. Even though the trunk consists of many bones,
the trunk is considered as a lumped body and parameterized by
three parameters: elongation, expand, and bend. The hands and feet
have one parameter for scaling their size. We use a geometric defor-
mation method [KIL∗16] to produce parametrically-varied shapes
from the reference model.

We scaled physics and muscle parameters relative to geometric
parameters inspired by the work of Hodgins and Pollard [HP97].
Assuming uniform scaling by a factor L in all dimensions, they
suggested to scale time, force, mass, moment of inertia, velocity,
stiffness, and damping by factors L1/2, L3, L3, L5, L1/2, L2, and
L5/2, respectively. This scaling rule provides a rough guideline as
to how physics and muscle parameters should be adjusted relative
to body scaling. The user can edit the mass and inertia of each in-
dividual body part and scale the force-length curve of each muscle
following the guideline. The guideline is not strict since stable dy-
namics simulation can be often accomplished for a wide range of
parameters.

4. Joint Range of Motion Modeling

Many articulated characters in computer graphics have the ROM
around joints described by an interval of min/max angles for
each DoF. This approach is inherently limited because the pose-
dependence of joint ROMs cannot be captured in per-DoF intervals.
An alternative approach is to estimate a high-dimensional function
from a motion capture dataset, which fits the boundary of valid
poses. The isValid function V(q) : RN → {0,1} takes a full-body
pose as input and outputs a boolean value to answer whether the
pose is valid or not. The function estimation requires nonlinear re-
gression over a large collection of full-body poses [AB15, JL18].
The musculoskeletal system readily provides an isValid function
without requiring nonlinear regression because the musculoskele-
ton represents the fundamental mechanism of joint movements and
their limits.

4.1. Muscle-Induced ROM

The joint ROM is affected by many anatomic factors, such as bony
structures, surrounding ligaments, joint capsules, and muscular ten-
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Figure 6: Full-body poses that maximize individual muscle lengths.
(Left) Right Bicep Brachii Short Head. (Right) Left Psoas Major.

sion. We are particularly interested in the factors induced by mus-
cles. The elasticity of muscle fibers represented by a parallel ele-
ment determines the distance a joint can move to its full potential
in the direction of the muscle. This extension of muscle stretching
is described by an implicit function Ci(q) : RN →R, where q is the
generalized coordinates of the full-body skeletal pose, and N is its
dimension. The constraint induced by passive fiber tension is

Ci(q) = kml0
m− lm(q) ≥ 0, (3)

where muscle length lm(q) is a function of skeletal pose and
km is the maximum ratio of extension that the muscle fiber can
stretch. Note that there exists a direct mapping between skeletal
poses and muscle lengths. Given a pose, the lengths of all mus-
cles are uniquely determined and vice versa. We assume that pas-
sive elongation reaches its limit when muscle tension is larger than
maximum isometric tension in muscle fibers by a certain margin
(see Figure 3(right)). Deriving from muscle contraction dynam-
ics [The03], we set the maximal muscle-tendon length by

lmax
mt = kml0

m + ktl0
t , (4)

where km = 1.6 and kt = 1.03. We can also express other factors
induced by bones and ligaments as implicit functions (e.g., the
constraint by the kneecap can be denoted by a function of skeletal
pose). The collection of all constraints defines an isValid function.

V(q) =
{

1, if Ci(q)≥ 0 for ∀i
0, otherwise

(5)

It is often the case that multiple muscles cross a joint and all
those muscles affect the ROM in the joint. Among those muscles,
some are multi-articular meaning that it crosses multiple joints.
The presence of multi-articular muscles makes joint ROM pose-
dependent. For example, we have a wider range of motion in the
hip when the knee is flexed than it is fully extended. Our isValid
function based on the musculoskeletal model inherently captures
the pose-dependence of ROM.

