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Figure 1: Our system predicts the lower-body pose of the user from sparse tracking signals of the head, hands, and pelvis for a wide range
of actions using off-the-shelf VR devices.

Abstract

With the popularization of games and VR/AR devices, there is a growing need for capturing human motion with a sparse set
of tracking data. In this paper, we introduce a deep neural network (DNN) based method for real-time prediction of the lower-
body pose only from the tracking signals of the upper-body joints. Specifically, our Gated Recurrent Unit (GRU)-based recurrent
architecture predicts the lower-body pose and feet contact states from a past sequence of tracking signals of the head, hands,
and pelvis. A major feature of our method is that the input signal is represented by the velocity of tracking signals. We show that
the velocity representation better models the correlation between the upper-body and lower-body motions and increases the
robustness against the diverse scales and proportions of the user body than position-orientation representations. In addition, to
remove foot-skating and floating artifacts, our network predicts feet contact state, which is used to post-process the lower-body
pose with inverse kinematics to preserve the contact. Our network is lightweight so as to run in real-time applications. We show
the effectiveness of our method through several quantitative evaluations against other architectures and input representations
with respect to wild tracking data obtained from commercial VR devices.

CCS Concepts
• Computing methodologies → Motion capture; Virtual reality; Mixed / augmented reality;

1. Introduction

Human motion capture is gradually expanding its application areas.
While precise motion capture with a dense set of sensory data is
widely adopted for movie making, there is a growing need for cap-
turing human motion with only a sparse set of data for mass-market,
such as game and VR/AR, due to cost and usability reasons.

A reasonably minimal number of tracking points for the whole

body motion capture would be six: head, hands, feet, and trunk.
The whole body motion can then be reconstructed based on inverse
kinematics. However, many commercial body-worn trackers (e.g.,
HTC VIVE and Oculus Rift) have limitations, especially for feet
tracking.

First, trackers are vulnerable to impacts between the feet and
floor during locomotion. The impact causes instantaneous deviation
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of the trackers from the body, which induces a large sensory error.
In addition, feet trackers have a high probability of failure due to
the occlusion by nearby objects if the capture space is equipped
with furniture and objects.

Except for the motions in which leg movement is important (e.g.,
kicking), the leg generally takes the role of moving the upper-body
to some desired direction or supporting the posture of the upper-
body. For this range of motions, is it possible to estimate the natural
motion of the lower-body with only the sparse tracking data of the
upper-body? Will such a lower-body motion estimator be valid in
a wide range of motions, from locomotion that shows high correla-
tions between upper and lower bodies to the motions in which such
correlation is weak (e.g., in-place upper-body movement)?

To address these questions, we develop a novel deep neural net-
work (DNN)-based architecture, named LoBSTr (Lower-Body pre-
diction with Sparse Trackers), that predicts lower-body pose given
the tracked position and orientation data for the head, hands, and
pelvis. The goal of our network is challenging as it is severely
underdetermined; sparse tracking information of upper-body joints
can be mapped to many different lower-body poses, which are also
affected by the body size and proportion. To tackle this challenge,
we carefully designed the input representation and network struc-
ture, which are the major contributions of our work. First, to reduce
the ambiguity of mapping from upper-body signals to lower-body
pose, LoBSTr takes as input past temporal sequence of upper-body
signals. Its recurrent neural network (RNN)-based architecture then
outputs the lower-body pose at the current frame. Second, to model
the correlation between upper-body and lower-body motions and
increase the robustness against the diverse sizes and proportions of
the user body, the input signal is represented in terms of the veloc-
ity. In addition, to remove foot-skating and floating artifacts, LoB-
STr predicts feet contact states, which are used to post-process the
lower-body pose with inverse kinematics to preserve the contact.
Lastly, our network is designed to be lightweight so as to run in
real-time applications (45 fps, < 22ms).

As a result, our method can generate plausible lower-body mo-
tions in a reasonable range for VR/AR applications from locomo-
tion to those which have weak correlations with the upper body,
e.g., upper-body gesture while walking or standing, allowing for
a significantly wider range of capturable motions than previous 3-
point tracking systems [Dee18; LO19] (Figure 1).

By removing feet trackers for full-body avatar motion genera-
tion, our system is free from artifacts caused by foot-floor impact
and tracker occlusion in a cluttered environment, achieves a larger
tracking area than those of conventional systems, and reduces the
cost for devices; thereby making full-body tracking more accessi-
ble to the general VR/AR users.

In addition, the robustness of our method allows us to train
the model with a single body size, using existing motion cap-
ture datasets such as CMU [13], PFNN [HKS17], and MHAD
[OCK*13] datasets, yet to be applicable to different body propor-
tions tracked with commercial trackers. Our network architecture
successfully learns temporal features of human motions to recon-
struct different motions and transitions between them without phase
or contact labeling.

