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Figure 1: We show a scene containing a number of different microfacet conductors under direct lighting. All microfacets feature multiple
scattering and use the GGX distribution with varying roughnesses (α∈ [0.05,0.5]). Compared to the baseline method of Dupuy et al. [DHd16]
(left), our position-free bidirectional estimator of multiple scattering (right) leads to reduced variance at equal cost.

Abstract
We consider the problem of multiple scattering on Smith microfacets. This problem is equivalent to computing volumetric light
transport in a homogeneous slab. Although the symmetry of the slab allows for significant simplification, fully analytic solutions
are scarce and not general enough for most applications. Standard Monte Carlo simulation, although general, is expensive and
leads to variance that must be dealt with.
We present the first unbiased, truly position-free path integral for evaluating the BSDF of a homogeneous slab. We collapse the
spatially-1D path integral of previous works to a position-free form using an analytical preintegration of collision distances.
Evaluation of the resulting path integral, which now contains only directions, reduces to simple recursive manipulation of
exponential distributions. Applying Monte Carlo to solve the reduced integration problem leads to lower variance.
Our new algorithm allows us to render multiple scattering on Smith microfacets with less variance than prior work, and, in
the case of conductors, to do so without any bias. Additionally, our algorithm can also be used to accelerate the rendering of
BSDFs containing volumetrically scattering layers, at reduced variance compared to standard Monte Carlo integration.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Volumetric light transport simulation in homogeneous slabs is a
common problem in graphics and related fields. Applications in-
clude paper [PdMJ14], skin layers [FPW92; DJ05], the rings of
Saturn [Bli82], shielding materials [Dwi82], and volumetric mod-
els of scattering from rough surfaces [HHdD16].

The most common application of slab transport in rendering is at

a scale where the illumination can be considered laterally uniform.
The primary quantity of interest in this case is the bidirectional scat-
tering distribution function (BSDF) for the slab, where the incom-
ing and outgoing directions are given [HK93]. The BSDF follows
from integrating over all possible paths inside the slab that connect
these two directions, regardless of lateral displacement. Despite the
plane symmetry of the problem, very few closed-form solutions are
known, requiring numerical techniques in the general case.
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Both deterministic and stochastic methods can be used to evalu-
ate slab BSDFs. Methods such as discrete ordinates and doubling
[Sta01; JdJM14] are broadly applicable, but can require large pre-
computations and are not practical for rendering surfaces where
multiple parameters vary spatially. In contrast, Monte Carlo BSDF
evaluation can be used in the case of general slabs and layered ma-
terials with no precomputation [GHZ18], including full variation of
all parameters over a surface. However, this approach creates un-
wanted statistical noise and is expensive for thick highly-scattering
materials.

The primary motivation of our work is to improve the efficiency
of the Monte Carlo approach for slab BSDF evaluation for the
special case of describing multiple scattering from rough surfaces.
The Smith microfacet model is widely used throughout computer
graphics and including a multiple-scattering component is impor-
tant to avoid unwanted darkening of rough materials. Due to the
asymmetric phase function of Smith volumes, the Monte Carlo ap-
proach is the only known unbiased approach for evaluating this
multiple scattering [HHdD16]. Our primary contribution is a new
efficient way to evaluate this multiple scattering. We also demon-
strate applications of the theory outside of rough surface scattering.

We reduce the variance and improve the efficiency of Monte
Carlo slab BSDF evaluation by reducing the dimension of the path
integral. In previous work, the set of transport paths inside the slab
are an alternating sequence of displacements and direction changes
(Figure 2). We will show that the displacements can be preinte-
grated analytically, leaving only the directional dimensions of the
path integral for Monte Carlo. This extreme expected-value op-
timization reduces the dimension of the integration problem sig-
nificantly and allows faster computation of full unbiased Monte
Carlo solutions. Because all three spatial coordinates of the path
integral are integrated out, the resulting method is truly position
free, unlike previous work that evaluates slab BSDFs by sampling
spatially 1D random walks in the slab [HHdD16; GHZ18]. Be-
cause the resulting state space depends only on directions, reason-
ing about bidirectional estimators becomes much simpler, in par-
ticular for the asymmetric phase functions appearing on microfacet
surfaces [HHdD16].

After reviewing previous work in the next section, we define the
problem in Section 3 and derive the position-free path space for
homogeneous slabs in Section 4. We apply our position-free es-
timators to a number of practical problems in computer graphics,
such as rendering thin slabs (Section 5) and BSDFs with multiple
scattering between the microfacets (Section 6).