4.2. Muscle Length Estimation

Even though carefully specifying muscle parameters would yield
appropriate joint ROMs, parameter tuning is laborious and time-
consuming. We estimate muscle parameters (in particular, mus-
cle fiber and tendon lengths) automatically such that the isValid

function fits the boundary of full-body poses captured in a motion
dataset. Specifically, we used a data set collected by Akhter and
Black [AB15], which includes an extensive variety of stretching
and yoga poses performed by trained athletes and gymnasts. In the
dataset, we can find a full-body pose that maximizes the length lmt
for each muscle (see Figure 6). Assuming that muscle fiber and
tendon length ratios are invariant, solving Equation (1) and Equa-
tion (4) gives us optimal fiber length l0

m and tendon slack length
l0
t at the maximal length lmax

mt . This estimation of muscle lengths
guarantees that all poses in the dataset are valid.

The dataset actually provides us with the lower bound for the
maximal length of individual muscles and therefore it tends to
under-estimate the maximal lengths. For example, the range of knee
extension is bounded by the bone and ligament structures around
the knee rather than muscle passive force. It is highly likely that
knee flexor muscles (e.g., Hamstring and Gastrocnemius) do not
extend to their maximal length when the knee is straight. Hence,
the dataset does not provide a precise estimation of the maximal
length of the knee flexors. We address this under-estimation issue
by measuring joint torques at several key-poses, for which muscles
should not develop passive force. The key-poses include standing,
zero-gravity, and T-poses. We gradually increase l0

m and l0
t of mus-

cles as they develop passive force until the force magnitude is re-
duced below a certain threshold.

4.3. ROM Editing

Muscle lengths thus estimated yield an isValid function V(q),
which serves as a reference ROM model. The reference model rep-
resents the level of flexibility of athletes, which is far higher than
the flexibility level of average, non-athletic individuals. We would
like to be able to edit or modify the reference model to create vari-
ous individualized ROM functions. ROM editing involves improv-
ing or reducing the ROM in a particular joint and shifting the range.
Note that ROM editing is a supplementary step that provides flex-
ible and convenient user control over the modeling and retargeting
procedures. The ROM editing step can be skipped if it is not nec-
essary.

Since V(q) is a high-dimensional function defined implicitly de-
pending on many factors and complex anatomical structures, it is
not practical to edit the function directly. Alternatively, we define
a new, modified function Ṽ(q) = V(T (q)) indirectly with trans-
formation T over the input pose. The action of T affects the ROM
inversely. For example, if the transformation exaggerates poses, the
ROM with the modified function Ṽ becomes narrower than the ref-
erence model because the test pose will be exaggerated first and
then passed to the reference isValid test V .

We can define the transformation for each joint or each DoF in-
dependently. For a revolute joint, the ROM is simply an interval
[φ−ψ,φ + ψ], where φ is the average of the joint angles in the
dataset. The transformation T (θ) = s(θ−φ)+φ+ t of joint angle θ

in pose q results in s-scaling of the interval followed by t-shifting.
Note that we do not need to know the value of ψ to define the trans-
formation. Similarly, we can define ROM-editing transformations
for ball-and-socket joints. The configuration of a ball-and-socket
joint is a three-dimensional rotation, which can be decomposed
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Figure 7: 3D Rotation Decomposition into 1D axial rotation fol-
lowed by 2D conic rotation. The axis of the second rotation is or-
thogonal to the first axis. The second rotation is conic since it can
move the bone shaft within a cone.

into a twist about the principle (bone shaft) axis in the reference
pose followed by another rotation about its orthogonal axis (see
Figure 7). The decomposed configuration is (ω, v̂), where ω ∈ R
is a twist angle and v̂ ∈ S2 is a unit vector indicating the direction
of the bone shaft. The ROM of ω is a simple interval, while the
ROM of v̂ is a cone with its center direction estimated from the
dataset. The scaling and shifting transformation on the cone is also
defined in a straightforward manner and can be exploited for ROM
editing. Through simple user interfaces, the user can edit ROMs
interactively by modulating scale and shift factors.

5. Musculature Retargeting

In this section, we describe a retargeting algorithm that adapts the
full-body musculature to the change of the skeleton (see Figure 8).
Our parametric skeletal model can generate a rich variety of human
body shapes. The goal of retargeting is to make the varied models
viable for physics-based simulation and control.