Our method is evaluated quantitatively by comparing average
positional and rotational errors of different network architectures.
Different input representations are evaluated in terms of toe-base
distance error and average body movement [SZKZ20] to assess the
model’s robustness to user body shape change. An ablation study
over loss terms is performed to see the effects of proposed train-
ing loss terms. A qualitative comparison is also conducted against
a baseline 6-point tracking system.

2. Related Work

This section introduces previous work related to ours with respect
to the problems of obtaining reduced space for human motion and
estimating human motion from sparse sensor signals.

2.1. Motion Synthesis from Reduced Space Representations

Obtaining a reduced space representation of human motion that
captures only the valid scope of human motions enables generating
natural motions as well as editing and optimizing motions faster.

Early methods used linear dimensionality reduction models.
Chai and Hodgins [CH05] applied the principal component anal-
ysis (PCA) to construct locally linear pose spaces online and syn-
thesized natural human pose with low dimensional control inputs.
Liu et al. [LZWM06] proposed a PCA-based clustering method to
map the full set of marker configurations to a lower-dimensional set
while preserving the original captured poses. Liu et al. [LWC*11]
constructed a dynamic linear motion space online by searching a
set of similar motion clips from the dataset and estimating the cur-
rent pose under the maximum a posteriori (MAP) framework. Sa-
fonova et al. [SHP04] synthesized realistic human motions by ap-
plying physics constraints to adjust poses obtained by PCA-based
methods. Linear methods are simple and fast but can only model a
narrow range of behavior-specific motions.

Nonlinear reduction methods can better represent human motion
by reflecting the nonlinear characteristics of human motion. Gro-
chow et al. [GMHP04] and Levine et al. [LWH*12] used Gaussian
Process Latent Variable Model (GPLVM) to obtain a low dimen-
sional latent space to reconstruct high dimensional motion data.
The nonlinear models are generally effective when dealing with a
small number of motion samples but their space and time complex-
ities grow fast with the size of learned motion data.

Recently, DNN-based methods are developed to obtain a latent
space for synthesizing and reconstructing motions. Holden et al.
[HSK16] used a convolutional autoencoder to obtain a motion man-
ifold, which is used to synthesize and edit motions with high-level
control inputs such as locomotion paths. Jang and Lee [JL20] de-
veloped an RNN-based method to learn a motion manifold trained
with a sequence-to-sequence architecture. Ling et al. [LZCV20]
developed autoregressive conditional variational autoencoders that
learn reduced space of plausible human motions for character mo-
tion generation. [HKPP20] applied DNN to the motion matching
technique to reduce memory usage while retaining the quality of
the controllable motion. Our work also learns a reduced motion
space using a DNN architecture. However, unlike previous work
that reduces the whole-body data to generate whole-body motions,
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we obtain a reduced space from the upper-body data to generate the
corresponding lower-body motions.

2.2. Real-time Pose Prediction from Sparse Tracking Signals

The task of predicting full-body pose from sparse signals is an un-
derdetermined problem, where many different poses can satisfy the
given inputs. To obtain the most plausible pose among them, re-
searchers have developed methods that leverage additional knowl-
edge or heuristics on human motion or learn to predict plausible
poses from examples.

Recently deep learning approaches are used for pose prediction
and show promising results. Wouda et al. [WGR*19] proposed a
bi-directional Long Short-Term Memory (LSTM) model to esti-
mate full-body pose from 5 IMUs and showed that their method
is superior to a baseline shallow learning method with respect to
preserving temporal coherency of motion. Huang et al. [HKA*18]
developed a bi-directional RNN to learn the temporal pose priors
and reconstructed human pose from 6 Inertial Measurement Units
(IMUs) worn on the body. They first trained the network with syn-
thetic IMU data and then fine-tuned it with a real dataset. These
approaches predict full-body pose given sparse signals from sen-
sors attached to all limbs and other body parts, whereas our method
aims to predict the lower-body from upper-body tracking signals.

Retrieving full-body pose from sparse observations is also ac-
tively researched in computer vision. Cheng et al. [CYW*19] used
2D and 3D temporal convolutional networks (TCNs) to reconstruct
3D human pose from occluded monocular video. [RF20] showed
that 3D mesh reconstruction can be improved by pre-training net-
works with cropped images in an annotated dataset.

