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Abstract
Multi-dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for
identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring
subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformly-
formatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle
arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which
in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully-connected neural
network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization
system that achieves a 3-step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in
a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally,
the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration
flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and
quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.

CCS Concepts
• Human-centered computing → Visual analytics; Visualization systems and tools;

1. Introduction

Multi-dimensional data exploration is a classic research topic in
visualization. Most existing approaches work at the record level,
using various machine learning algorithms to find distinctive distri-
butions (e.g. clusters or outliers) in dimensional space or subspace
as data patterns [YRWG13, PPM∗15, XYC∗17].

Patterns of multi-dimensional data, however, are often related to
subsets rather than records. A subset consists of data records and
has multiple features, as in Figure 1. Each feature reflects an as-
pect of statistical information of all the included records. Typically,
a subset pattern is a group of subsets having similar values on spe-
cific features. We consider exploring subset patterns a more general
task for multi-dimensional data, since a subset can only include one
data record in an extreme setting. In that case, the subset pattern ex-
ploration degenerates to the record pattern exploration.

There are many ways to partition a given multi-dimensional
dataset into subsets and a subset can have a large number of fea-
tures. Subset patterns, however, may associate with a few subsets
and features. Without prior knowledge, analysts have to attempt
different partition methods, repeatedly select a portion of generated
subsets, and correlate them on different combinations of features to
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Week Hour Crime Type Location Type Location
Mon 23 Theft Street 17

Tue 0 Theft Sidewalk 10

Wed 8 Theft Store 11

Sat 20 Narcotics Vehicle 6

Sat 20 Burglary Residence 1

…
Location

Week

Week Hour Crime Type Location Type Location

Hour Crime Type Location Type Location
hTheft

hSat-20

Theft

Sat-20

Figure 1: Two subsets of the Chicago crime dataset [chi]. Each
consists of records (crimes) with specified attribute values, and
takes the distribution of the number of records on an attribute as
a feature. The purpose of SEN is representing a large number of
subset as uniformly-formatted vectors.

identify patterns. The huge search space makes the discovery of
subset patterns a challenging and time-consuming process.

The great success of representation learning [BCV13] inspires us
to apply a subset embedding network (SEN) in multi-dimensional
data exploration. The SEN can generate uniformly-formatted em-
beddings for a group of given subsets, as in Figure 1. Moreover,
the embedding similarity reflects that of subsets in terms of their
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feature values. We thus can perform automatic algorithms, such as
clustering and dimensionality reduction (DR), according to their
embeddings to identify patterns in an efficient manner.

In this paper, we propose the SEN. The design challenges in-
clude 1) adapting the SEN to arbitrary subsets to achieve better
applicability (R1), 2) capturing the similarity on single features to
accurately encode patterns (R2), and 3) obtaining a high training
efficiency to enable incorporation into visualization systems (R3).
The three aspects prevent the application of existing techniques
in subset embedding (Section 2.2). Inspired by multi-view learn-
ing [LYZ18], we consider a subset a multi-view object and each
subset feature a snapshot taken by a virtual camera around the sub-
set (Section 2.3), and propose SEN of multi-subnet structure to sat-
isfy the three requirements.

We integrate the SEN into a visualization system to explore
subset patterns in multi-dimensional data. The system follows an
“overview->details->patterns” explorative workflow [Shn96]: ana-
lysts slice the data into subsets, project subsets according to their
embeddings obtained from a SEN trained on-the-fly, and select por-
tions of subsets to determine the existence of patterns. The sys-
tem contains three components. Specifically, one utilizes the tree
metaphor to achieve progressive data partition, which enables an-
alysts to generate a variety of subsets through few operations. An-
other incorporates interactions and automatic methods to assist in
exploring the projection. The third one provides a group of views
implemented as classic visualization techniques for visualizing fea-
tures of selected subsets to identify patterns. Generally, the three
components balance the exploration flexibility and operation effi-
ciency, and improve the interpretability and faithfulness of the iden-
tified patterns.

We conduct case studies and quantitative experiments to evaluate
the approach on six open datasets. Experiment results illustrate its
general applicability and effectiveness. Specifically, analysts can
identify rich patterns using our approach by conducting tasks on
drastically different subsets. Meanwhile, quantitative experiments
demonstrate the high training efficiency and the effectiveness in
capturing patterns of the SEN.

The main contribution of our work is a visualization approach
to exploring subset patterns in multi-dimensional data, which in-
tegrates 1) a subset embedding network that can accurately and
quickly represent a large number of given subsets as uniformly-
formatted embeddings , and 2) a visualization system following a
classic workflow, which combines 1) with three visual components
to implement flexible and efficient subset pattern exploration.

The rest of the paper is organized as follows. Section 2 gives de-
sign requirements. Sections 3 and 4 introduce the embedding net-
work and the visualization system. Sections 5 demonstrates the us-
ability of our approach through case studies and quantitative exper-
iments. Section 6 discusses the limitations. We reviews the related
work in Section 7 and conclude the paper in Section 8.

2. Problem Statement

We give the subset definition, identify three requirements, and out-
line the approach.

2.1. Subset Definition

Let D(d1, . . . ,dn) be a multi-dimensional dataset, where di is an
attribute with the domain dom(di). A subset consists of records
selected by a group of filters, i.e. r(d1),. . . ,r(dn), where r(di) is a
filter that specifies a value range on dom(di), i.e. r(di) ∈ dom(di).