2. Related Work

Simulating the linear transport of particles in a homogeneous slab
was one of the earliest applications of the Monte Carlo method
[Kah49; Goe50; PK68]. These works considered the plane-parallel
integral equations of transfer where the phase space has a spatial
component that is reduced from 3D to 1D (the depth within the
slab). These equations, which date back to the very beginning of ra-
diative transfer, were solved using an analog Monte Carlo estimator
that effectively performs a 1D random walk along the depth axis of
the slab, with an appropriately modified extinction coefficient. Esti-
mation of radiance at the boundary (required for BSDF evaluation)

was performed using next-event estimation (NEE) [Kah49]. This
approach has found a number of uses in graphics for evaluating BS-
DFs. Hanrahan and Krueger [HK93] rendered surfaces using dis-
cretized BSDFs precomputed in this way. For rendering rough sur-
faces, Heitz et al. [HHdD16; DHd16] applied the unbiased BSDF
estimator with NEE directly at render time together with a blend
of forward and adjoint estimates to reduce variance. This approach
was later extended to layered materials with full bidirectional gen-
eralizations and more advanced NEE that exploit the reduction to
1D in order to reduce variance [GHZ18; XWHM20; GGN20].

2.1. Position-free Monte Carlo

Shortly after the introduction of these methods, it was recognized
that homogeneous problems with plane symmetry could be simpli-
fied to fully position-free integration problems by noting that the
Neumann series of collision densities in the medium is exactly de-
scribed by 1D hyperexponential distributions, which can be effi-
ciently computed using simple recurrence relations. These deriva-
tions can be viewed as an expected-value transform of the previ-
ously mentioned spatially-1D Monte Carlo estimators, by analyti-
cally pre-integrating over the distances between collisions. For the
case of an infinite medium, these relations were derived in a num-
ber of ways [BD56; AKS60; Dra61; CJT69]. The approach was
applied to several problems by predetermining a fixed truncation
of the Neumann series ahead of time based on known properties of
the volume and then integrating over the directional dimensions of
the reduced integral equation using Monte Carlo. The extension of
this approach to handle a slab was alluded to by Amster and Tal-
ley [AT64] and given explicitly by Sears, who used it to derive the
double-scattered BRDF for a half space with isotropic scattering
[Sea75, (7.4.1)].

Our formalism is closely related to these works, but we go fur-
ther to present a complete position-free derivation for rendering, in-
cluding practical strategies for dealing with numerical issues, unbi-
ased termination of the Neumann series using Russian roulette, and
derivation of bidirectional estimators in the collapsed phase space.
Unlike previous semi-position-free approaches in graphics, our for-
mulation eliminates positions completely and achieves purely di-
rectional integration for lower variance. To the best of our knowl-
edge, we are the first to apply these position-free Monte Carlo
methods to rendering.

Our work is also closely related to the work of Wang et
al. [WJF*21], who present an approximate position-free formula-
tion for Smith microsurfaces. Instead of analytically integrating po-
sitions, they replace position-dependent terms with the monostatic
Smith shadowing function. While both our and their approach have
similar efficiency, the approach of Wang et al. introduces signifi-
cant bias at higher roughnesses. On dielectric microsurfaces, our
analytic integration is not possible for paths that refract through
the surface, and we selectively combine our approach with that of
Wang et al. for such paths. This leads to a method with similar ef-
ficiency as that of Wang et al., but reduced bias.
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Figure 2: We show a sample path of length l = 5 (counting the
number of propagation distances) taken by a photon through a slab.
The photon enters from direction ω1 = ωi and travels distance t1
before scattering into direction ω2. This process repeats until the
path length l is reached, at which point the photon leaves in pre-
scribed direction ωl = ωo.

3. Background

In this paper, we consider homogeneous media contained in a slab
of infinite x-y extent. The slab occupies the z-span [0,L], where the
z axis points down into the slab (see Fig. 2).

Associated with the medium is the phase function ρ(ω,ω′) that
describes the density with which photons travelling in direction ω

scatter toward direction ω
′ after a collision. The phase function may

integrate to less than one to incorporate absorption.

The medium has homogeneous extinction coefficient σ, which
gives rise to the transmittance

Tr(t,σ) = e−tσ (1)

and free-flight probability density function (PDF)

p(t,σ) = σe−tσ. (2)

We are particularly interested in the density of photons that en-
ter the slab from direction ωi and leave in direction ωo. We can
formulate this problem as the integral over all possible paths a pho-
ton could take through the slab. We show one such path of length
l (counting the number of propagation distances) in Figure 2: The
photon enters from direction ω1 = ωi, travels a distance t1 with
PDF p(t1,σ), before scattering into a new direction ω2. This pro-
cess continues until it reaches length l, at which point it leaves the
slab in prescribed direction ωl = ωo. Without loss of generality,
we assume the photon enters from the top at z = 0; if not, we can
simply negate ωi and ωo.