Several studies proposed methods to predict the lower-body pose
from the upper-body information. Jiang et al. [JYF16] developed
a method to generate lower-body motion by blending 8 walking
animations with different directions based on the body direction
and velocity, which are predicted from off-the-shelf VR devices.
As a blended motion, the resulting motion looks natural but its
scope is limited by the predefined animations. A balance control-
based method [TCW19] reconstructs static pose and locomotion of
the lower-body according to the tracked upper-body joints. Specifi-
cally, the target Zero Moment Point (ZMP) trajectory is determined
from the upper-body motion, and the full-body animation is gener-
ated to realize the ZMP trajectory. [Dee18] introduced a commer-
cial 3-point tracking system with a physics-based character model,
trained to satisfy physical and kinematic constraints using deep
reinforcement learning. The resulting motion may take unnatural
steps, different from the actual motion of the user. Recently, Lin
[LO19] developed an LSTM-based pose estimator with 3 trackers
worn on the user’s head and hands. The trained model successfully
estimates the upper-body pose but often fails to predict the lower-
body pose. Compared with these studies, our method is capable of
generating more natural lower-body motions for a wider range of
actions.

3. Prediction of the Lower-Body Pose

Figure 2 shows the overview of our LoBSTr network architecture.
It infers the lower-body pose and feet contact states at the current

frame from a past sequence of tracking signals for the 4 upper-body
joints, including the head, hands, and pelvis. The input sequence
is mapped to a latent representation by an encoder and passed to
two linear layers, one for lower-body pose prediction and the other
for feet contact prediction. The output pose is post-processed with
respect to the output contact state by inverse kinematics for better
visual quality.

Pose Representation. We first describe the representation of pose
in our work. A pose of a character qi at frame i is represented
with the world position proot and orientation qroot of the root ri =
[proot

i ,qroot
i ] and the local rotations of remaining joints ji = [qk

i ]
n joint
k=1 ,

i.e., qi = [ri, ji]. All rotations and orientations are represented in
6-DoF with forward (Z-axis) and up (Y-axis) vectors. To express
motion in the user’s egocentric space, we define a virtual reference
joint, of which frame is located at the root joint and oriented to
point to the world up vector with its Y-axis and to the frontal direc-
tion with its Z-axis. The frontal direction is obtained by projecting
the frontal direction of the pelvis joint to the ground plane.

3.1. Velocity-based Prediction

Predicting pose from the position and orientation data of trackers is
highly sensitive to the user’s body shape, which causes variation in
tracker configurations. For example, the pelvis tracker tends to be
attached farther from the actual pelvis joint for an overweight user
and has different initial rotations for every run; it requires careful
calibration on tracker position and orientation to generate natural
poses from those raw signals. To avoid this, we designed our input
representation to be least affected by the variation of tracker con-
figurations and user’s body shape but to be directly acquired from
the raw tracking signals.

To this end, we represent the input motion of the 4 joints (i.e., the
head, hands, and reference joints) in terms of the velocities. Specifi-
cally, the velocities of sparse joints are described with respect to the
defined reference coordinate frame, which is different from conven-
tional body velocities of full-body joints [CAW*19]. We argue that
this velocity representation is more robust to differences in tracker
configuration and body shape of the users than position and orienta-
tion representation, and thus allows our network to produce robust
output from different users with a simple calibration step.

The velocities di of tracked joints at the ith frame consist of the
linear and angular velocities dre f

i = [vre f
i ,wre f

i ] of the reference
joint and the linear and angular velocities d joint

i = [v joint
i ,w joint

i ] ∈
R(3+6) of the three joints, expressed with respect to the current ref-
erence joint frame. Refer to Appendix 1 for the equations to com-
pute di.

The input Xi to our network at the ith frame includes the velocity
vector d and the height pre f

y of the reference joint above the ground,
in the frame range of [i− (∆i−1), i]:

Xi = [xi−(∆i−1), xi−(∆i−2), . . . , xi] ∈ R∆i×dim(x) (1)

xi = [di, pre f
y,i ] ∈ R(4×9+1) (2)

di = [dre f
i , [d joint,k

i ]3k=1] (3)

Then our network outputs the information to predict the lower-
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Figure 2: Our LoBSTr network architecture to predict the lower-body pose given a sequence of upper-body tracking signals.

body pose at the current frame i. These are the local rotations of 8
lower-body joints (the hip joints, upper-legs, lower-legs, and feet)
Ŷ pose

i ∈ R(8×6) and contact probabilities of feet Ŷ contact
i ∈ R(2×2).

Feet contact states are determined from the output contact prob-
abilities and used to remove the foot-skating artifact in the post-
processing step.

3.2. Network Architecture

We use an RNN with Gated Recurrent Units (GRUs) [CGCB14]
as the latent encoder model, which has shown good performance
in preserving temporal continuity of human motions [WGR*19].
GRUs have the remember-forget function that is capable of learn-
ing implicit priorities over frames to form a hidden space from the
input frame sequence. Furthermore, GRU structure requires a fewer
number of parameters than LSTM [HS97] to achieve similar perfor-
mance, thereby allowing for faster computation time, an important
quality for real-time applications.