The functional roles of skeletal muscles are classified by the plot
of their length changes and the direction of muscle forces acting
on the attached bones. For example, a muscle is called a flexor (or
extensor) of the joint if the muscle shortens as the joint flexes (or
extends). Table 1 shows examples of muscle actions during various
joint motions. The muscle is functionally significant for causing a
particular joint motion if its length-angle curve is increasing (as
an agonist) or decreasing (as an antagonist) (see Figure 9). There-
fore, the length-angle curves characterize the functional roles of
muscles. Naïve scaling of the musculoskeletal model could alter
the monotonicity and modality of the length-angle curves, muscle
force directions at attachment sites and joint ROMs, eventually af-
fecting the functionality of muscles in the new body.

Musculature retargeting involves three categories of parameters.
The parameters in each category have the desired impacts on mus-
cle functionality. Our algorithm solves for three categories of pa-
rameters sequentially.

• Optimize muscle routing to modulate length-angle curves and
force directions, where the muscle routing is expressed by LBS
coordinates of muscle waypoints.
• Determine maximal muscle lengths to achieve desired ROMs (as

described in Section 4.2 and Section 4.3).
• Optimize muscle fiber and tendon length ratios to modulate the

angle of peak torque at joints.

Table 1: Examples of muscle activities during joint motion. The full
version with details can be found in anatomy textbooks [Gra09].
*Biarticula r (two-joint) muscles.

Joint Motion Active Muscles
Hip Flexor Psoas major, Iliacus, Rectus femoris*,

Tensor fasciae latae*, Sartorius*
Hip Extensor Gluteus maximus, Biceps femoris*,

Semitendinosus*, Semimembranosus*
Hip Gluteus medius, Pectineus, Tensor fasciae latae*
Medial Rotator
Hip Quadratus femoris, Obtrator externus,
Lateral Rotator Biceps femoris*
Hip Abductor Gluteus minimus & medius,

Tensor fasciae latae*
Hip Adductor Adductor longus & brevis & magnus
Knee Extensor Vastus medialis & intermedius & laterlias,

Rectus femoris*
Knee Flexor Sartorius*, Biceps femoris*, Semitendinosus*,

Semimembranosus*, Gastrocnemius*, Plantaris*
Foot Gastrocnemius*, Plantaris*, Soleus,
Plantarflexor Tibialis posterior
Foot Tibialis anterior, Extensor hallucis longus,
Dorsiflexor Extensor digitorum longus, Fibularis tertius

Since we already discussed the second step in the previous section,
this section focuses on the first and third steps which are formulated
as nonlinear optimization.

5.1. Muscle Routing Optimization

Waypoints play an important role in estimating muscle lengths dur-
ing joint motion. While the use of LBS coordinates improves the es-
timation accuracy substantially, manual tuning of LBS coordinates
is laborious. Our algorithm decides LBS coordinates of waypoints
such that the energy function is minimized:

Ewaypoint = Edirection +wlElength. (6)

The first term encourages muscle force directions through the poly-
line approximations of muscles to be preserved

Edirection(m) = ∑
k

∑
j

∫ 1

θ=0
‖ fm(k; j,θ)× f ′m(k; j,θ)‖2dθ, (7)

where m is the index of muscles, k is the index of waypoints of
the muscle m (including the origin and insertion), j is the type of
joint motion in which the muscle m participates, and θ∈ [0,1] is the
normalized joint angle. f and f ′ are normalized force directions in
the reference and retargeted bodies, respectively, at point k to k+1.
f and f ′ are determined by LBS coordinates.

The second term encourages the qualitative characteristics of
length-angle curves to be preserved in the retargeted body. Assum-
ing that the length-angle curve Lm( j,θ) is monotonic or unimodal
on interval [0,1], the curve can be characterized by three parame-
ters: θmax, θmin, ∆. The curve has its maximum value at θmax, min-
imum value at θmin, and the difference between the maximum and
minimum value is ∆ (see Figure 10). The second term is defined
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Figure 8: The overview of musculature retargeting.

using the characteristics parameters.