The total contribution of all paths of length l is

Il =
∫
P

(
l−1

∏
i=1

ρ(ωi,ωi+1)

)(
l−1

∏
i=1

p(ti,σ)

)
Tr(tl ,σ)dµ(t̄, ω̄), (3)

where P is the space of paths that lie within the slab, and dµ(t̄, ω̄)
= dµ(t̄)× dµ(ω̄) is the product of standard Lebesgue measures of
distances t̄ = t1 . . . tl and solid angle measures of directions ω̄ =
ω1 . . .ωl . The quantity we seek to estimate is the sum ∑

∞
l=2 Il over

all lengths.

The integrand in Eq. (3) consists of three components: The di-
rectional density ∏ρ(ωi,ωi+1) of the path; the free-flight density
∏p(ti,σ) of the travel distances t1 . . . tl−1; and the probability Tr(tl)

of the photon exiting the slab from the last path vertex. Note that
directions ω1 = ωi,ωl = ωo and distance tl are not free variables;
the latter of which is determined by the distance of the last path
vertex to the boundary.

4. Position-free transport in a slab

The goal of this section is to show that all distance dimensions ti
in Eq. (3) can be integrated analytically. We begin by noting that
the directional terms do not depend on distances, and we can move
part of the integration inside:

Il =
∫

Ω

(
l−1

∏
i=2

ρ(ωi,ωi+1)

)∫
T

(
l−1

∏
i=1

p(ti,σ)

)
Tr(tl)dµ(t̄)︸ ︷︷ ︸

Pexit(ω1,...,ωl)

dµ(ω̄)

(4)

where Ω and T are the spaces of directions and distances, respec-
tively (with P = Ω×T ). The inner integration is the probability
Pexit(ω0, . . . ,ωl) of a photon exiting the slab, conditioned on the
directions it takes after each collision. We will now show how this
probability can be derived in closed form.

4.1. Simplifying to 1D

Our first step is to simplify the integration problem. We will per-
form a change in variables from the distance ti the photon trav-
elled, to the (absolute) height difference between collisions ∆zi =
ti · |(ωi)z|, where (ω)z refers to the z-component of vector ω.

This type of simplification is common in slab problems, hav-
ing been used extensively outside [AKS60] and within graph-
ics [HK93; HHdD16; DHd16; GHZ18; XWHM20; GGN20]. We
briefly review it here before deriving our position-free formulation.
After the change of variables, we obtain the relation

p(ti,σ)dti =
1

|(ωi)z|
p
(

∆zi

|(ωi)z|
,σ

)
d∆zi (5)

= p(∆zi,σi)d∆zi

with σi =
σ

|(ωi)z|
. (6)

and similarly

Tr(ti,σ) = Tr(∆zi,σi). (7)

These equations tell us that collisions in the 3D slab are equivalent
to collisions in a “densified” 1D medium, where the extinction co-
efficient increases as photon directions become less vertical. This
formulation allows for integrating explicitly over the depths of col-
lisions, rather than the distances travelled between them.

With the projection to 1D, we can reformulate the problem
of computing Pexit to a simpler one: Given a height distribution
hl−1(z), which represents the probability density that the photon
will collide at height z after travelling l−1 distances in the medium,
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we can express the exit probability of the photon as

Pexit(ω1,...,l) =


P↑exit =

∫ L

0
hl−1(z)Tr(z,σl)dz if (ωl)z < 0

P↓exit =
∫ L

0
hl−1(z)Tr(L− z,σl)dz else.

(8)

This is simply the PDF of colliding at z after l− 1 propagations,
multiplied by the probability of exiting the slab from z. We differ-
entiate between the case of the photon exiting the top (z = 0) and
bottom (z = L) interface.

From here, we will proceed as follows: First, we show how the
height distribution can be derived. Second, we show that it can be
represented in closed form as a hyperexponential distribution (a
sum of exponentials). Finally, we show that given such a height
distribution, Eq. (8) can be computed in closed form.

4.2. Distribution of Heights

We begin with the straightforward case of h1(z), which is the prob-
ability density of a photon colliding at z after propagating once in
the medium. This is equivalent to the free-flight PDF [Kah49, p.5]

h1(z) = p(z,σ1) . (9)

What about the distribution after travelling i distances? This can be
written recursively in terms of the density hi−1 and depends on the
direction of travel since the last collision: If the photon is moving
down into the slab, then its collision density is equivalent to the
density of colliding at a point y < z above z, and then colliding
again at z:

h↓i (z) =
∫ z

0
hi−1(y)p(z− y,σi)dy. (10)

If the photon is travelling upward, then its collision density is equiv-
alent to colliding at some point y > z below z, then colliding again
at z:

h↑i (z) =
∫ L

z
hi−1(y)p(y− z,σi)dy. (11)

4.3. Height Distribution in Closed Form

With the height distribution defined, we now turn to solving it in
closed form. We will claim that hi(z) is a sum of exponentials,

hi(z) =
Ni

∑
j=1

ai, jTr(z,bi, j) (12)

for some Ni,ai, j,bi, j . The proof follows by induction. The base case
is trivial, with h1(z) = p(z,σ1) and N1 = 1, a1,1 = b1,1 = σ1. For
the induction step, we distinguish between two cases, depending on
whether the photon is moving up or down.