In our network architecture, one layer GRU network with a hid-
den dimension of 1024 encodes the input vectors to a latent rep-
resentation, conditioned by the input vectors of previous frames.
Specifically, an input vector xi of the ith frame is encoded as fol-
lows: hi = GRU(hi−1,xi|θg), where hi−1 is the hidden state of the
(i−1)th frame and θg is the hidden layer parameter. After the input
vector xi at the current frame is encoded to hi, hi passes through
a linear layer with parameter θl1 and ReLU activation, generat-
ing a latent vector of 128 dimensions. Finally, the latent vector
passes through two linear layers with parameters θlp and θlc to
produce the local rotations of the 8 lower-body joints Ŷ pose

i and
the contact probability Ŷ contact

i , respectively. In our experiment,
the dimensions of each parameter are as follows: dim(θg) = (4×
9+ 1)× 1024, dim(θl1) = 1024× 128, dim(θlp) = 128× (8× 6),
dim(θlc) = 128× (2×2).

The size of the time window ∆i is set to 45 (= 1 second for 45
fps data), which was found empirically to be appropriate to capture
characteristics of different motion categories and maintain tempo-
ral continuity of output lower-body poses when played sequentially
in real-time.

3.3. Network Training

We train the network in a supervised manner. In order to include
various actions ranging from locomotion to in-place upper body
motion, we built a dataset combining parts of several motion cap-
ture datasets. Specifically, a training set of (Xi,Yi) is obtained from
PFNN, MHAD, and CMU motion datasets and the network is
trained to output as close as to Yi given Xi. Refer to Appendix 2
for the details on preparing and augmenting the motion dataset for
the training.

Following the previous studies, we optimize our network to min-
imize four loss terms: pose loss, forward kinematics loss [PGA18;
VYCL18], feet velocity loss [PFAG19; KPKH20], and contact pre-
diction loss [SAA*20]. The pose loss is our target loss which di-
rectly affects the accuracy of the predicted lower-body pose. The
remaining three terms work as regularizers to promote the natural-
ness of feet trajectories and reduce artifacts such as foot-skating
and floating.

Pose loss. As predicting the lower-body pose at the current frame
is the goal of our network, it is trained to minimize the L1 norm
between the predicted lower-body pose and the ground truth Y pose

i .

Lpose =
∥∥Ŷ pose

i −Y pose
i

∥∥
1

Forward kinematics (FK) loss. Minimizing 3D positional errors
of the feet results in better perceptual quality by decreasing skat-
ing and floating artifacts of the feet. The loss is defined as the L2

norm between the toe-base joint positions computed by FK from
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Figure 3: Overview of our full-body avatar system.

the predicted and ground truth lower-body poses.

LFK =
∥∥FK(Ŷ pose

i )−FK(Yi
pose)

∥∥
2

Feet velocity loss. The jiggling of the resulting feet trajectory
is one of the major artifacts which severely degrades the quality
of output motion. We designed a velocity loss, which drives our
network to produce the ground truth velocity of toe-base joints.

Lvelocity = ‖(FK(Ŷ pose
i )−FK(Y pose

i−1 ))

−(FK(Yi
pose)−FK(Y pose

i−1 ))‖2

Contact Prediction Loss. In addition to the lower-body pose, our
model predicts the contact state of each toe-base joint from the la-
tent vector of the input sequence. The contact prediction layer is
a binary classification layer trained to minimize the binary cross-
entropy between output label probability and ground truth contact
label.

Lcontact =CrossEntropy(Ŷ contact
i ,Y contact

i )

Combining the four loss terms, the final loss function is

L = λ1Lpose +λ2LFK +λ3Lvelocity +
λ4
2
(Lle f t

contact +L
right
contact),

where hyper-parameters for experiments are set as follows: λ1 = 1,
λ2 = 0.1, λ3 = 0.1, and λ4 = 10−6. Refer to Appendix 3 for the
details on network training.

3.4. Real-Time Motion Generation

By using our lower-body pose prediction network, we develop a
real-time full-body avatar system that uses off-the-shelf VR track-
ers as shown in Fig. 3. Specifically, HTC Vive Pro set is used as
a tracking device: HMD, two hand-held controllers, and a tracker
on the pelvis. Input to the network is computed from the world
transformations of trackers. Note that there may be a large devia-
tion from the tracker positions and the joint positions. For example,
the pelvis tracker worn in front of the waist is far from and the
pelvis joint. However, we do not take any special treatment to com-
pensate for this difference, which is challenging due to the user’s
shape variations. Instead, our input representation of velocities ro-
bustly handles the deviation.

