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Abstract

Recent laboratory experiments have shown that both infant and adult learners can acquire word

referent mappings using cross-situational statistics. The vast majority of the work on this topic 

has used unfamiliar objects presented on neutral backgrounds as the visual contexts for word 

learning. However, these laboratory contexts are much different than the real-world contexts in 

which learning occurs. Thus, the feasibility of generalizing cross-situational learning beyond 

the laboratory is in question. Adapting the Human Simulation Paradigm, we conducted a series 

of experiments examining cross-situational learning from children’s egocentric videos captured 

during naturalistic play. Focusing on individually ambiguous naming moments that naturally occur 

during toy play, we asked how statistical learning unfolds in real time through accumulating cross

situational statistics in naturalistic contexts. We found that even when learning situations were 

individually ambiguous, learners’ performance gradually improved over time. This improvement 

was driven in part by learners’ use of partial knowledge acquired from previous learning 

situations, even when they had not yet discovered correct word-object mappings. These results 

suggest that word learning is a continuous process by means of real-time information integration.
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1. Introduction

Children learn words in a complex environment. When hearing a word, children need to 

infer the meaning of the word despite the uncertainty about its potential referent (Quine, 

1960). Many heuristics have been shown to help reduce referential uncertainty at the 

moment, such as attentional cues provided by the speaker (Baldwin, 1991, 1993), the whole

object assumption (Macnamara, 1972), and mutual exclusivity (Halberda, 2003; Golinkoff 

et al, 1992; Markman & Wachtel, 1988). However, the degree of referential uncertainty 
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can vary widely in everyday learning situations. While some situations are transparent, 

allowing young learners to easily identify the intended referent of a parent’s speech 

(Bloom, 2000; Carey & Bartlett, 1978; Markman, 1989; Regier, 2005), others are highly 

ambiguous, requiring young learners to make a correct inference from multiple referent 

candidates. Recent studies show that young children are able to build a correct word-referent 

mapping not only by inferring a word’s referent correctly in a single situation but also by 

aggregating statistical information across multiple individually ambiguous situations (Akhtar 

& Montague, 1999; Scott & Fisher, 2011; Smith & Yu, 2008, 2013; Vlach & Johnson, 2013; 

Vouloumanos & Werker, 2009).

The computational mechanism involved in this process of inferring a correct word-referent 

mapping from multiple learning situations has been called cross-situational learning 

(Siskind, 1996; Smith et al., 2011; Yu & Smith, 2007). The essential idea of cross-situational 

learning is this: because a label and its correct referent are likely to co-occur more 

consistently than incorrect pairs that happen to co-occur by chance, the correct mappings 

can be identified by tallying co-occurring statistics across multiple learning situations 

(Smith & Yu, 2008; Yu & Smith, 2007). Many experimental and modeling studies of 

cross-situational learning have shown that infants, children, and adults are able to use 

cross-situational statistics to acquire word-referent mappings (e.g., Blythe et al., 2010; Chen 

et al., 2018; Fitneva & Christiansen, 2011; Kachergis et al., 2012; Koehne & Crocker, 2015; 

Monaghan et al., 2015; Onnis et al., 2011; Rebuschat et al., 2021; Smith et al., 2011; 

Smith & Yu, 2008; Suanda & Namy, 2012; Trueswell et al., 2013; Wang & Mintz, 2018; 

Yurovsky et al., 2013; Yu & Smith, 2007). However, stimuli used in most experimental 

tasks are highly controlled—usually composed of a sequence of trials, each of which has a 

small number of unfamiliar objects separated from each other in space on a monochromatic 

background. Compared with the experimental paradigms used in cross-situational learning 

studies, the visual environment that young children experience in the real world may be 

much more ambiguous, containing many referents onto which a word could possibly map. 

Therefore, a critical question that has been recently raised is whether the cross-situational 

learning solution demonstrated in well-controlled laboratory tasks can be generalized to 

word learning in the real world (Medina et al., 2011). The goal of the current study is to 

examine the feasibility of building word-referent mappings from a sequence of ambiguous 

situations extracted from real-world contexts and investigate the learning mechanisms that 

operate over them. Toward these goals, we used the Human Simulation Paradigm (HSP) 

originally introduced in Gillette et al. (1999) as an experimental paradigm to incorporate 

naturalistic learning contexts in the real world to cross-situational learning experimental 

tasks in the laboratories.