4.3.1. Downward moving photon

For the “down” case, we give a sketch of the proof below, and
provide a full proof in the supplemental. We begin by expanding

Eq. (10):

h↓i+1(z) =
∫ z

0
hi(y)p(z− y,σi+1)dy (13)

=
Ni

∑
j=1

ai, j

∫ z

0
Tr(y,bi, j)p(z− y,σi+1)dy (14)

=
Ni

∑
j=1

ai, j
σi+1

σi+1−bi, j

(
e−zbi, j − e−zσi+1

)
(15)

=

(
Ni

∑
j=1

ai, j σi+1

σi+1−bi, j
Tr(z,bi, j)

)
−

(
Ni

∑
j=1

ai, j σi+1

σi+1−bi, j

)
Tr(z,σi+1)

=
Ni+1

∑
j=1

ai+1, jTr(z,bi+1, j). (16)

If the height distribution is a sum of exponentials, then it remains
a sum of exponentials after the photon travels an additional (down-
ward) segment. The coefficients of the new distribution are

a↓i+1, j =

{
ai, j

σi+1
σi+1−bi, j

if j < Ni+1

∑
Ni
j=1−ai+1, j else

(17)

b↓i+1, j =

{
bi, j if j < Ni+1

σi+1 else.
and N↓i+1 = Ni +1

4.3.2. Upward moving photon

The “up” case is very similar to the down case, and we give a proof
in the supplemental. The distribution remains a sum of exponen-
tials, with coefficients

a↑i+1, j =

{
ai, j

σi+1
σi+1+bi, j

if j < Ni+1

∑
Ni
j=1−ai+1, jTr(L,σi+1 +bi, j) else

(18)

b↑i+1, j =

{
bi, j if j < Ni+1

−σi+1 else.
and N↑i+1 = Ni +1

4.4. Exit Probability

Finally, given the height distribution, we can now derive the exit
probability by inserting Eq. (12) into Eq. (8). The probability re-
duces to a simple sum of transmittances (see supplemental for
derivation):

P↑exit(ω0, . . . ,ωl) =
Ni

∑
j=1

ai, j

σl +bi, j

(
1−Tr(L,σl +bi, j)

)
(19)

P↓exit(ω0, . . . ,ωl) =
Ni

∑
j=1

ai, j

σl−bi, j

(
Tr(L,bi, j)−Tr(L,σl)

)
(20)

4.5. Semi-infinite slab

A useful special case arises for a semi-infinite slab, i.e. L→∞. In
this case, the “up” case simplifies to

N↑i+1 = Ni, b↑i+1, j = bi, j and a↑i+1, j = ai, j
σi+1

bi, j +σi+1
, (21)

where the number of exponentials stays unchanged, and only the
amplitude of the existing exponentials is rescaled. The “down” case
remains identical to the finite slab.
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Algorithm 1: Implementation of the closed-form height distribution
(Section 4.3) and computation of Pexit (Section 4.4).

1 class HeightDistribution
2 def N,a[],b[]
3 function addBounce(ω,σ,L)
4 if N = 0 then // Base case
5 a[1]← σ

6 b[1]← σ

7 else if (ω)z < 0 then // “Up” case, Eq. (18)
8 for i← 1 . . .N do
9 a[i]← a[i] σ

σ+b[i]

10 a[N +1]← ∑
N
i=1−a[i]Tr(L,σ+b[i])

11 b[N +1]←−σ

12 else // “Down” case, Eq. (17)
13 for i← 1 . . .N do
14 a[i]← a[i] σ

σ−b[i]

15 a[N +1]← ∑
N
i=1−a[i]

16 b[N +1]← σ

17 N← N +1
18 function Pexit(ω,σ,L)
19 if (ω)z < 0 then // “Up” case

20 return ∑
N
i=1

a[i]
σ+b[i] (1−Tr(L,σ+b[i])) // Eq. (19)

21 else // “Down” case

22 return ∑
N
i=1

a[i]
σ−b[i] (Tr(L,b[i])−Tr(L,σ))

// Eq. (20)

The exit probabilities simplify as well, with

P↑exit(ω1, . . . ,ωl) =
Ni

∑
j=1

ai, j

bi, j +σl
(22)

P↓exit(ω1, . . . ,ωl) = 0 (23)

4.6. Discussion

We have derived closed form expressions for the height distribu-
tion of a photon after an arbitrary number of collisions in a ho-
mogeneous slab, as well as its probability of exiting the slab. The
reflectance of a slab can then be computed in a position-free way
by sampling the directions of the path, and then evaluating Pexit in
closed form.