Filters whose value ranges cover the whole domain, i.e. r(di) =
dom(di), can be hidden for brevity. We call the attribute of an un-
hidden filter a slicing attribute. For example, in Figure 1, the subset
(Crime-type: theft) has a single slicing attribute, i.e. Crime-type,
while the subset (Week: Saturday, Hour: 20) takes Week and Hour
as two slicing attributes.

The number of unhidden filters describes the dimensionality of
the subset, denoted as l = |{r(di)|r(di) 6= dom(di)}|. For example,
(Crime-type: theft) is a 1-dimensional subset, and (Week: Saturday,
Hour: 20) is a 2-dimensional subset.

Each subset can have multiple features, as in Figure 1. We write
the vth feature of subset Si as X (v)

i . A feature, describing an aspect
of statistical information of all the included records, can be in any
form, such as a number (e.g. count of all included records) or a
vector (e.g. distribution of aggregate values on an attribute).

2.2. Design Requirements

According to the above definition, we can represent a subset as a
group of feature vectors. The function of the SEN thus is to take
feature vectors of a subset as the input and output its embedding.
The nature of subset, however, makes existing embedding tech-
niques [MH08, XMTH11] inapplicable, as follows:

First, existing techniques target on objects with features of the
same shape (e.g. number and size). Patterns, however, may exist
within arbitrary subsets that have different slicing attributes and
features. Figure 2a show such a case, in which we project subsets
sliced on Crime-type and Week separately together and exclude
features of slicing attributes (marked with dashed borders). Taking
them as features will incorrectly increase the similarity of subsets,
since their values are zero at most positions. Projections containing
diverse subsets involve more interesting patterns. In Figure 2a, the
theft subset is adjacent to Saturday and Sunday subsets. We thus
speculate theft crimes mainly occur at that time. For applicability,
the SEN should be able to deal with subsets with arbitrary slicing
attributes (R1).

Second, existing techniques are designed to capture the overall
similarity of target objects across all features. In contrast, subset
patterns are often related to few features. For example, in Figure
2b, two week subsets (Saturday and Sunday) have similar values
on a feature (see the feature marked in yellow). Existing techniques
cannot output similar embeddings for them due to their significant
differences on the other features, resulting in missing patterns or
finding incorrect patterns when exploring the latent space. To cap-
ture the similarity of subsets on single features is necessary for the
SEN (R2).

Finally, existing techniques are always restricted by the slow
training speed. Moreover, as a self-supervised technique, a well-
trained embedding network can only output embeddings for the ob-
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Figure 2: Two important design requirements of the SEN that
should (a) accommodate arbitrary subsets with different slicing at-
tributes and features and (b) capture the similarity of subsets on
single features.

jects in the training set, different from the offline training of classi-
fication models. Therefore, we have to train a SEN on-the-fly after
slicing a multi-dimensional data into subsets. A high training effi-
ciency is desired for the network to facilitate the application in a
visual analytics environment (R3).

2.3. Mutli-view Learning-inspired Subset Embedding

We use the idea of multi-view learning to design the SEN. Multi-
view learning is a common kind of machine learning techniques
for multi-view objects [LYZ18, ZXXS17, JY17]. A typical multi-
view learning model takes multiple snapshots (views) of an object
as the input, as in Figure 3a. Its purpose is taking advantage of
the complementary information between views to generate embed-
dings, thus improving the accuracy of the following object iden-
tification or classification tasks. Inspired by multi-view learning,
we consider each subset a multi-view object. Each feature can be
viewed as a snapshot taken by a virtual camera from different per-
spectives around the subset, as in Figure 3b.

… …
Object Images Subset FeaturesSubset Features

Subset

(a) (b)
Figure 3: Multi-view learning-inspired subset embedding. (a) A
multi-view learning model takes multiple views (snapshot) of a tar-
get object as the input. (b) We consider a subset as a multi-view
object with each feature being a snapshot taken by a virtual cam-
era around the subset.

A common characteristic of multi-view learning techniques is
they separately treat individual views. Along this line, we propose a

SEN of multi-subnet structure, as in Figure 4b. The core idea of the
structure is using independent subnets to handle different features
and fuse information of different features into final embeddings.
In the next section, we will show how the multi-subnet structure
satisfies the above three requirements.

3. Subset Embedding Network

We propose a SEN of multi-subnet structure. Without loss of gen-
erality, we allow target subsets to have different numbers of fea-
tures, as in Figure 4a. The network structure is shown in Figure
4b. The SEN consists of multiple subnets ( f (1), f (2),. . . , f (n)), each
corresponding to a feature. Let hi be the embedding of subset Si. A
subnet f (v) takes hi as the input and predicts the vth feature vector
of Si. All the subnets share embeddings of subsets as inputs. The
embeddings are randomly initialized and iteratively updated dur-
ing the training of the subnets. By using the multi-subnet structure,
the network size is linearly proportional to the number of features
(the number of subnets). Below we define the losses for updating
embeddings and parameters of each subnet.

Let Loss(v) be the loss of the vth subnet f (v), we use the sum of
losses of all the subnets to update the embeddings, i.e.:

Lossemb =
n

∑
v=1

Loss(v) (1)

We use the difference between the predicted feature vector f (v)(hi)

and the original feature vector X (v)
i as the loss of subnet f (v), i.e.:

Loss(v) = ∑
i∈I(v)

∥∥∥ f (v)(hi)−X (v)
i

∥∥∥ (2)

I(v) represents the set of subsets containing the vth feature. Using
Figure 4a as an example, S1 belongs to I(1), I(3) and I(n), while Si

belongs to I(2) and I(n). By introducing I(v), each subset will acti-
vate different subnets. That is we only use the losses of subnets cor-
responding to features owned by a subset to update its embedding.
The structure thus is applicable for arbitrary subsets with different
numbers of features (R1).