In the HSP, naming instances from naturalistic parent–child interactions are segmented 

and extracted as individual vignettes. The audio of each vignette is muted, and a beep is 

inserted at the point in time corresponding to the parent’s production of an object’s label. 

Learners are then presented with a sequence of vignettes and asked to guess which referent’s 

label was produced in each vignette. Medina et al. (2011) used the HSP to investigate cross

situational learning by testing whether adults are able to accumulate statistical evidence from 

a sequence of vignettes extracted from parent–child interactions. They found no evidence 

of incremental learning from multiple ambiguous learning situations. Instead, successful 
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word learning in their study depended solely on the presence of unambiguous learning 

situations. Moreover, participants learned the best when the unambiguous learning situations 

happened early in training, suggesting that word learning requires an initial “one-shot 

learning” step followed by confirmation (Trueswell et al., 2013). This Propose-but-Verify 

(PbV) learning process has been further supported by a subsequent experimental and 

computational modeling studies (i.e., Stevens et al., 2017). Together, those studies suggest 

that cross-situational learners may form an initial hypothesis about the meaning of a word 

on their first encounter with it, and then rely on subsequent encounters to either confirm or 

reject hypothesized mappings.

Yurovsky et al. (2013), however, found contrasting results using the same HSP method. 

In their study, vignettes were extracted from videos captured by a camera mounted on 

children’s heads. They used these egocentric vignettes to study the effect of the child’s 

first-person perspective on the process of cross-situational learning. Contrary to Medina 

et al.’s findings, participants’ learning performance improved significantly after watching 

multiple vignettes from the child’s view but not after viewing the same naming instances 

recorded from a third-person view (Yurovsky et al., 2013). These results suggest that the 

information available in first-person views may recruit integrative processes not involved in 

learning from third-person views.

The studies reported in Medina et al. (2011) and Yurovsky et al. (2013) used the same 

experimental paradigm; and they both found evidence of successful learning. However, 

the conclusions from the two studies differ, raising several critical questions about cross

situational learning. First, can learners acquire correct word-referent mappings when 

all learning situations are ambiguous? Both studies presented learners with a mix of 

ambiguous and unambiguous naming instances, and learners may have relied entirely on the 

unambiguous naming instances in the mix. In the present study, we exclude unambiguous 

naming instances and focus on learning solely from ambiguous situations. We predict that 

even when individual learning instances are ambiguous in isolation, learners will aggregate 

information across them to converge to correct word-referent mappings.

Second, how do statistical learners use prior knowledge acquired from previous situations to 

resolve ambiguity in a new learning situation? The correct information learners gathered in 

the past would certainly help learning by reducing the degree of uncertainty in subsequent 

situations. However, given that learners cannot always obtain the right information from 

ambiguous situations, an open question is whether imperfect statistical information gathered 

from previous situations would still contribute (or hurt) subsequent learning. In other 

words, is partial knowledge still helpful in cross-situational learning? We predict that 

partial information from ambiguous learning situations would improve statistical learning 

if learners were able to continuously integrate statistical information from ambiguous 

situations.

The third question concerns the amount of data used in cross-situational learning. Some 

have argued that the key computational mechanism of cross-situational learning is built on 

hypothesis testing in which learners propose and confirm specific hypotheses (Medina et 

al., 2011; Trueswell et al., 2013; Stevens et al., 2017). This type of statistical computation 
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relies heavily on integrating information from present and immediate past experiences to 

confirm or reject newly formed hypotheses. Another account, based on associative learning, 

views statistical learning not as all-or-none in hypothesis testing, but as a continuous 

process through which statistical evidence gradually accumulated across multiple situations 

(Kachergis et al., 2012; Yu & Smith, 2007). Under this account, all past experience, either 

immediate or distant, matters to learning. In the present study, we conducted several detailed 

analyses to examine whether cross-situational learning is built upon all the past learning 

situations or just the immediate past.