Our system is implemented with Unity3D engine and SteamVR
platform and runs at a fixed framerate of 45 fps. The system re-
quires a warm-up time of 1 second to generate an initial input of
45-frames. The input sequence is sent to the lower-body pose pre-
diction module every frame via TCP socket connection. The aver-
age inference time is around 2.5ms, which is fast enough to main-
tain the running rate of 45 fps. The upper-body pose is computed
to match the tracked end-effector transformations by an IK solver
[Roo17] and combined with the lower-body pose to animate the
virtual character skeleton.

3.4.1. Contact Post-processing

While our network outputs plausible poses of the legs, continuous
animation of the leg shows some extent of foot-skating and float-
ing artifacts. These artifacts are more visible when users take a
vigorous motion like running or sharp turn, which induces high-
frequency shaking of the pelvis tracker.

To resolve those artifacts that occur during runtime, we train our
model to output contact probabilities of two toe-base joints and
post-process the leg pose in the contact state. At the moment when
the contact state changes from false to true, the toe-base position is
set as the target contact position and a Jacobian-based inverse kine-
matics solver is used to maintain the contact while the contact state
remains true.

To maintain a smooth transition when the toe-base joint loses
contact, a simple interpolation is performed for a fixed time win-
dow (10 frames in our experiment); the toe-base joint position at
the contact-losing frame and that computed from the network out-
put are linearly interpolated to determine the target toe-base joint
position. The corresponding leg pose is computed from a Jacobian-
based inverse kinematics solver. The interpolation parameters are
computed from a shifted sine function to implement a slow-in-
slow-out transition.

4. Experiment

We assess the effectiveness of our method through several offline
and online evaluations as shown below.

4.1. Offline Evaluation

4.1.1. Network Architecture Comparison

To the best of our knowledge, our work is the first DNN-based
method trained with existing motion capture datasets to predict
lower-body pose only from the input sequence of upper-body
joints. Therefore, we compare models with baseline network ar-
chitectures of fully connected layers (FC), convolutional layers
(CNN), and different types of recurrent unit layers (RNN, LSTM,
and GRU). We assess the ratio of correct contact labels out of
the whole frames, average rotational error per joint (8 lower-body
joints), and average positional error of two end-effectors (left and
right toe-bases). The networks only vary in the latent mapping
module for input sequence; the encoder is replaced with differ-
ent network architectures while linear layers for predictions re-
main identical. Hidden and latent dimensions are fixed to 1024 and
128, respectively. The FC encoder consists of 6 layers of FC lay-
ers [Hol18] and the CNN encoder consists of 1D convolution and
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Figure 4: Errors of different loss term combinations according to training epochs.

max-pooling layers [HSKJ15]. Table 1 shows the errors of different
architectures for the test dataset.

In addition, we tested a GRU encoder with an autoregressive
structure, which was reported to improve motion prediction accu-
racy and reduce visual artifacts in the output sequence [MBR17].
Our tested autoregressive model forms a latent vector by concate-
nating a latent vector output from a GRU encoder, which takes the
upper-body tracking signals as input, and a linear layer (parame-
ter dimension of 48× 128), whose input is the lower-body pose of
the previous time step. This autoregressive model leads to the ex-
plosion of the resulting lower-body pose after approximately 120
frames of running, presumably because of the accumulation of er-
rors in the lower-body pose.

The comparison shows that the models with recurrent structure
and remember-forget function (LSTM and GRU) produce the best
performance on all three measures and the difference between the
two is not significant. We choose to use GRU for its higher predic-
tion accuracy for contacts as well as having fewer cell parameters,
which allows for faster training and inference time.

Table 1: Network architecture comparison on the test dataset.

Model Contact
Accuracy

Rotational
Error

Positional
Error

FC-6 84.22% 9.37◦ 7.2cm
CNN-1D 72.33% 13.86◦ 13.3cm
RNN 82.27% 9.43◦ 7.1cm
LSTM 83.85% 8.50◦ 6.63cm
GRU (Ours) 85.77% 8.53◦ 6.63cm

In addition to the quantitative analysis, we evaluate the visual
quality of the output animation. Architectures with recurrent units
(RNN, LSTM, and GRU) produce smooth and continuous motions
while others suffer from jittery output motions.

4.1.2. Loss Term Ablation Study

We examine the effect of proposed loss terms (LFK and Lvelocity)
by doing an ablation study for the terms. The proposed model of
GRUs is trained by three different loss term combinations: 1.Lpose,
2. Lpose +LFK , 3. Lpose +LFK +Lvelocity, denoted as P, PK, and
PKV, respectively. Figure 4 shows that adding LFK and Lvelocity
does not affect the joint angle error but decreases the average posi-
tion and velocity errors of the feet. Table 2 shows that the average
positional error of the feet is minimum with PKV. We evaluate the
visual quality of output lower-body motion from the models trained
with the three loss term combinations, among which PKV gives
significantly more stable lower-body motions, especially when the
user is performing in-place upper-body motions.