The multi-subnet structure enables to capture the similarity of
subsets on single features. First, embeddings of subsets with few
similar features can be similar. Let (hi, h j) and (X (v)

i , X (v)
j ) be the

embeddings and the vth feature vectors of two subsets Si and S j.

When X (v)
i and X (v)

j are similar, hi and h j should be similar to some

extent, as they will go through the same subnet f (v) to obtain simi-
lar outputs, i.e. hi-> f (v)-> X (v)

i , h j-> f (v)-> X (v)
j . Moreover, subsets

with more similar features will have more similar embeddings, as
we use the sum of losses of all subnets (Equation 1) for updating
embeddings (R2).

We implement each subnet as a fully-connected neural network
containing a single hidden layer. We fix the length of embeddings to
30, which achieves relatively good performance in most cases. We
can conveniently increase the size to reduce the information loss
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Figure 4: Subset embedding network. (a) Subsets to be embedded, which are allowed to have different numbers of features. (b) The multi-
subnet structure of the SEN. All the subnets share embeddings of subsets as their inputs.

of embedding. Training optimizations, such as learning rate decay,
early stop, etc., can be used optionally. The simple structure and
few parameters achieve high training efficiency. The network can
handle a large number of subsets with multiple features in real-time
(Section 5.3), enabling easy integration with visualization systems
(R3).

Algorithm 1 shows the training process of the SEN. The network
takes a group of subsets represented as feature vectors as inputs and
outputs uniformly-formatted embeddings for them. We randomly
initialize embeddings and parameters of subnets (line 1), train sub-
nets with separate losses using Equation 2 (lines 3-5) and update
embeddings using Equation 1 (lines 6). We will terminate the train-
ing when Lossemb (Equation 1) no longer significantly decreases
over multiple consecutive epochs.

Algorithm 1: Subset Embedding Network Training

Input: subsets {S1, ...,Sk}, Si =
{

X (1)
i , ...,X (n)

i

}
1 Randomly initialize embeddings {h1, ...,hk} and parameters

of subnets
{

θ
(1), ...,θ(n)

}
2 while not converged do
3 for v = 1 : n do
4 Update θ

(v) with Loss(v) = ∑i∈I(v)

∥∥∥ f (v)(hi)−X (v)
i

∥∥∥
5 end
6 Update {h1, ...,hk} with Lossemb = ∑

n
v=1 Loss(v)

7 end
Output: embeddings {h1, ...,hk}

4. Visualization System

We develop a visualization system based on the SEN for exploring
multi-dimensional data, detailed below.

4.1. System Overview

Following the line of “overview->details->patterns” [Shn96], we
propose an explorative workflow, as in Figure 5. Analysts first par-
tition the given multi-dimensional dataset into subsets (Progressive

Data Partition). They then project the subsets according to their
embeddings obtained from a SEN trained on-the-fly, and select
subsets with specific distributions (e.g. outliers or clusters) in the
projection (Latent Space Creation & Exploration). Analysts fi-
nally visualize feature vectors of the selected subsets and observe
whether they have consistent values on any features. The more con-
sistent feature values a group of selected subsets have, the more
significant patterns they involve (Visual Pattern Discovery).

Progressive Data 
Partition

Latent Space Creation &
Exploration

Visual Pattern
Discovery

Figure 5: The workflow utilized by the visualization system.

Figure 6 shows the interface of the visualization system that in-
tegrates three components, i.e. Exploration Manager (EM), Subset
Projector (SP), and Pattern Explainer (PE), to achieve the above
workflow, as follows:

EM implements the progressive data partition that enables ana-
lysts to generate a variety of subsets with few operations (step 1),
as in Figure 6a. Its main body is a tree. Each node contains subsets
selected together from those sliced on its parent.

SP is responsible for creating the projected latent space, in which
analysts select subsets that may involve patterns (step 2), as in Fig-
ure 6b. It integrates rich interactions and automatic methods to as-
sist in selecting subsets.

PE consists of a group of feature cards implemented as classic
visualization techniques to show and compare feature values of se-
lected subsets (step 3), as in Figure 6c. It uses a consistency mea-
sure (Section 4.4) to quantify the significance of the patterns.

4.2. Progressive Data Partition

To enable analysts’ exploration, we should generate a large num-
ber of subsets at the beginning of the exploration. For flexibility,
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Consistency measure 
values of selected nodes

(a) (b)

(c)

Figure 6: The interface of the visualization system that integrates three components, i.e. (a) Exploration Manager (EM), (b) Subset Projector
(SP), and (c) Pattern Explainer (PE).

the visualization system should support to generate subsets with
any slicing attributes covering any attribute ranges. For efficiency,
it is impossible to set slicing attributes and attribute ranges for each
subset individually, which will introduce a large number of repet-
itive operations. We thus propose the progressive data partition to
balance the two aspects:

First, we limit to slicing data on an attribute. Therefore, each
generated subset has a single slicing attribute. Moreover, we con-
sider subsets selected at a time as a new dataset and allow for parti-
tioning it into subsets again, which actually add a slicing attribute.