To answer these questions, we designed three experiments using the HSP. Experiment 1 was 

designed to provide a baseline for the following two cross-situational learning experiments 

by quantifying the ambiguity of individual naming instances. In this experiment, participants 

were provided with individual naming instances and asked to guess a target referent for each 

instance. Experiment 2 used the highly ambiguous naming events identified in Experiment 1 

to test cross-situational learning exclusively from ambiguous learning instances. Participants 

were exposed to a sequence of learning trials referring to the same target referent and 

asked to guess the target referent trial by trial. Using participants’ trial-by-trial responses, 

we examined how participants’ responses in previous trials influence their responses in the 

current trial. One potential limitation of Experiment 2 is that the process of accumulating 

statistical information was interwoven with retrieval requests—participants were asked to 

guess after each trial. If this retrieval process affects how statistical information is processed 

or stored, then the learning mechanisms discovered in Experiment 2 may not generalize 

to more naturalistic situations in which learners are not constantly asked to retrieve what 

they know (Karpicke & Roediger, 2008; Roediger & Butler, 2011; Vlach & Johnson, 2013). 

Experiment 3 was designed to address this issue by using a similar training session as that 

used in Experiment 2, except that learning accuracy was measured only at the end of the 

training session. Experiment 3 allowed us to directly compare the overall learning accuracy 

in a continuous learning mode, to that from Experiment 2 in which participants were asked 

to retrieve their current knowledge trial by trial. Similar results from the two experiments 

would suggest that the findings from trial-by-trial data in Experiment 2 can also be applied 

to explain cross-situational learning in a continuous and uninterrupted mode. Taken together, 

the three experiments aimed at providing new evidence on cross-situational learning in 

highly ambiguous situations, and importantly, shedding light on real-time mechanisms 

through which statistical information accumulates in cross-situational learning.

2. Experiment 1

The goal of Experiment 1 was to quantify the degrees of ambiguity of a set of naming 

instances occurring in free-flowing parent–child toy play. Based on this assessment, a subset 

of highly ambiguous learning situations from those vignettes were selected for Experiments 

2 and 3. In total, 96 naming vignettes collected by Yurovsky et al. (2013) were presented to a 

group of adult learners who were asked to guess the target referent of each vignette as a way 

to assess the degree of uncertainty of those naming instances.
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2.1. Method

2.1.1. Participants—Seventeen Indiana University undergraduates (Mage = 19.82 years, 

SDage = 1.47 years) participated in exchange for course credits. All participants completed 

the experiment.

2.1.2. Materials—The video corpus in Yurovsky et al. (2013) included eight play 

sessions, in which each parent–child dyad was asked to play with 25 toys as they naturally 

would at home for 10 minutes. The play interaction was recorded from two views: a third

person view from a tripod camera and a first-person view from a camera mounted on the 

child’s head. We used the videos recorded from the child’s first-person view in the present 

study because the visual information from this egocentric view is a close approximation of 

the relevant information that the child learner perceives and uses in statistical learning (Yu et 

al., 2009).

Ninety-six vignettes of naming instances were extracted from the video corpus. The target 

referents were 12 unique toys (e.g., elephant, mickey, tiger, etc.), each of which had 

eight naming instances from at least four different parent–child dyads. Those naming 

vignettes appeared to vary in their degrees of ambiguity. Some instances (e.g., Fig. 1a) 

are unambiguous with a single dominant object in the child’s view and others (e.g., Fig. 1b) 

are highly ambiguous with several potential referents in view. We grouped these 96 vignettes 

into eight blocks with 12 vignettes in each block referring to each of the 12 toys. Moreover, 

vignettes within each block were randomized. As a result, there were 12 (ranging between 

5 and 19) trials between two vignettes referring to the same target. This design made it 

unlikely for learners to use previous responses to inform responses in subsequent trials, and 

therefore minimized the possibility that learners performed cross-situational learning in this 

baseline condition.

For each naming instance, the original sound was muted, and the toy’s name was replaced 

by a beep at the onset of the label. Most vignettes were 5 seconds long, with the name’s 

onset occurring at exactly the third second. Two more seconds were added to the vignettes 

if parents said the toy name again within 2 seconds after the first naming instance. Seven 

of the 96 vignettes included two naming instances and two included three naming instances. 