Table 2: Errors of different loss term combinations on the test
dataset.

Loss Term Combination P PK PKV
Positional Error (cm) 6.95 6.64 6.63

4.1.3. Input Representations Comparison

The robustness of the proposed velocity input feature is evaluated
by two measures. First, we measure toe-base distance error, the dif-
ference of the distances between two toe-bases from the output
pose and ground truth pose captured with trackers. Secondly, we
compare body movement [SZKZ20], the sum of absolute joint an-
gle updates in output pose, generated from recorded inputs. Body
movement metric examines whether the network is overfitted and
produces over-smoothed motion for sub-domains represented by
sparse training samples. The test set of wild signals is captured
from subjects with 157, 171, and 184 cm heights. The subjects
are asked to perform a sequence of actions; walk, run, sit/stand
up, carry and move, static gestures, and free movement. The free
movement contains motion categories that are not in training sets
(e.g., walking backward, cross-steps, and jumping). Three identical
models are trained with inputs of position-orientations, velocities,
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Figure 5: Styled running (arms swinging in front of the chest)
motion by a 157cm subject. Compared with velocity input (red),
position-orientation input (green) occasionally generates static
poses.

Figure 6: Sitting-standing up motion by a 176cm subject. Com-
pared with velocity input (red), position-orientation input (green)
shows less accurate contact state prediction.

and a combination of both representations. For position-orientation
representation, the input for reference joint is given in velocity rep-
resentation.

Table 3 shows the average toe-base distance error per frame over
different user heights. For the whole sequence, velocity representa-
tion outperforms the other representations in average error for every
subject. When divided into motion categories, position-orientation
representation shows smaller errors for a majority of the subjects
(2 out of 3), only for the sit/stand up category. The combined rep-
resentation shows significantly larger errors for VR tracker data,
although it outperformed the others for motion capture data. This
result suggests that the model with combined input is trained to fit
the distribution of the training domain (motion capture data) more
tightly and thus becomes more sensitive to the body dimensions,
tracker configurations, and wild noise than the velocity or position-
orientation representation. From the result, we conclude that veloc-
ity representation generates much closer leg swings to the ground-
truth than position-orientation representation.

Figure 7 shows that velocity representation surpasses position-
orientation representation in body movement measure for all users.
While comparing visual quality of output lower-body motions, we
found that the model with velocity representation learned larger
motion space including sharp motions but that with position-
orientation representation was overfitted to a smaller range of lo-
comotion and sitting motion.

We observe that velocity representation generates continuous

Figure 7: Average per-frame joint angle update of output poses
from users with different heights.

lower-body motion for the recorded test inputs, while position-
orientation representation sometimes produces unnatural static
poses during motion (Figure 5). In addition, the model maintains
higher precision of contact state prediction with the velocity rep-
resentation (Figure 6). From the results, we conclude that velocity
representation outperforms position-orientation representation with
respect to the robustness to unobserved input data (e.g., different
body size and motion style), the accuracy of feet contact predic-
tion, and visual quality.

4.2. Online Evaluation

We tested our real-time full-body avatar system for a wide range
of motions performed by several participants with varying heights.
Recordings of avatar and participant motions are provided in the
supplemental video.

Before capturing, each participant takes T-pose in the calibra-
tion stage to compute rotational offsets between trackers and corre-
sponding joints in the skeleton. Rotational offsets are multiplied to
tracking signals to compensate for individual differences in tracker
configuration, which may result from different controller grip and
different wearing positions of trackers; the offsets not only vary
among users but also for the same user at each session. Input joint
velocities are then computed from the tracked world positions and
orientations, compensated by the offsets. In addition, a height scale
is obtained as the ratio of the pelvis heights between the participant
and the standard skeleton used for the network training. The height
of the participant’s reference is multiplied by the height scale to
map to the standard skeleton before feeding to the prediction net-
work. Then our system outputs the whole-body pose of the standard
skeleton, which is visualized after scaling with the height scale to
reflect the participant’s height.

A total of four people with heights of 157, 171, 180, and 184 cm
participated in the test. The participants are first asked to perform
basic actions, including walking, running, sitting, standing up, and
static gestures. After that, they are asked to do actions that are not
in the training set, including walking backward, moving objects to
another place, and walking with greetings. Finally, they are asked
to move freely with any actions they want to test. The capture envi-
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Table 3: Average toe-base distance errors (cm) for users with different heights.