Second, we discretize the value range of the slicing attribute.
Specifically, geographical locations are grouped into nominal units,
such as states, cities or zones; temporal attributes are discretized on
their natural intervals, such as hours, days, or weeks; numerical
attributes are divided into equal intervals. We make each generated
subset cover a minimum value interval.

The visualization system utilizes EM to implement the progres-
sive data partition. The main body of EM is a tree, as in Figure 6a.
We utilize Figure 7 as an example to illustrate how analysts use EM
to generate subsets with different slicing attributes. At the begin-
ning of the exploration, there is only the root in the tree, which rep-
resents the original dataset. Analysts can select the root and specify
“Week” as the slicing attribute to partition it into 7 subsets and
project all the generated subsets, as in Figure 7a. They then select
two groups of subsets corresponding to the weekday and the week-
end respectively, which form separate child nodes of the root, as in

Figure 7b-c. Analysts further select the newly added node that con-
tains subsets of weekend and partition it into 24 subsets on Hour,
as in Figure 7d. Each subset thus represents an hour on weekends.
They also select two groups of subsets to form two child nodes of
the weekend node, as in Figure 7e-f.

Node currently selected for partition Node newly added

16
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4 1

14
17
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2
23 1

0
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7888
9

20
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10
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(a) (b) (c)

(d) (e) ( f )

Figure 7: An example of the progressive data partition. Subsets in
a cluster are marked with the same color.

Analysts can generate arbitrary subsets they want by repeating
the above process. Moreover, the progressive process balances the
flexibility and efficiency of the subset generation. First, it simpli-
fies interactive operations. Analysts can simply choose a slicing at-
tribute to generate subsets without the needs of setting the attribute
range for each subset individually. Second, it makes the implemen-
tation of the visualization system easy. The system only needs to
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support a type of operations, i.e. slicing a dataset into subsets on a
user-specified attribute. Finally, each projected subset covers a unit
of the value range of the slicing attribute, which avoids generating a
large number of logically-unrelated subsets, making identified pat-
terns more explainable.

In EM, each tree node consists of multiple colored rectangles, as
in Figure 6a. Each rectangle represents a subset that covers a single
unit of the value range of the slicing attribute. The more subsets
a node contains, the longer the node will be. We assign a globally
unique color to an attribute, see the legend in Figure 6a. The color
of a rectangle indicates the slicing attribute selected at the current
round. We can understand all the slicing attributes of subsets of a
node by tracing colors of nodes along the path from the root to
the node. For example, in Figure 6a, #1 has a single slicing at-
tribute, i.e. Week, while #3 has two slicing attributes, i.e. Week and
Hour. For attributes with continuous attribute ranges (e.g. Week and
Hour), the transparency of rectangles (subsets) gradually decreases
as the attribute value increases. Rectangles of categorical attributes
have the same transparency.

EM will display two measure values, i.e. uniformity and the
number of outliers [SS04] for each marginal distribution of the se-
lected node (see the colorful rectangles in the upper right corner of
Figure 6a, which is showing ten measure values of the root node
on five attributes). The two measures provide important guidance
for selecting slicing attributes, especially helpful when the dataset
contains many attributes. A larger or smaller value may relate to
potential patterns. Therefore, analysts can slice the node on the cor-
responding attribute.

4.3. Latent Space Creation & Exploration

We extract features for sliced subsets, project them according to
their embeddings obtained from a SEN trained on-the-fly, and se-
lect parts of subsets that may involve patterns, as follows:

Feature Extraction. We calculate the distribution of the num-
ber of records on an attribute as a feature for a subset, as in Fig-
ure 2. It is also possible to add/remove features, or use other fea-
tures for each subset. We exclude features of slicing attributes
(the reason has been explained in Section 2.2). Using the five-
dimensional Chicago crime dataset as an example (Figure 1), each
1-dimensional subset has four features, each 2-dimensional subset
has three features, and so on.

Representation Learning & Projection. We train a SEN to
obtain uniformly-formatted embeddings of the subsets. We then
project the subsets onto a 2-dimensional plane according to their
embeddings. We choose t-SNE [MH08] to generate the projection.
Other dimensionality reduction techniques can also be used.

Subset Selection. Each point in the generated projection rep-
resents a subset, as in Figure 6b. The size of a point encodes the
number of records contained in the subset. Analysts select subsets
in the projection, which are mapped together as a child of the se-
lected node in the tree. Common interactions, such as zoom, pan,
lasso, etc., are supported by SP.

There are three ways to select subsets in the SP, as follows:

1) Analysts can freely select subsets according to the distribution

of the projected subsets. Significant clusters or outliers are possible
candidates for selection.

2) Analysts can highlight projected subsets within specified at-
tribute ranges and select the highlighted subsets exclusively. For
example, in Figure 9c, we highlight seven subsets (sliced on Hour).
A common explorative strategy is to change the queried attribute
range and observe the distribution of the highlighted subsets in the
projection before selecting subsets. Having found any interesting
distributions (e.g. clusters or outliers), analysts can select them for
further in-depth analysis.