Four additional vignettes were used as training examples before the experiment to make sure 

participants understood the task. None of the correct referents in these examples were one of 

12 targets. In addition to video vignettes, a forced-choice test was designed, which contained 

25 color photographs of all candidate toys used in the parent–child free-play session. The 

photos were displayed in a 5 × 5 grid on a white background,

2.1.3. Procedure—Participants were instructed to watch the vignettes and guess which 

object was likely to be labeled by the parents. After seeing each vignette, they were asked 

to guess the most likely referent from 25 pictures by clicking on the guessed picture. No 

feedback was given. At the beginning of the study, participants were familiarized with the 

task through four “warm-up” vignettes, each followed by a testing trial. Once they were 

familiar with the study procedure, they were prompted to begin the actual experiment.

Zhang et al. Page 5

Cogn Sci. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Results and discussion

As shown in Fig. 2, individual naming instances extracted from free-flow toy play showed 

a wide range of ambiguity. Some naming instances seemed to be highly unambiguous as 

all the participants responded correctly; other instances were highly ambiguous as none of 

the participants responded correctly; and the rest contained various degrees of ambiguity as 

only some participants were able to choose the correct target from the 25 candidate toys 

provided at test. This distribution seems to reflect the variability of parent naming that is 

expected to observe from natural parent–child interaction. When parents named toy objects 

in free play, they sometimes named them at the exact moments when the target object was 

dominant in the child’s view and therefore was likely to be considered as the referent of a 

name. But in other moments, spontaneous naming from parents may be out of synch with 

the child’s attention as the child might attend to more than one object or even worse, to a 

single object that was not the one named by the parent (Zhang & Yu, 2017). As shown in 

Fig. 2, roughly 40% of vignettes were unambiguous, leading participants to guess accurately 

more than 70% of the time (M = 0.94, SD = 0.07, Min = 0.71; Max = 1). For the remaining 

60% of vignettes, participants’ response accuracies were well below 70% (M = 0.14, SD = 

0.16, Min = 0; Max = 0.59). We classified these as ambiguous. Based on this criterion, 60 

out of the 96 ambiguous naming instances tested were used in the following experiments to 

examine whether learners could aggregate statistical evidence from those ambiguous trials. 

Note that these ambiguous vignettes still varied in their ambiguity, from naming events in 

which no participants guessed correctly, to those in which a large fraction of participants did 

guess the correct answer.

In summary, naming events during naturalistic parent–child joint play vary in ambiguity. 

A subset of highly ambiguous naming instances was selected and used in the following 

experiments to examine whether learners can accumulate cross-situational statistics from 

those ambiguous situations. Toward this goal, accuracy measures on individual naming 

instances from Experiment 1 were also used as baselines in the following experiments.

3. Experiment 2

Experiment 2 was designed to examine cross-situational learning from ambiguous learning 

events. Specifically, we aimed at answering two questions: can learners find the correct 

referent after being exposed to a sequence of ambiguous learning situations? If so, what 

mechanisms do they use to aggregate statistical evidence trial by trial in real-time learning?

3.1. Method

3.1.1. Participants—Twenty-six Indiana University undergraduates (Mage = 19.08 

years, SDage = 1.20 years) participated and received course credits. None had participated in 

the previous baseline study or other cross-situational word learning experiments.

3.1.2. Materials—The sixty ambiguous trials selected from Experiment 1 were grouped 

into 12 blocks. Each block had five different ambiguous vignettes all referring to the same 

target. Each of the 12 target toys was assigned a novel two-syllable label (e.g., agen, gree, 

hage, etc.). These labels were recorded by a female native speaker of English. Instead of 
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beeps, the novel labels were now inserted at the exact moment when parents named an 

object in a vignette. Within the five vignettes in a block, the same label was played as a 

clear indicator that the five naming instances shared the same target label. We used the same 

forced-choice test procedure used in Experiment 1.