Elength(m) = ∑
j
(θmax−θ

′
max)

2 +(θmin−θ
′
min)

2 +w∆(∆−∆
′)2.

(8)
We use a gradient descent algorithm to minimize the energy func-
tion. The gradient of the energy function is estimated by finite dif-
ference and line search along gradient direction accelerates the al-
gorithm. In our example, wl = 10 and w∆ = 50.

The performance and quality of gradient-based optimization de-
pend on the initial guess of the optimized parameters. During the
scaling of the skeleton, each waypoint moves together with the
skeleton anchored to the nearest point on the bone. The anchor
position relative to the skeleton serves as an initial guess of the
optimization.

5.2. Angle of Peak Torque

Joint torque is the sum of muscle torques crossing the joint. Peak
torque usually occurs in the joint ROM when the muscle fibers are
close to their optimal length. For example, knee and elbow joints
generate their maximum bending torque when they are moderately
flexed. The angle of peak torque is related to muscle fiber and ten-
don length ratios.

Peak torque angle adjustment is a constrained optimization pro-
cess based on gradient descent. The optimization objective is that
all joints in the retargeted model have their peak torque at the same
angles as in the reference model. The optimization parameters are
fiber-tendon length ratios at all muscles. The ratios are constrained
to vary within 30% from their original values.

Eapt = ∑
j
||θref( j)− argmax

θ

τ( j,θ)||2, (9)

where θref is the angle of peak torque in the reference model and
τ( j,θ) is the net torque in joint motion j when its normalized angle
is θ.

6. Experimental Results

We can generate a wide spectrum of body proportions through in-
teractive user interfaces. The user interface provides a set of slide
bars to manipulate body parameters and allows the user to edit joint

Figure 9: Types of length-angle curves. (Top) The monotonically
decreasing (or increasing) curve indicate that the muscle is an ag-
onist (or antagonist) during the joint motion represented by angle
θ. The Non-monotonic curve indicates that the muscle is maybe
functionally insignificant for the particular joint motion. (Bottom)
Examples of hip flexors and hip extensors.

ROMs. In this section, we show experiments conducted with four
representative characters: Human, Hulk, Dwarf, and Alien (see Fig-
ure 1 and Table 2). The Human is a reference model we created
based on a human skeleton geometry. We annotated origins, inser-
tions, and waypoints of all muscles and tuned their parameters to
create a model that can be used for physics-based simulation. The
Hulk has a large muscular body with long arms and short legs and
the trunk leans slightly forward. The Alien has a short torso and
extremely long limbs, while the Dwarf is the opposite with a long
torso and short limbs. The musculature of the Human is retargeted
to the others to build musculoskeletal dynamic systems.

© 2021 The Author(s)
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Figure 10: Muscle retargeting. (Red) The length-angle curve of Bi-
ceps Brachii Short Head during elbow flexion. (Blue) 60% shorten-
ing of Humerus and Ulna/Radius yields a length-angle curve that is
non-monotonic. (Green) Muscle retargeting makes the curve closer
to its original shape.

Table 2: Skeleton scaling parameters. Positive angle denotes clock-
wise torsion. Left and Right sides are symmetrically adjusted.