3) Analysts can use the clustering function to divide projected
subsets into groups according to their embeddings automatically.
Many clustering algorithms, such as K-means, hierarchical clus-
tering, density-based clustering (no need to specify the number of
clusters), etc., are integrated. Analysts can set parameters, such as
the number of clusters, according to their prior assumptions. For
example, we can divide seven subsets sliced on Week into two
clusters, considering weekday and weekend are naturally different
on many features. They can also interactively adjust the parameter
during the exploration. Clustering results, whether expected or not,
provide cues for the subset selection. A group of links will appear
on the right of the projection after clustering. Each link corresponds
to a cluster of subsets, as in Figure 9d. We can click a link to high-
light the corresponding subsets.

4.4. Visual Pattern Discovery

We use PE to visualize the feature vectors of subsets of different
nodes in the tree, as in Figure 6c. Feature vectors of subsets in
a node are aggregated and visualized as a whole in each feature
card. Each feature card corresponds to a feature and is implemented
as a classical visualization technique suitable for the feature. For
example, line chart is for showing temporal patterns; bar chart is
for showing categorical patterns; thematic map (pie chart + map)
is for showing spatial patterns. Analysts can select multiple nodes
and add them into a feature card for comparison. Figure 6c contain
two nodes respectively, in which each visual item (line/bar/sector)
reflects the aggregated feature vector of all the subsets in a node. A
feature card will appear when analysts click on the corresponding
button in the upper left corner of the system, marked with dashed
borders in Figure 6.

We propose a measure to describe the consistency of feature vec-
tors of subsets contained in a node using 1

D ∑
D
d=1 σ(d), where D

represents the size of the feature vector, and σ(d) represents the
standard deviation of feature vector values at the dth positions of all
subsets. A lower measure value indicates more consistent feature
vectors (as in Figure 8), i.e. more significant subset patterns. We
visually encode the measure value for each node in feature cards
(see numbers in legends in Figure 6c).

4.5. Implementation

The visualization system has a client-server architecture. The SEN
is at the backend, which receives requests from the frontend (writ-
ten in JavaScript using D3 library [BOH11]) and sends back em-
beddings. The Flask is used to transfer parameters between the
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Consistency: 0.1 Consistency: 0.2 Consistency: 0.4 Consistency: 0.8

Figure 8: Four groups randomly-generated vectors with different
consistency measure values.

front and back ends. We also build an OLAP index, i.e. data cube,
to speed up the feature extraction from the original data.

5. Evaluation

We conduct case studies and quantitative experiments to demon-
strate the applicability of our approach in actual scenarios.

5.1. Case Studies

We develop a visualization system on the Chicago crime dataset
[chi] (about 6M records) and perform two categories of tasks to
identify patterns at group and individual levels respectively:

Group Segmentation. We partition data into subsets on
gradually-increasing slicing attributes. For each partition, we se-
lect groups of subsets with similar feature values. Each group thus
indicates a kind of crime patterns. The exploration process is shown
in Figure 9a and detailed below.

We choose Week with the highest uniformity value as the slicing
attribute to partition the data into 7 subsets. We project the sub-
sets (Figure 9b) using t-SNE (perplexity is set to 20, while other
hyperparameters are kept as default settings) and find two obvious
clusters, i.e. weekday (#Mon- #Fri) and weekend (#Sat-#Sun). We
select them as separate tree nodes (#1 and #2) and determine pat-
terns using feature cards. We find crime patterns in a feature card
(Figure 9b1), i.e. more crimes occur in the daytime on weekdays
(green line), while more occur at night on weekends (orange line).

We further partition #1 into 24 hour subsets to understand finer
crime patterns of weekdays. We focus on subsets of night (19:00-
1:00), when crimes occur intensively. We highlight the correspond-
ing subsets, which form 3 clusters in the projection, as in Figure 9c.
We select them as three separate tree nodes (#3-#5) and find several
interesting patterns. For example, some kinds of crimes (marked
with dashed borders in Figure 9c1) occur more often at midnight
(0:00) than in the evening (19:00-23:00), while residences are the
main locations (marked with dashed borders in Figure 9c2).

We finally partition #3 on Location-type. Each subset thus rep-
resents a location-type of weekday evening. The subsets are auto-
matically divided into 5 clusters, as in Figure 9d. An interesting
finding is two roadway-related subsets, i.e. sidewalk and street, are
in two clusters. By selecting them and visualizing their features,
we find they are drastically different on features of crime-type and
location. Two criminal types (marked with dashed borders in Fig-
ure 9d1) and three locations (marked with dashed borders in Figure
9d2) are related to sidewalk, while crimes occurring on street are
more diverse and evenly distributed throughout the city.

Individual Relationship Identification. We project subsets of

crime types and those sliced on different temporal attributes (Week
and Hour) together. The purpose is to know when specific kinds of
crimes intensively occur, as follows:

We first project the 16 crime-type subsets with those sliced on
Week, as in Figure 10a. We find weekday subsets and weekend sub-
sets are close to different crime-type subsets and select them as tree
nodes. The finding indicates that narcotics and criminal damage
crimes occur more often in different periods of week, as in Figure
10a1. Their similar feature values (as in Figure 10a2) demonstrate
the correctness of the projection. We also find similar patterns on
theft and battery (omitted for limited space).

We partition #12 (weekday) and #14 (weekend) on Hour respec-
tively to form two groups of hour subsets. We project 16 crime-
type subsets with each group of hour subsets together, as in Figure
10b-c. We find assault subsets (#15 and #17) in the two projec-
tions are adjacent to afternoon subsets (12:00–18:00) and evening
subsets (19:00–0:00) respectively. Figure 10b1 proves the correct-
ness of the projection, in which the assault subset (#15) and the
selected afternoon subsets (#16) have similar values on a feature.
The observation indicates that assault crimes occur more often in
the afternoon on weekdays, while assault crimes occur more often
in the evening on weekends, as in Figure 10c1.