To compute Pexit given a set of directions ω1, . . . ,ωl , we first
require computing the height distribution hl . The coefficients of the
distribution are initialized with the base case, and we run the update
rules Eq. (17) or Eq. (18) for each direction in sequence. Finally,
we compute the exit probability with Eq. (19) or Eq. (20) to obtain
the final result.

We give pseudo-code for computing hl and Pexit in Alg. 1. Doing
so requires storing up to 2l coefficients, ai, j and bi, j, and requires
O(l2) total operations. For the semi-infinite case, the operations
involve only simple arithmetic; for the finite slab, we require eval-
uating exponentials as well. Using these building blocks, we will
now derive position-free integration algorithms for several practi-
cal applications in graphics.

Algorithm 2: Baseline analog estimation of reflectance from a slab.

1 function analogSlab(l,ωi,ωo,L)
2 z← 0
3 ω = ωi
4 result← 0
5 for i← 1 . . . l−1 do
6 z← z+ sampleFreeFlight(σ(ω))
7 if z 6∈ [0,L] then
8 break
9 zexit← (ωo)z < 0 ? z : L− z

10 result← result+ρ(ω,ωo) ·Tr(zexit,σ(ωo))

11 ω← scatter(ω)
12 return result

Algorithm 3: Position-free estimation of reflectance from a slab.

1 function positionFreeSlab(l,ωi,ωo,L)
2 HeightDistribution h
3 ω = ωi
4 result← 0
5 for i← 1 . . . l−1 do
6 h.addBounce(ω,σ(ω),L)
7 result← result+ρ(ω,ωo) ·h.Pexit(ωo,σ(ωo),L)
8 ω← scatter(ω)
9 return result

5. Application: Slab BSDF

A first obvious application of our method is for BSDFs that model
far-field scattering by slabs of homogeneous media. These slabs
could act as a component in specialized BSDFs such as those for
paper [PdMJ14], or in more general layered material frameworks
either enclosed by dielectric interfaces [GHZ18; WW07] or in a
stack of slabs with index-matched interfaces [WJHY21]. In the fol-
lowing, we will focus on the straightforward case of a BSDF rep-
resenting reflectance from a single, index-matched homogeneous
slab. More sophisticated applications can then be easily built using
this basic case as a building block.

5.1. Algorithm

Transport on the slab can be readily estimated using Monte Carlo
by simulating consecutive events (collisions and scattering) that oc-
cur on the photon path. We show one such baseline analog simu-
lator in Alg. 2, computing contributions of paths up to length l.
This algorithm is equivalent to the unidirectional estimator of Guo
et al. [GHZ18]. We are given routines for sampling directions and
propagation distances, and we accumulate the amount of energy
leaving the slab (using next-event estimation [PJH16]). We are also
given a function σ(ω) that computes the 1D extinction coefficient,
which here is simply σ(ω) = σ · |(ω)z|; in Section 6, we will sub-
stitute a different σ(ω) to simulate microfacets.

We can readily modify this baseline estimator to perform fully
position-free integration instead. We show pseudo-code of such
an estimator in Alg. 3. We replace the tracking and sampling of
explicit positions or heights with the computation of closed-form
height distributions hl . Next-event estimation can then be per-
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formed using the closed-form probability Pexit of leaving the slab,
instead of the transmittance as in Alg. 2.

5.1.1. Numerical Stability

One potential issue with Algs. 1 and 3 lies in numerical stabil-
ity. Computing Pexit relies on taking a sum of ratios with po-
tentially different signs and large variations in magnitude. Addi-
tionally, parts of the algorithm compute fractions with factors of
1/(σ−b[i]). This raises concerns about numerical stability for long
paths (as N becomes large) and cases when σ approaches b[i], e.g.
if cosines (ωi)z = (ω j)z are very close for some pair of directions
in the path. While we did not find it feasible to completely prevent
these numerical issues completely, we can easily detect them. Past
a certain number of bounces (10 in our implementation), or if ra-
tios become unstable, we fall back to analog simulation of the path.
This still gives an unbiased result, at the cost of variance. We found
that only an insubstantial fraction of paths cause numerical con-
cerns (≈ 0.1%), and the overall efficiency of our algorithm remains
substantially better than purely analog simulation.