User Height Representation Walk Run Sit/Stand up Carry and move Static gestures Free Total

157 cm
velocity 4.8 1.6 3.5 5.3 4.0 9.5 4.4
pos-ori 6.9 4.2 1.7 7.5 0.2 11.0 6.0

combined 17.0 10.7 6.3 13.1 5.2 20.5 13.3

171 cm
velocity 3.7 1.3 1.3 8.3 0.7 7.5 4.6
pos-ori 8.3 5.3 2.1 6.3 2.3 7.4 5.0

combined 20.8 12.2 6.2 10.6 1.2 17.0 11.9

184 cm
velocity 0.03 1.4 2.4 7.0 9.2 3.3 2.1
pos-ori 2.9 1.2 1.6 7.7 14.4 6.4 5.2

combined 14.6 12.9 9.7 17.8 2.3 16.3 13.0

ronment is designed to represent the play area of general users; the
room is 3.6m x 3.6m and is equipped with objects and furniture.

Figure 8 shows the snapshots of participants capturing various
actions. Our network successfully reconstructed lower-body pose
corresponding to the input upper-body motion and maintained tem-
poral continuity between output poses. Interestingly, our model
successfully learned gait patterns without using any phase or con-
tact labels as input, matching leg movement and the feet contact
states with the upper-body motion of the participants. Furthermore,
our network successfully created the lower-body pose from unob-
served inputs of diverse motion categories, different motion styles,
and body shapes.

Comparison against 6-Point Tracking. Figure 9 compares avatar
animation obtained by our method and by a 6-point tracking (4
trackers as ours and 2 additional trackers at feet) method. The lower
body motion of the 6-point tracking method is created by inverse
kinematics. One can see that the resulting animation of our method
is similar to that from the 6-point tracking.

Due to the infrared occlusion by existing objects, the feet track-
ing often failed and caused the 6-point tracking avatar to make
bizarre poses (Figure 10). In contrast, our method does not suffer
from such tracking loss and outputs lower-body motion robustly.

5. Limitation and Future Work

Our method has several limitations, which should be overcome in
order to enable users to freely capture the unbounded range of high-
quality motions with sparse tracking data.

First, we fixed the Y-axis of the reference joint to the world up-
vector to clearly capture the ground-plane translation and rotation.
As a result, the reference joint can only rotate about Y-axis but not
about the frontal or lateral axes, which are major axes for some
rotational actions like rolling and windmill. To deal with these ro-
tations, an additional step of predicting frontal and lateral rotations
of the pelvis by using all four tracking signals would be necessary.

Second, while our method shows competitive results for con-
tact prediction in the majority of cases, prediction accuracy drops
when the user makes sharp turns or complex leg-crossing motions,
which may cause inappropriate fixation of feet or skating/floating
behavior. It remains a future goal to develop more robust contact
predictors and corresponding leg animation methods.

Third, the output lower-body animation sometimes contains jit-
tering and sliding artifacts. In most cases, the artifacts are due to
the unintended movement of the pelvis tracker, which is attached
in front of the abdomen and thus moves differently from the actual
pelvis joint. An additional source of artifact is the ambiguity occur-
ring when a stationary user starts moving; it is difficult to determine
whether the user begins locomotion or moving in-place only from
past observations. For this reason, artifacts are observed during dy-
namic in-place motions such as making boxing or walking gestures.
Utilizing short future information [HKA*18] and exploring the au-
toregressive approach [MBR17] are promising future directions to
reduce this ambiguity.

Lastly, a very challenging goal with high impact is to capture the
full-body motion by using only a minimal 3 trackers on the head
and hands, without using the pelvis tracker, which is cumbersome
to wear on top of clothing. However, considering the great amount
of ambiguity in human poses given only three tracker signals, we
conjecture that it would be extremely difficult to develop a 3-point
tracking system that can distinguish a wide range of human poses.
A feasible direction might be to combine with additional sensory
modals, e.g., attaching a vision sensor on HMD, that reinforce the
full-body motion capture.

6. Conclusion

We presented a novel method to reconstruct lower-body motion
from sparse tracking data of upper-body joints, using a GRU-based
network architecture. Our method does not require to use feet track-
ers, which are error-prone due to IR occlusion and foot-ground
impact. Our GRU-based structure successfully learns the tempo-
ral characteristics of human motion. The velocity-based prediction
scheme is robust against variations in tracker attachment and users’
body shape. Overall, our system generates lower-body motion that
is visually competitive to the sequence obtained from the baseline
6-point tracking system with additional feet trackers.
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Figure 8: Avatar motions generated in real-time from users with various heights, 157cm (top), 171cm (middle), and 180cm (bottom).

Figure 9: Comparison of real-time avatar motion against 6-point tracking (Red: Ours, Green: 6-point tracking).