Reference Alien Hulk Dwarf
Trunk Elongate 1.0 1.0 1.0 2.0

Expand 1.0 1.0 2.0 0.6
Mass 1.0 1.0 1.0 2.0

Femur Elongate 1.0 2.5 0.8 0.6
Torsion 0.0◦ 0.0◦ 10.0◦ −10.0◦

Mass 1.0 2.5 0.8 0.6
Tibia Elongate 1.0 2.5 0.8 0.6

Torsion 0.0◦ 0.0◦ 10.0◦ 10.0◦

Mass 1.0 2.5 0.8 0.6
Humerus Elongate 1.0 2.5 1.8 0.6

Torsion 0.0◦ −10.0◦ 10.0◦ 0.0◦

Mass 1.0 2.5 1.8 0.6
Ulna Elongate 1.0 2.5 1.4 0.6

Torsion 0.0◦ 10.0◦ 0.0◦ 0.0◦

Mass 1.0 2.5 1.4 0.6
Neck Elongate 1.0 2.0 1.0 1.0

Mass 1.0 2.0 1.0 1.0

6.1. ROM Construction

We constructed the ROMs of our reference model from a motion
capture data set [AB15]. We excluded corrupted outliers from the
dataset, doubled the data by mirror reflection, and subsampled at a
1/10 ratio to take approximately 70,000 full-body poses. The mir-
ror reflection makes the ROMs symmetric. The maximum lengths
of all muscles are estimated from the pose set and further relaxed
to address the under-estimation issue as explained in Section 4.2.
Muscle lengths thus estimated represent pose-dependent joint lim-
its. Figure 11 shows that the hip ROM is wider when the knee is
flexed than it is straight. This observation is due to the presence of
biarticular muscles. The hamstring muscles (Biceps femoris, Semi-
tendinosus, and Semimembranosus) are all biarticular, originating
at the bottom of the Pelvis, crossing both the hip and knee joints,
and inserting at the head of the Tibia. The hamstring muscles are
therefore involved in both hip extension and knee flexion. The ham-

Figure 11: The pose-dependent ROM of the hip joint. (Top) Valid
hip configurations captured in the reference dataset. The range on
the left figures (the knee angles smaller than 30-degree) is narrower
than the range on the right figures (the knee angles larger than
90-degree). (Bottom) The muscle-induced hip ROM of our muscu-
loskeletal model. The hip configuration is decomposed into a twist
angle and the direction of the bone shaft. The bone shaft direction
is depicted as a yellow-red range on the unit sphere at the hip.
The color spectrum indicates the range of the twist angle. The yel-
low color represents narrow ranges, while the red color represents
wider ranges.

string muscles are extended when the knee is straight and thus the
potential for the hip flexion is limited.

The ROM around a joint is strongly influenced by the change of
the body shape. Figure 12 shows how the longitudinal elongation
(in the range of 70% to 130% of the original length) and torsion
(in the range of -30◦ to 30◦) of the femur affect the hip ROM.
Naïve linear scaling of the muscles attached to the femur results
in undesirable changes in the hip ROM, which is discretized into
18× 36× 36 cells. Each cell has a boolean value. We measured
the error rate by the percentage of false positives and true negatives
in the cells. Without retargeting, the error rates are in the range
of 5.8% to 75.4%. The maximum error drops down to 1.7% after
retargeting.

Our system provides a simple user interface that allows the user
to edit the ROM of any joint interactively. The user can make the
ROM wider, narrower, or shifted on the space of conic and twist
rotations. The editing operations are defined by transformations as
explained in Section 4.3. Our system recalculates the muscles at rel-
evant sites such that the muscle-induced ROM matches the user’s
intention approximately. In Figure 13, the hip ROM tilted forward
by 30◦ and shrank in its width on the cone by a factor of 0.63 by
user-specified transformations. Recalculating muscle lengths ap-
proximates the user editing with error rate of 7.3%.
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Figure 12: The hip ROM affected by the elongation and torsion of
the femur. (TOP) Naïve linear scaling of the muscles results in un-
desirable changes in the ROM. (Bottom) Our retargeting algorithm
precisely recalculates the muscle lengths to preserve the ROM of
the reference model regardless of body shape variations.

Figure 13: Interactive ROM editing. (Top) The estimated ROM
of the hip joint. (Middle) The user edits the ROM interactively by
defining transformations that make the ROM shift forward and nar-
rower in its width. (Bottom) Recalculating muscle lengths match
the muscle-induced ROM to the user’s intention.