These numerical issues were also noted in earlier works, and
mitigation strategies to reduce the equal-cosine case to gamma dis-
tributions and/or clamping heuristics have been proposed [BD56;
AKS60; AT64]. Although we do not use the clamping strategy cur-
rently, it shows promising results, and poses an interesting avenue
for future work.

5.2. Results

We implemented our method in an open source offline rendering
framework [Bit18] as a material model representing homogeneous
slabs, and in a simple C++ testbed for benchmarking BSDF eval-
uations. We compare our position-free framework to the approach
of Guo et al. [GHZ18], which simulates explicit depths within the
slab. For the method of Guo et al., we tried both bidirectional and
unidirectional simulation, and only show the more efficient of the
two (unidirectional in this case).

We can measure estimator performance directly by comparing
the inverse efficiency, i.e. the average cost of evaluating the esti-
mator times its variance. An estimator performs better if its inverse
efficiency is lower than that of other estimators. In Fig. 4, we show
a comprehensive evaluation of our estimator compared to the base-
line estimator of Guo et al. over randomly selected slab thicknesses,
incident angles and phase mean cosines. We plot the expected value
of BSDF evaluations produced by both methods (which match ex-
actly), as well as the inverse efficiency of both estimators over dif-
ferent inclinations of ωo. Our proposed estimator significantly out-
performs the baseline in almost all cases, even when comparing
the cost of pure BSDF evaluation. In real rendering scenarios, the
cost of BSDF evaluation is small compared to path tracing, and
the reduction in variance at equal render time becomes even more
significant.

To show a practical example, we show a simple origami figure
rendered with a homogeneous slab material in Fig. 3, produced by
both algorithms. At equal render time, our algorithm provides sig-
nificantly reduced variance, both in terms of visible noise and MSE.
Pre-integrating parts of the integration problem, and thus reducing

MSE: 0.0049MSE: 0.0049 MSE: 0.0030MSE: 0.0030GUO et al.GUO et al.
714ms714ms

OursOurs
756ms756ms

Figure 3: We render a papercraft figure using a BSDF computing
reflectance from a homogeneous slab. The slab parameters are L =
2.5 and σ = 1, and we use a Henyey-Greenstein phase function
with mean cosine g = −0.5. Our position-free integrator (right,
Alg. 3) significantly outperforms the analog baseline (left, Alg. 2)
at roughly equal render times.

its dimensionality, directly reduces the variance of the Monte Carlo
estimator for the slab.

6. Application: Multiple Scattering on Smith Microfacets

The main application of our theory is to multiple scattering for mi-
crofacet BSDFs [WMLT07]. Heitz et al.[HHdD16] propose com-
puting multiple scattering on microfacet surfaces under the Smith
model by formulating it as a random walk on the stochastic height-
field. Dupuy et al.[DHd16] further simplify this approach by show-
ing the problem is equivalent to transport in a homogeneous half
space, with angle-dependent extinction coefficient

σsmith(ω) =

{
Λ(ω)|(ω)z| if (ω)z < 0
(1+Λ(−ω))|(ω)z| else,

(24)

where Λ(ω) is the Smith lambda function [WMLT07; HHdD16].
Although this approach is an exact (albeit probabilistic) solution,
the drawback is that every evaluation of the BSDF involves a ran-
dom walk through the medium (or heightfield), which is costly and
introduces variance.

6.1. Algorithm

We can directly apply our position-free path integral to the semi-
infinite formulation of Dupuy et al. [DHd16] and analytically inte-
grate out the spatial dimensions of the random walk. We combine
their extinction coefficient (Eq. (24)) with ours (Eq. (6)) to obtain

σ(ω) =

{
Λ(ω) if (ω)z < 0
1+Λ(ω) else.

(25)

Inserting Eq. (25) into Alg. 3 immediately leads to a position-
free estimator of multiple scattering on microfacet surfaces. While
preferable to fully analog simulation, this algorithm would be infe-
rior to the one proposed by Heitz et al.[HHdD16]. On microfacet
surfaces, a significant source of noise comes from phase function
sampling, as opposed to free-flight sampling. While our algorithm
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Figure 4: We show mean BSDF value (left half of columns) and inverse efficiency (right half of columns, lower is better) for reflectance from
a homogeneous slab with parameters (thickness, mean phase cosine and incident angle) randomly selected from a list. Our position-free
estimator (red curve) outperforms the baseline estimator of Guo et al. [GHZ18] (blue curve) over nearly all parameters and angles, usually
significantly so. The mean reflectance values computed by both estimators match perfectly.

eliminates variance from the latter, it does nothing for the former.
Heitz et al. [HHdD16] propose to start the random walk randomly
either at ωi (“forward”) or ωo (“backward”), and to perform mul-
tiple importance sampling (MIS [VG95]) to combine evaluation
from both directions. The same principle can be applied to our
position-free algorithm (Alg. 3) to obtain an estimator that con-
sistently outperforms that of Heitz et al. [HHdD16].