5.2. Quantitative Experiments

We assess whether SEN can accurately encode single-feature simi-
larity of subsets through two experiments.

5.2.1. Experiment Design

We collect 5 open multi-view datasets for the two experiments,
including Handwritten Digits [han], ORL [orl], PIE [pie], Cal-
tech 101-7 [cal] and BBCSport [bbc]. We treat each record of the
datasets as a subset, which has multiple features and a label that in-
dicates its category. The records of the same category have similar
values on corresponding features.

For each dataset, we replace several features of records with ran-
dom numbers. This step makes parts of features that are originally
similar different, thus simulating the cases that subsets (records)
have different numbers of similar features. We train SENs to obtain
30-dimensional emebddings of the records and evaluate the accu-
racy from the following two aspects:

Pattern Encoding Accuracy. We use K-means to divide the
records of each dataset into clusters according to their embeddings.
The number of clusters is set to the actual number of categories of
the dataset. We quantify the differences between the actual clus-
ters and predicted clusters using three indicators, i.e. (i) Accuracy
(ACC) (ii) Normalized Mutual Information (NMI) (iii) Adjusted
Rand Index (ARI) (we match a predicted cluster and a actual one
if they have a large number of common records). The value ranges
of the three indicators are [0, 1], with 0 and 1 representing the low-
est and highest accuracy. A larger value indicates a better match of
predicted and actual clusters.

Visual Perception Accuracy. We use t-SNE [MH08] to project
records according to their embeddings and evaluate the visual sep-
arability of records of different categories in the projection. Two
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Figure 9: Explorative process of the first category of tasks. The exploration begins at the root node (a), then we gradually add slicing
attributes to generate projections (b-d) and identify patterns (b1-d2).
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12-18
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Assault
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Figure 10: Explorative process of the second category of tasks. (a)
Projecting 16 crime-type subsets and 7 week subsets together. (b-
c) Projecting 16 crime-type subsets and 24 hour subsets sliced on
weekday and weekend selected in (a) respectively. (a1-c1) Feature
cards for determining patterns.

indicators are used: (i) Silhouette Coefficient (SC) and (ii) Calinski-
Harabasz Index (CHI). A larger value indicates higher separability,
i.e. higher visual perception accuracy.

We compare SEN with t-SNE [MH08] and m-SNE [XMTH11].
We connect all features (vectors) of a record as the input of t-
SNE, while m-SNE, as a multi-view dimensionality reduction tech-
nique, has the same input format as SEN. For pattern encoding ac-
curacy, all the three techniques output 30-dimensional embedding
vectors. For visual perception accuracy, t-SNE and m-SNE outputs
2-dimensional vectors for projection directly, while we project 30-
dimensional embedding vectors of SEN through dimensionality re-
duction (consistent with the actual “first embedding then projec-
tion” workflow of SEN). We set perplexity to 20 and keep other
hyperparameters as default settings for t-SNE and m-SNE.

5.2.2. Experiment 1

We first choose four datasets, replace half of features for each
dataset, and calculate indicator values for embeddings obtained us-

ing the three techniques. As in Table 1, we find SEN has the high-
est values in most cases (marked in red), which indicates general
higher pattern encoding accuracy and visual perception accuracy.

Table 1: Experiment results on four datasets with half of features
replaced. The highest indicators are marked in red. We repeat the
experiment five times, and numbers in parentheses are variances.

Method Measure BBCSport Caltech-7 ORL PIE

SEN

ACC 0.719 (0.097) 0.599 (0.059) 0.630 (0.036) 0.470 (0.144)
NMI 0.535 (0.057) 0.429 (0.065) 0.612 (0.043) 0.439 (0.188)
ARI 0.497 (0.087) 0.354 (0.068) 0.407 (0.055) 0.231 (0.161)
SC 0.214 (0.010) 0.034 (0.055) 0.009 (0.039) -0.078 (0.090)
CHI 158.788 (31.466) 38.825 (16.290) 7.792 (3.143) 5.117 (3.266)

m-SNE

ACC 0.437 (0.079) 0.537 (0.179) 0.349 (0.009) 0.303 (0.006)
NMI 0.173 (0.086) 0.395 (0.250) 0.240 (0.045) 0.183 (0.039)
ARI 0.142 (0.087) 0.320 (0.225) 0.083 (0.007) 0.037 (0.010)
SC -0.014 (0.027) 0.064 (0.154) -0.191 (0.010) -0.185 (0.012)
CHI 15.154 (17.449) 48.553 (51.837) 1.285 (0.683) 0.987 (0.233)

t-SNE

ACC 0.562 (0.016) 0.528 (0.097) 0.508 (0.092) 0.346 (0.071)
NMI 0.374 (0.022) 0.359 (0.131) 0.434 (0.158) 0.342 (0.168)
ARI 0.308 (0.021) 0.282 (0.119) 0.252 (0.117) 0.122 (0.095)
SC 0.150 (0.022) -0.007 (0.104) -0.074 (0.119) -0.146 (0.034)
CHI 112.595 (11.819) 48.904 (27.649) 6.809 (5.213) 1.229 (0.392)

5.2.3. Experiment 2

We conduct the experiment using the Handwritten Digits dataset
that contains ten categories. We split each record’s 649 attributes
into 30 features (29 20-dimensional features and 1 69-dimensional
feature). Figure 11 shows the experiment results. We find indicator
values decrease as the numbers of replaced features increase. How-
ever, the downward trend of SEN (red lines) is slower than those
of m-SNE (blue lines) and t-SNE (green lines). Moreover, SEN has
higher values on all the five indicators at any number of replaced
features.