3.1.3. Procedure—The procedure was similar to the one used in Experiment 1. The key 

difference was that participants were told that all five vignettes within a block referred to the 

same target. This instruction was further enforced by providing the same label within a block 

and different ones across blocks. Throughout the learning trials within a block, participants 

could change their response on any given trial. However, if they believed their previous 

answer was correct, they should stay with the same answer. They were not allowed to go 

back and change their previous answers and no feedback was provided through the whole 

experiment. Participants saw 12 blocks of trials in total. After each block, a prompt would 

appear to remind participants to get ready for the next block of trials.

3.2. Results and discussion

To measure whether participants accumulate knowledge across ambiguous naming 

instances, we calculated the response accuracies trial by trial. Fig. 3 shows both accuracy 

in the cross-situational learning condition in Experiment 2, and corresponding baseline 

accuracy of the same individual trials in Experiment 1.1 Trial-by-trial learning performance 

clearly shows a dramatic improvement, from 23% accuracy on Trial 1 to almost 50% 

on Trial 5. To formally test the improvement over trials, we fit a mixed-effects logistic 

regression predicting accuracy from trial number and baseline accuracy from Experiment 1 

while also taking into account the random intercepts for each subject (mixed effects model: 

accuracy ~ trial + baseline + (1|subject)). This model revealed a significant main effect of 

trial number (β = 0.29, p < .001) over and above the effect of baseline accuracy (β = 2.42, 

p < .001). This improvement observed in the present study supports the hypothesis that 

highly ambiguous instances alone are sufficient to produce successful learning. Even though 

the learning instances were individually ambiguous (on average, 14% accuracy for all 60 

trials), they jointly created much less ambiguous data for learners who aggregated across 

them. The gradual trial-by-trial improvement suggests that word learning is a continuous 

process, wherein statistical learners make progress by integrating what they have learned 

from previous situations with the information presented in the current situation. For instance, 

compared with the 16% baseline, the 50% accuracy in Trial 5 results from integrating the 

information acquired in the first four situations with the information presented in Trial 5. We 

next report a set of detailed analyses on a trial-by-trial basis to reveal underlying statistical 

computations that contribute to the increasing improvement.

1Accuracy on the first trials (M1 = 0.23, SD1 = 0.16, 95% CI [0.18, 0.28]) were expected to be similar to baseline but still 
significantly higher (Mbaseline = 0.11, SDbaseline = 0.32, 95% CI [0.07, 0.15], β = 0.85, p < .01). This is because the mean first-trial 
accuracy was calculated by aggregating responses across blocks and participants tended to achieve better learning performance in the 
first trials of later blocks, suggesting that learners may also learn cross-situationally across multiple target words. For example, if 
learners chose object A as the correct target in the first block, they could be less likely to choose object A again in later blocks as they 
were told to choose different toys in different blocks. In this way, learners adopted the mutual exclusivity strategy to narrow down their 
search space and improve response accuracy for later trials. Therefore, the first responses in later blocks had higher accuracy than the 
ones from earlier blocks because learners not only aggregated information within blocks but also accumulated statistics continuously 
throughout the entire study. The topic of cross-block statistical integration is worth future studies by itself. Nonetheless, the present 
study focuses on information aggregation from multiple learning instances within a block.
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3.2.1. Effect of previously acquired knowledge on subsequent learning—One 

fundamental mechanism in statistical learning is to remember and use what has been learned 

in the past to improve learning in the future (e.g., Thiessen, 2017; Yurovsky et al., 2014). 

In the present study, we considered two scenarios defined by whether previously acquired 

knowledge is correct or incorrect. We first calculated participants’ learning performance on 

the current trial conditioned on whether their previous response was correct. As shown in 

Fig. 4, when participants made a correct response from a previous trial, they were much 

more likely to stay with the correct answer (M = 0.84, SD = 0.36, 95% CI [0.81, 0.88]), 

compared to when they made an incorrect response from a previous trial (M = 0.17, SD = 

0.38, 95% CI [0.18, 0.20]). To determine whether this difference was statistically significant, 

we fit a mixed effect model as before, but this time added an additional main effect of 

previous trial, which was coded as −1 if incorrect, and 1 if correct (mixed effects model: 

accuracy ~ trial + baseline + previous trial + (1|subject)). We found that all factors included 

in the previous model remained significant in the current model (trial number: β = 0.31, p 
< .001, baseline accuracy: β = 2.85, p < .001), and moreover the new factor of previous 

accuracy was also a significant predictor (β = 1.48, p < .001). If participants found the 

correct target in a previous trial, they were much likely to identify the same target again in 

the current trial to confirm their previous selection, instead of starting from scratch with an 

uninformed response. In this way, correct information previously acquired is integrated with 

the current information to improve subsequent learning.