6.2. Muscle Routing Evaluation

We found that LBS-based waypoints work noticeably better
than fixed-anchor type waypoints in the previous studies [GVD-
PVDS13, LPKL14]. Nonetheless, transplanting the musculature of
the reference model to varied skeletons without retargeting often
results in undesirable distortion in length-angle curves and distur-
bance in muscle force directions. Figure 14 shows the length-angle
curves of the reference and varied models with and without retar-
geting. The qualitative and quantitative changes of muscle curves
can be observed in many major muscles (e.g., Iliacus for the Hulk
and the Alien, and Gluteus Medius of the Dwarf in the lower limbs).
The influence on force direction is broader. The force direction at
almost all muscle origins and insertions are disturbed by the change
of body proportions(see Figure 16). Both curve distortions and
force direction disturbances affect the maneuverability and ROM
of joints. Our muscle routing optimization addresses both problems
simultaneously to build a retargeted model that functions as closely
as possible to the reference model.

Figure 15 shows that many muscles change their functional role
as the limbs lengthen or shorten in the range of 60% to 250%
of their original length. Each value indicates the percentage of
functional disorders (increasing-to-decreasing and vice versa) in
the length-angle curve during joint motion with and without re-
targeting. Some muscles (e.g., Tibialis Anterior, Tibialis Poste-
rior, Pectineus, and Semimembranosus) change their function with
shorter limbs, while functional disorders occurs for some muscles
(e.g., Rectus Femoris and Vastus muscles) with longer limbs. For
example, the functional disorders for Pectineus muscles occur with
shorter (60% of its original length) legs in half of the range of hip
extension and flexion. Our retargeting algorithm alleviates this is-
sue substantially with mild body shape variations, though the prob-
lem is not completely fixed with extreme body proportions (e.g.,
longer limbs by 250%).

6.3. Muscle-Coordination using QP

We tested the usability of our retargeted models in our muscle-
actuated simulation system. We briefly summarize the dynam-
ics formulation and its control methods based on Quadratic Pro-
gramming (QP). The Lagrangian dynamics of the musculoskeletal
model is defined by

M(q)q̈+ c(q, q̇) = ∑
m

J>m fm(am)+J>c fc + τext (10)

where q, M(q), and c(q, q̇) are generalized coordinates, the mass
matrix, and Coriolis/centrifugal force, respectively. fm and fc are
muscle and constraint forces, respectively. Jacobian matrices Jm
and Jc map the forces to generalized coordinates. τext is external
forces. We compute the constraint forces by solving linear comple-
mentary conditions:

vc ≥ 0, fc ≥ 0, and v>c fc = 0, (11)

where vc = Jcq̇ is the constraint velocity representing the rate of
change of the constraint.

Exercising a particular joint is an under-specified control prob-
lem, since there are more muscles crossing the joint than minimally
required to actuate the joint. Solving the control problem requires
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Figure 14: Musculature retargeting experiments with Hulk, Alien, and Dwarf characters. Length-angle curves (top three rows) of the
reference model and the varied models with/without retargeting are plotted for comparison. (Top) Iliacus during hip flexion. (Second row)
Gastrocnemius during knee flexion. (Third row) Gluteus Medius during hip medial rotation. (Bottom) The torque-angle curve of the knee
shows the angle of peak torque.

muscle coordination to decide activation levels at the muscles that
achieve desired joint accelerations q̈d. A typical solution method
based on QP formulates the problem such that

min
a

‖q̈d− q̈(a)‖2 +wreg‖a‖2

subject to Mq̈+ c = ∑
m

J>m fm(am)+J>c fc + τext

0≤ ai ≤ 1 for ∀i,

(12)

where a is a vector concatenating muscle activations. This formu-
lation solves for muscle activations while satisfying the Lagrangian
equation of motion and regularizing large activations.

The formulation allows us to move the joint in an arbitrary direc-
tion by specifying desired joint accelerations if the musculoskeletal

model is carefully calibrated. The QP with a varied model without
retargeting often fails to solve for muscle activations because force
directions are degenerate and unable to span the solution space. Our
retargeting algorithm recovers the force directions to better condi-
tion the problem (see Figure 16). The results may be best viewed
in the supplementary video.