Figure 10: Comparison of robustness to feet tracking loss against 6-point tracking (Red: Ours, Green: 6-point tracking).
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Appendix

1. Velocity Computation

Let (qre f
i , pre f

i ) and (q joint
i , p joint

i ) denote the world orientation
and position of the reference joint and descendent joints at the
ith frame, respectively. Then the equations to compute velocity
di = [dre f

i , [d joint,k
i ]3k=1] are given below:

dre f
i = [vre f

i ,wre f
i ]

vre f
i = (qre f

i )
−1∗ (pre f

i − pre f
i−1)

wre f
i = (qre f

i )
−1∗ (qre f

i−1)
−1∗qre f

i

d joint
i = [v joint

i ,w joint
i ]

v joint
i = (p′i

joint − p′i−1
joint

),

p′ = (qre f )
−1∗ (p joint − pre f )

wi
joint = (q′i−1

joint
)
−1∗q′i

joint

q′ = (qre f )
−1∗q joint .

2. Dataset Formation

The goal of this research is to reconstruct general human motions
from sparse tracking signals. We built a dataset combining parts
of three different motion capture datasets. PFNN dataset [HKS17]
is selected as the main dataset for containing various locomotion
styles and transitions. We only used general locomotion anima-
tions of the PFNN dataset and excluded animations of climbing
up and jumping. Selected animations consist of different motion
categories, including stand, walk, jog, and run; the categories are
randomly placed in an animation sequence and various transitions,
such as normal turn, side steps, and back steps, exist between mo-
tion categories.

To cover in-place motions such as sit, stand up, and upper-
body gestures, we selected animations in the CMU motion capture
dataset [13] and MHAD dataset [OCK*13], and synthesized se-
quential animations for the combined dataset by connecting, clip-
ping, and looping the selected animations.

All raw motion capture animations were down-sampled to 45
fps and the root position and joint offsets were edited (1. scaling
parameter: 0.0594, 2. root height shift: −0.05m) to match the root
height of 1m in T-pose. Table 4 shows the ratio and the total number
of frames of different action categories. Tables 5 and 6 show the
sources and names of animations consisting of the training and test
sets, respectively.

Table 4: Ratio of action categories in the dataset.

Category Frames Duration (min) Ratio
Locomotion 141,340 52.35 84.0%
Sit/Stand 7,548 2.80 4.5%
Upper-body motion 19,402 7.19 11.5%
Total 168,290 62.34 100%

Tracking Signal Augmentation. To augment imaginary tracking
signals from motion data, we first computed the world transfor-
mations for the 4 joints of the head, finger-bases, and root that
correspond to Head-Mounted display (HMD), two hand-held con-
trollers, and pelvis tracker, respectively. The VIVE Lighthouse

Table 5: Training set composition.

Category Source Name

Locomotion PFNN

NewCaptures01_000
NewCaptures02_000
LocomotionFlat01_000
LocomotionFlat02_000
LocomotionFlat03_000
LocomotionFlat04_000
LocomotionFlat05_000
LocomotionFlat06_000
LocomotionFlat07_000
LocomotionFlat08_000
LocomotionFlat10_000

Sit/Stand MHAD

skl_s01_a10&a11_r01
skl_s01_a10&a11_r02
skl_s01_a10&a11_r03
skl_s01_a10&a11_r04
skl_s01_a10&a11_r05

Upper-body motion CMU
15_05
111_22

Table 6: Test set composition.

Category Source Name

Locomotion PFNN

LocomotionFlat02_001
LocomotionFlat06_001
LocomotionFlat08_001
LocomotionFlat11_000

Sit/Stand MHAD
skl_s02_a10&a11_r01
skl_s02_a10&a11_r02

Upper-body motion CMU
32_11
29_18

tracking system has an expected accuracy of 2mm [Kre16]. To ap-
ply this drifting behavior of the trackers to the training data, we
added random vectors with scale sampled from a normal distribu-
tion N (0,0.01), to the position of joints. For rotational noise, ran-
dom rotations with a maximum angle of 1.5 degrees were applied
to the joint world rotations.

Contact Labeling. Each frame of a motion clip has binary contact
labels for two toe-bases. We simply labeled that a toe-base is in
contact if the height of the toe-base joint is below 1cm, which gave
us a reasonable result for the dataset.

3. Details on Network Training

The number of training epoch is 1,500. We use Adam optimizer
with an initial learning rate of 10−3 with a decaying rate of 0.999
every epoch. We use a batch size of 256; to form a batch, 256 ani-
mations are randomly selected from the set with the probability of
panim = fanim

∑ f , where f is the number of frames of the animation.
Finally, a 45-frame chunk is randomly picked from each selected
animation to form a batch of dimension R256×45×(4×9+1).
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