We further visualize projections obtained in the above experi-
ment, as in Figure 12. Each point represents a record (subset) with
the color indicating the category. We find when only a small num-
ber of features are replaced, most categories can be identified in the
projections (see the two leftmost columns). However, as the num-
ber of replaced features increases, many categories are mixed in the
projections of m-SNE and t-SNE (see the two rightmost columns
in the last two rows). In contrast, we can identify more categories
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ACC NMI ARI SC CHI

Figure 11: Indicator values of three techniques, i.e. SEN (red
lines), m-SNE (blue lines), tSNE (green lines), under different num-
bers of replaced features.

in the projections of SEN, even when few features are retained (see
the two rightmost projections in the first row).

(a) SEN

(b) m-SNE

(c) t-SNE
0/30 5/30 10/30 15/30 20/30 25/30

Figure 12: Projections of Handwritten Digits dataset with 0-25 re-
placed features. From left to right, numbers of replaced features
gradually increase.

5.3. Efficiency Assessment

We finally test the training speed of SEN using randomly-generated
records (subsets). We choose two independent variables, i.e.
|subsets| and | f eatures|. The experiment is conducted on a GPU
server (XEON E5-2680, 196G, 2080Ti).

As in Table 2, the SEN can handle hundreds of subsets with mul-
tiple features in a short time. Moreover, the longest training time is
7.5s, which is still an acceptable time cost for most visualization
systems. Experiment results show high efficiency of the SEN.

Table 2: Training time (seconds) of the SEN under different num-
bers of features and subsets. We repeat the experiment five times
and numbers in parentheses are variances.

|subsets|
| f eatures|

10 15 20 25 30

100 1.9 (0.18) 2.9 (0.25) 4.5 (0.36) 5.8 (0.43) 7.2 (0.52)
300 1.9 (0.25) 3.0 (0.27) 4.7 (0.32) 6.1 (0.41) 7.3 (0.54)
500 2.0 (0.21) 3.1 (0.31) 4.9 (0.41) 6.2 (0.45) 7.5 (0.55)

6. Discussion and Limitations

We discuss two important but easily overlooked aspects, which may
affect the application of our approach in actual scenarios.

There is inevitably uncertainty in the projection. To explain this

point, consider three subsets A, B, and C. Specifically, A and B
have similar values on a feature, A and C have similar values on
another one, while B and C are different on all features. In that
case, the embedding similarity between B and C is uncertain. They
can be similar (as B and C are similar to A on single features) or
not (as B and C are completely different). We hope the visualiza-
tion system can eliminate the uncertainty. The system provides rich
interactions and automatic methods to assist in selecting subsets in
the projection, and provides feature cards and a consistency mea-
sure to visually determine the existence of patterns within selected
subsets, thus improving the interpretability and faithfulness of the
identified patterns.

As an AI model, the SEN inevitably involves hyperparameters,
such as the size of embeddings, the number of neurons in different
layers, etc. The black-box nature makes the optimization of these
hyperparameters difficult. The positive aspect is we only use or-
dinary fully-connected neural network with common hyperparam-
eters. The simple structure reduces the tuning difficulty. We only
assume developers of the SEN have basic knowledge about neural
network. They can always obtain a well-performing model through
a small number of trials. The simple network structure and few pa-
rameters also achieve fast training.

7. Related Work

We discuss related works from the following two aspects that are
related to the two contributions of the paper.

7.1. Data Embedding

DR is the most common embedding technique for multi-
dimensional data. PCA [WEG87] projects data along the direc-
tions with maximum variance. MDS [BG05] preserves pairwise
Euclidean distances during the projection. ISOMAP [TDSL00]
changes the Euclidean distance of MDS to geodesic distance,
thus enabling to capture nonlinear manifold structures in high-
dimensional space. t-SNE [MH08] allows objects that are close in
high-dimensional space to be projected together with high prob-
ability in low-dimensional projections. Other important DR tech-
niques include LLE [RS00], LE [BN02], LTSA [ZZ04], etc. Many
works exist for explaining the DR results [FKM19, LWCC17,
FGS18, CMK20]. All these techniques, however, are to maintain
global relationships [SPT19] and cannot be used to explore subset
patterns that are often associated with few features.

There are many DR techniques with special objective func-
tions [LMW∗16, SZS∗16, EMK∗19]. Wang et al. [WFC∗17] pro-
pose a DR algorithm that maximizes inter-class distances. Zhang
et al. [CZC∗15] offer a technique that can reflect the similarity of
target objects on both statistic metrics and distributions. Fujiwara
et al. [FCS∗19] propose a DR technique for streaming data, which
can maintain the mental map of analysts for record or dimension
changes. Liu et al. [LATB20] propose a response function preserv-
ing algorithm that generates projections showing patterns related to
single response functions. SEN is of this category with maintaining
the similarity of objects on single features as the objective function.