6.4. Learning motor skills using DRL

Our characters also learned to perform challenging full-body mo-
tor skills. Deep Reinforcement Learning has recently shown its
promise in the control of physically-simulated bipeds and muscle-
actuated skeletal figures. The goal of trajectory tracking control
is to learn a control policy that imitates reference motion data in
physics simulation. It has been shown in previous studies that the
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Figure 15: The degree of functional disorders for the change of
limb lengths with (red) and without (blue) retargeting

Figure 16: Vastus lateralis is supposed to be a knee extensor. Its
function may be disoriented if skeleton scaling disturbs the mus-
cle force direction at its insertion. (Left) The vastus lateralis acts
as expected in the reference model. (Middle) Naïve scaling of the
musculoskeleton results in its opposite action. (Right) Our retarget-
ing algorithm recovers the force direction and its action.

control policy represented by deep networks can reproduce highly-
detailed human movements [PALvdP18, LPLL19].

Let st be the dynamic state of all musculotendon units at time
t. The state includes muscle lengths and the rate of their length
changes. Let at be the level of muscle activations and rt be a re-
ward of taking action at at state st . The agent interacts with the en-
vironment by taking actions according to its control policy πθ. The
objective of policy learning is to find a control policy that maxi-
mizes the expected cumulative rewards

θ
∗ = argmax

θ

Es0,a0,s1,···

[
∑
t=0

γ
trt

]
, (13)

where γ is a discount factor.

The reward evaluates how well joint angles and end-effector po-
sitions match the reference trajectory. The reward r = rqre is de-
fined by a multiplication of a joint angle match reward and an end-
effector match reward, where

rq = exp
(
−σq ∑

j
‖q̂ j(t)	q j(t)‖2)

re = exp
(
−σe ∑

e
‖p̂e(t)−pe(t)‖2), (14)

where q j are the joint configurations in generalized coordinates and
pe are end-effectors positions. j and e are the indices of joints
and end-effectors, respectively. Our implementation of the end-
effector reward includes the positions of both hands, both feet,
and the head relative to the moving coordinate frame of the skele-
tal root (pelvis). The hat symbol indicates the positions and joint
configurations taken from the reference trajectory. The joint con-
figurations are represented by unit quaternions. The geodesic dis-
tance q1 	 q2 = ln(q−1

2 q1) measures the shortest rotation angle
between two joint configurations [Lee08]. We employed a hier-
archical RL algorithm proposed by Lee et al. [LPLL19] to learn
muscle-actuated control policies mimicking reference motion data.

We collected motion capture data available on the web and re-
targeted each motion clip to our kinematic models using Autodesk
MotionBuilderTM. The DRL algorithm is able to learn muscle-
actuated control policies successfully with mild body shape vari-
ations. The DRL algorithm can also cope with larger variations
to a certain extent. The highly-varied characters were able to suc-
cessfully imitate motor skills, including walking, running, jump-
ing, kicking, and dancing while maintaining their balance (see Fig-
ure 17 and the results may be best viewed in the accompanied
video).

6.5. Moment Arm

The moment arm of a muscle m to a joint j is a quantity of interest
often referred to by biomechanics literature. The moment arm is the
perpendicular distance from the joint to the line of muscle tension
force and serves as a measure of effectiveness that the muscle has
on joint torque. The moment arm about a particular axis n̂ of action
at joint angle θ can be calculated by [LBF93]

rθ =
τθ

f
=

J>m fm(am) · n̂
f (am)

(15)
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Figure 17: Our characters learned a variety of motor skills using DRL. All results are physically simulated and controlled by modulating
the level of muscle activations and solving muscle contraction dynamics.

where τθ is the effective torque applied to joint j by muscle m and
f (am) is the tension force at the attachment site generated by mus-
cle activation.

Moment arm is not an invariant factor we want to preserve across
different body sizes and proportions. We rather wish to have mo-
ment arms to be adjusted appropriately during the retargeting pro-
cess. In Figure 18, the angle-moment arm curves in the retargeted
models differ from the curves in the reference model. The Alien has
larger moment arms for hip flexors and extensors to compensate for
longer Femurs. As the femurs get longer, larger moment arms are
preferred to use flexor and extensor muscles more efficiently. The

retargeting algorithm reduces the moment arms for the Hulk and
the Dwarf, on the contrary, to compensate for their short Femurs.