6.1.1. Bidirectional Estimators

An unexpected benefit of the position-free formulation relates to
the nature of the medium formulated by Dupuy et al. [DHd16].

Their extinction coefficient (Eq. (24)) not only depends on direc-
tion, but is also non-symmetric: σsmith(ω) 6= σsmith(−ω). Trans-
mittance and the free-flight PDF thus are no longer equivalent if
the travel direction is reversed; reciprocity holds only for complete
paths that start and end on the boundary, which guarantees over-
all reciprocity of the BRDF. This means that reciprocity does not
hold when reasoning about partial subpaths. This prevents the use
of prior semi-position free approaches in graphics [GHZ18], which
formulate bidirectional estimators only for symmetric extinction
coefficients.
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However, in our position-free formulation, we eliminate all dis-
tance dimensions. This removes the sources of non-reciprocal
PDFs related to the asymmetric extinction coefficient, making it
possible to implement fully bidirectional estimators without much
complication. We give additional details and pseudo-code of our
full bidirectional estimator in the supplemental material.

6.1.2. Numerical Stability

We found that, unlike the slab case in Section 5, our position-free
algorithms for microfacets are numerically stable. This is explained
by the nature of multiple scattering on microfacets: The over-
whelming majority of energy is contained in low-order bounces
(less than 4 segments), and practically no path grows beyond 10
segments (roughly 0.01% at roughness α = 1; much less at lower
roughnesses). Therefore, we did not find the need to implement any
numerical mitigation strategies such as was required for the slab.

6.1.3. Russian Roulette

For microfacets, we found it beneficial to perform early termination
of low-energy paths. We can easily compute the energy left within
the slab from hl , and use this as the termination probability after
each collision. We give details in the supplemental.

6.2. Comparison to Wang et al.

Wang et al. [WJF*21] also propose a fully position-free MC trans-
port model for Smith microfacets using a different methodology.
Instead of computing the true Pexit, they suggest instead using
products of the monostatic Smith shadowing function G1(ω) =
1/(1+σsmith(ω)). This is equivalent to computing Pexit of a mod-
ified random walk, where after each collision the location of the
photon is “scrambled” and drawn uniformly from the distribution
of microsurface heights. In this case, hl resets to a known distri-
bution (hl(z) = exp−z) after each collision, and computing Pexit
becomes trivial.

This segment-wise decorrelation of the random walk leads to a
biased result. As we will show in the next section, this bias can
be significant and is not outweighed by commensurate efficiency
gains. However, this approach is a useful fallback strategy for when
Pexit cannot be evaluated analytically, i.e. for refracted paths (Sec-
tion 6.4).

6.3. Results

In Fig. 5, we show mean and efficiency graphs for evaluating
multiple scattering on GGX conductors over a variety of rough-
nesses and incident inclinations. We compare four different meth-
ods. The first is the original algorithm proposed by Heitz et al.
[HHdD16], which performs MIS of unidirectional path- and light
tracing in the semi-infinite slab. This baseline method can be made
position-free in two different ways: Either approximately, by re-
placing distance-related terms with the analytic Smith monostatic
shadowing function (this is the method of Wang et al. [WJF*21]);
or by replacing them with the true closed-form solution, which
is our POSITION-FREE UNIDIR strategy. Additionally, we com-
pare against unbiased, fully bidirectional position-free estimation,
which is our POSITION-FREE BDPT strategy.

Even when taking estimator cost into account, we find that all
position-free algorithms consistently beat the baseline estimator of
Heitz et al. by significant margin over a wide range of parameters.
However, the approximate algorithm of Wang et al. shows signifi-
cant bias, especially at higher roughnesses. When comparing effi-
ciency, our bidirectional and MIS-of-unidirectional estimators are
roughly equivalent: The fully bidirectional estimator exhibits lower
variance, but is approximately 2× as expensive. In a complete ren-
derer, the relative cost of evaluating the bidirectional estimator be-
comes smaller compared to the cost of tracing a full path, and this
estimator becomes much more competitive. The method of Wang
et al. is slightly more efficient at normal incidence, but significantly
less so at lower inclinations.