Applying the neural network in data embedding is a recent trend.
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Hinton and Salakhutdinov [HS06] implement an autoencoder-
based embedding technique that achieves better performance than
PCA. Mikolov et al. [MSC∗13] propose the famous word2vec that
embeds words according to their co-occurrence in a document set.
Many similar techniques, such as cite2vec [BMS16], location2vec
[ZCX∗19], poi2vec [FCAC17], etc. have been proposed. These
techniques, however embed objects using their co-occurring fre-
quency in the dataset, unable to be used to explore subset patterns.

The SEN is inspired by multi-view learning, as in Figure 3.
Canonical Correlation Analysis (CCA) is a representative tech-
nique [Hot36] that can find two linear projections making the
multi-view data maximally correlated. We then obtain embed-
dings using the basis vectors of the two projections. Many tech-
niques extend CCA to capture nonlinear inter-view relationships
[Aka06, AABL13]. These methods, however, only support two-
view data. Multi-view representation fusion can exploit the com-
plementary information of multiple views to generate the required
embeddings [BJ03, CZX10, SS12]. The principle is to determine
the posterior probability p(h|x,y) of the probabilistic model p(x,y,z)
over the joint space of the shared latent variables z and the ob-
served two-view data x,y. Applying the neural network in multi-
view representation learning is a recent trend. Representative ex-
amples are multi-modal autoencoder [NKK∗11], multi-view con-
volutional neural network [FPZ16], and multi-modal recurrent neu-
ral network [KFF15]. Literature surveys [LYZ18, ZXXS17, JY17]
include most recent works. Existing techniques require objects to
have the same number of views. They thus cannot be used for arbi-
trary subsets with different numbers of features.

7.2. Multi-dimensional Data Exploration

Many visualization techniques aim at finding subsets where pat-
terns exist [Shn96]. A common strategy is projecting the data into a
plane [JFSK15,LT16,BSH∗15,EDF08]. The projection works as an
overview, in which analysts manipulate data and filter parts of inter-
est. Many works combine visualization and automatic algorithms to
form a generic tool [FSN∗20, WCR∗17, SZS∗16, LPK∗15, Gle13].
These methods, however, have done good jobs in searching for sub-
sets where patterns exist, but they cannot find patterns among a
group of subsets by considering their feature similarity.

Subspace analysis is a kind of technique to find patterns in di-
mensional subspaces to overcome the problem of the Curse of Di-
mensionality [BGRS99]. A common strategy is to design a mea-
sure that describes the possibility that patterns exist within a sub-
space. Ferdosi [FR11] proposes a measure for reordering axes of
parallel coordinates to identify high-dimensional structures. Tukey
et al. [TT88] propose Scagnostics to identify anomalous scatter-
plots in the scatterplot matrix (SPLOM). The idea is to reduce
the original SPLOM with O(n2) cells (n is the number of at-
tributes) to a scagnostics SPLOM with O(k2) cells, where k is
the number of measures that describe the distribution of points
of an original SPLOM cell. Seo et al. [SS04] propose a rank-by-
feature framework, in which users sort views according to a rank-
ing measure. There are many other measures to find views of inter-
est [TAE∗09, AEL∗10, WMA∗15]. They, however, are for evaluat-
ing views with 1D or 2D axes, i.e. low-dimensional subspaces.

Many approaches assist in exploring patterns in high-

dimensional subspaces. Zhou et al. [ZLH∗16] propose a method
to preserve clusters by reconstructing dimensions of subspaces.
Wang and Mueller [WM17] decompose a high-dimensional space
into a series of 3D subspaces to facilitate pattern exploration.
Yuan [YRWG13] proposes Dimension Projection Matrix/Tree that
enables to explore record- and dimension-related patterns at the
same time. Pagliosa et al. [PPM∗15] design an interactive tool
for comparing different multi-dimensional projections. Xia et al.
[XYC∗17] design the LTSD-GD view that can represent latent low-
dimensional structures within multi-dimensional data. Many meth-
ods design measures to evaluate how much insights are provided
by a multi-dimensional projection [MMdALO15, LT15, AWD12].
All these methods, however, work at the record level without the
ability to find patterns associated with subsets.

Shadoan and Weaver [SW13] propose a visualization system for
analyzing relationships between subsets. The relationship, how-
ever, reflects the common records between subsets, not as general
as SEN encoding arbitrary subset features. Gratzl et al. [GGL∗14]
propose Domino that supports the flexible exploration of subsets
and their relationships. Borland et al. [BWZ∗19] propose a visual
analytics method to unbiasedly selecting a representative subset for
a large dataset. Gotz et al. [GZW∗19] propose a method for inter-
actively determining the most informative event subset in a specific
analysis context. These methods, however, are different from our
approach that aims at providing a generic tool to explore patterns
among a large number of subsets.

8. Conclusion and Future Work

We have presented an approach to exploring multi-dimensional
data at the subset level. The core of the approach is a subset em-
bedding network that has three characteristics compared with exist-
ing embedding techniques. First, it supports arbitrary subsets with
different numbers of features. Second, it captures the similarity of
subsets on single features. Third, it has high efficiency by using a
simple structure with few parameters. The network has been inte-
grated into a visualization system that integrates three components
to achieve a flexible and efficient workflow. We present example
usage scenarios with real-world data and conduct multiple quan-
titative experiments to demonstrate the general applicability and
effectiveness of our approach.

In the future, we plan to make two improvements. First, we will
apply the approach in more fields to thoroughly test its applicabil-
ity. Second, we will further enrich the functions of the visualization
system. For example, we would like to support customizing subset
features or integrate more intelligent and automatic techniques to
assist in selecting subsets in the projection.
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