6.6. Individualized Anatomy Modeling

We would like to create individualized anatomic models from med-
ical images and physical examination data. There are standard
physical examination procedures of measuring joint ROMs in phys-
ical practice [Tho74,Sil24,Sta77,LCK∗11], such as popliteal angle,
Staheli, and Silfverskiöld tests. In this example, we used biplanar
X-ray images of an anonymous person to create a skeletal model
and demonstrated how ROM editing can be performed according
to physical examination data.
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Figure 18: The relation between moment arm and joint angle. (Top) Gluteus Maximus during hip extension. (Middle) Iliacus during hip
flexion. (Bottom) Rectus Femoris during knee extension.

The biplanar image data include lateral and anteroposterior X-
ray images acquired simultaneously at precisely calibrated view
angles (see Figure 19). The calibrated orthographic images allow
us to reconstruct 3D points from a pair of 2D feature points on the
images. We selected joint points on the X-ray images and scaled
our parametric skeleton model to match the reconstructed 3D joint
points. Musculature retargeting to the scaled skeleton creates an in-
dividualized musculoskeletal model.

The ROM measurements in physical examination data can be
incorporated into our anatomic model. For example, the unilateral
popliteal angle is a test for measuring hamstring tightness, which
is related to the ROM in the knee. The test measures the range of
a knee angle when the subject is in the supine position with its
leg flexed to 90◦ at the hip and the knee is extended passively. We
simulated this procedure to have our musculoskeletal model take
the specified pose (see Figure 20). Interactive ROM editing allows
us to change the knee ROM to match any target range by deciding
the scaling and shifting factors as explained in Section 4.3.

7. Discussion

Our attempt to build a musculoskeletal model for a variety of body
shapes is an important step toward the goal of expanding the appli-
cability of anatomic human modeling and simulation. Nonetheless,
our current framework still has several limitations in its scope of

Figure 19: The 3D skeleton reconstructed from biplanar X-ray
images.

applicability and biomechanical accuracy. Human anatomy is an
extremely complicated system. There has been a trail of research
works that incrementally added details to the computer model of
human anatomy. Currently, our model ignores a lot of important
anatomic features and phenomena, such as ligaments and contact
coupling. Joint ROMs are largely influenced by the collision be-
tween bony features and tensions generated by ligaments around
the joints. Muscle paths wrapping around bones and other muscles
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Figure 20: The unilateral popliteal angle of our reference model
is 30◦ assuming that the threshold for the net passive torque is 50
N ·m. ROM editing can enhance or reduce the ROM in the knee.
The reduced ROM shown in the green curve results in a larger uni-
lateral popliteal angle.

will best be approximated by contact coupling between anatomic
features if their high-resolution geometry and volumetric FEM sim-
ulation are provided [LYP∗18]. The use of waypoints is a crude, yet
computationally-feasible approximation.

Our demonstration of reconstructing a musculoskeletal model
from biplanar X-rays and clinical examination shows the poten-
tial applicability of our study in clinical practice. Ideally, we wish
to be able to construct individualized musculoskeletal models for
any human subjects with minimal effort. Although the potential is
apparent, we have not tried to validate or verify its effectiveness in
medical applications, which may require rigorous experiments with
human subjects [LLK∗15]. This ambitious goal remains the subject
of future research beyond the scope of this paper.

Our algorithm assumes the presence of a reference model, which
can be retargeted only to structurally equivalent bodies. If we want
to build a musculoskeletal model of non-anthropomorphic charac-
ters, there is no high-quality reference model to begin with. An in-
teresting direction for future research is to build anatomical models
from scratch, potentially with help of various types of measure-
ments including 3D scans, medical images, EMG, motion capture,
and videos [KIL∗16].
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[KIL∗16] KADLEČEK P., ICHIM A.-E., LIU T., KŘIVÁNEK J., KAVAN
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