To demonstrate practical rendering results, we compare render-
ings of rough microfacet conductors of varying roughnesses un-
der direct lighting with our bidirectional, position-free algorithm
to that of prior work in Fig. 1. Despite nearly identical rendering
cost, our algorithm provides significant overall variance reduction.
It also eliminates high-intensity fireflies of prior work witnessed
e.g. on the back wall.

6.4. Dielectric Microfacets

Unfortunately, our theory does not allow for fully unbiased
position-free integration of dielectric microfacets. Even though
dielectric multiple scattering can also be expressed via a ran-
dom walk, the walk can transition between both sides of the
micro-surface upon refraction. In the formulation of Dupuy et
al. [DHd16], this corresponds to a jump of the photon, where its
depth z is remapped to zrefract = log(1− e−z). To make this com-
patible with our approach, we would need to find a suitable repre-
sentation of hl(zrefract) that can be expressed (and integrated) con-
veniently. We have not been able to find such a suitable represen-
tation; integrals of this nature result in beta functions, which have
resisted much further manipulation.

There are two ways to deal with this problem, which affect ei-
ther the variance or the bias of the refracted lobe. We could either
fall back to the baseline algorithm of Dupuy et al. [DHd16] when-
ever the random walk refracts; this would lead to unbiased results,
but the efficiency in the refracted lobe would be equivalent to the
non-position-free baseline. Alternatively, we could fall back to the
approach of Wang et al. [WJF*21] when the random walk refracts,
and maintain the low variance of the position-free approach, at the
cost of bias in the refracted lobe. We evaluate the efficiency of the
latter approach in Fig. 6. As expected, we match the efficiency of
the approach of Wang et al., and maintain unbiasedness in the re-
flected lobe (θo ∈ [−90,90]). However, we incur the same amount
of bias in the refracted lobe.

7. Conclusion, Limitations and Future Work

We present a new position-free path integral for Monte Carlo esti-
mation of reflectance from homogeneous slabs. We separate out the
probability of exiting the slab from other terms in the path integral,
and reduce the problem of computing it to manipulating the distri-
bution of heights of a photon in a simplified 1D medium. We show
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Figure 5: We show mean BSDF value (left half of columns) and inverse efficiency (right half of columns, lower is better) for reflectance
from a conductive GGX microfacet with multiple scattering for different roughnesses and incident angles. We compare four methods: The
baseline algorithm of Dupuy et al. [DHd16] (blue); the approximate position-free algorithm of Wang et al. [WJF*21] (red); and our two
unbiased position-free algorithms (green and orange). All position-free algorithms significantly outperform the baseline; the method of Wang
et al. does so at the cost of significant bias. Our methods are unbiased and significantly outperform both the baseline and, at non-normal
incidence, also the algorithm of Wang et al.

that this distribution reduces to a simple sum of exponentials, the
coefficients of which can be computed with simple iterative rules.

We apply our method to two applications in computing slab
reflectance and estimating multiple scattering on microfacet con-
ductors. Both are fundamental graphics problems and are directly
amenable to our position-free estimation. Our proposed algorithms
are simple, and we demonstrate significant variance reduction com-
pared to the baseline in both scenarios.

Our work has a number of limitations and avenues for future
research.

Dielectric Microfacets Our current formulation cannot achieve
fully unbiased position-free integration on dielectric microfacets.
This is due to the warping of the height distribution that occurs
when the random walk refracts. We propose a scheme that main-
tains unbiasedness in the reflected lobe, but incurs the same bias as
the approach of Wang et al. [WJF*21] upon refraction. If it can-
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Figure 6: We show mean BSDF value (left half of columns) and inverse efficiency (right half of columns, lower is better) for reflectance
from a dielectric GGX microfacet with multiple scattering for different roughnesses and incident angles, and an index of refraction of 1.8.
We compare three methods: The baseline algorithm of Dupuy et al. [DHd16] (blue); the approximate position-free algorithm of Wang et
al. [WJF*21] (red); and our position-free algorithm (green). The efficiency of our method and that of Wang et al. is identical, and both
outperform the baseline. However, our method is unbiased for the reflection lobe (θo ∈ [−90,90]) and restricts bias to the refraction lobe,
where it matches that of Wang et al.

not be removed, it would be interesting to explore how bias in the
refracted lobe could be reduced. One potential approach could be
to optimize the parameters of a new height distribution that most
closely matches the warped distribution hl(zrefract). This would al-
low for position-free integration even after refraction with reduced
bias compared to ignoring the height distribution completely.

Layered slabs Another interesting extension of our work would
be to natively handle layered, index-matched slabs, such as those

of Wang et al.[WJHY21]. Although we can readily support such
use cases by layering individual instances of Section 5, further vari-
ance reduction may be possible by treating the slabs as a combined
medium with strata of different extinction, and tracking a single
height distribution over all slabs simultaneously.
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