However, with highly ambiguous situations used in the present study, the learners were more 

likely to make incorrect than correct responses at the beginning of the learning. If their 

previous responses were incorrect, their hypothesized meaning would be disconfirmed on 

the current trial. In those situations, would subsequent learning still benefit from incorrect 

responses made in the previous trials? To answer this question, we examined the trials 

preceded by incorrect responses and compared accuracies on these trials with the baseline 

accuracies obtained in Experiment 1 (mixed effects model: accuracy ~ baseline + (1|video) + 

(1|subject)). This model found a significant effect of experiment, indicating that even when 

participants failed to obtain the correct answer from a previous trial, they still had a better 

chance to be correct (M = 0.17, SD = 0.38, 95% CI [0.18, 0.20]) than they would have 

been with only the current trial’s information (M = 0.14, SD = 0.16, 95% CI [0.13, 0.15], 

β = 2.99, p < .01). There are two possible learning mechanisms through which incorrect 

information from previous experiences can still help subsequent learning. First, after learners 

disconfirm an incorrect response in a prior trial, they could exclude the same wrong answer 

from consideration on the current trial (Yurovsky et al., 2014). Second, learners could 

potentially encode more information than just their single best guess on each trial (Frank 

et al., 2009; Smith & Yu, 2008; Vouloumanos, 2008; Yu et al., 2005; Yu & Smith, 2007). 

They could also store other word-object associations built from the co-occurrence statistics 

of previous trials. After discarding a wrong response, statistical learners could access stored 

associations and give a new response based not only on the current information but also the 

previously stored associations. This new response would have a better chance to be correct 

than an uninformed response. In this way, partial knowledge about potential word-referent 

mappings could guide the learners to make a more informed response in the current trial. 

This explanation contradicts the findings reported in Medina et al. (2011), showing that 
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when participant responds incorrectly from a learning situation, their response accuracy is at 

chance at the very next learning situation, indicating no knowledge of previous contexts.

3.2.2. Effect of amount of information on subsequent learning—For any 

statistical learning model, the amount of training data is a critical contributor to successful 

learning. However, two prominent accounts of cross-situational learning differ in their 

assumptions about how much information learners store and use. On the associative learning 

account, learners store and use a lot of data—all prior experiences gathered in the course 

of learning. On the hypothesis testing account, learners only use a small amount of data 

gathered on the most recent learning trial. To examine how much learning depends on the 

amount of prior experiences accumulated, we measured learning performance on each trial 

conditioned on the proportion of correct answers from all previous trials. We found that 

as total number of correct trials increases, performance on the current trial also increases 

proportionally (β = 0.74, p < .001; Fig. 5). For example, on the second trial, participants who 

gave a correct response on the first trial (M = 0.58, SD = 0.49, 95% CI [0.46, 0.69]) were 

more accurate than participants who responded incorrectly on the previous trial (M = 0.24, 

SD = 0.43, 95% CI [0.18, 0.29], β = 1.19, p <.001). Similarly, on the third trial, participants 

gave correct responses on both of the previous trials (M = 0.82, SD = 0.39, 95% CI [0.71, 

0.93]) were more accurate than learners who were correct on only one of the two previous 

trials (M = 0.48, SD = 0.50, 95% CI [0.35, 0.60], β = 1.10, p <.01), or no previous trials (M 
= 0.19, SD = 0.39, 95% CI [0.13, 0.25], β = 2.69, p <.001).

To quantify this accumulated effect as a continuous variable, we added another factor to 

the mixed effects model—the total number of previous trials on which participants gave a 

correct response. An ANOVA showed that this new variable significantly improved model 

fit (χ2 = 1139, p < .001), suggesting that the total amount of accumulated information over 

time influences learning performance on the current trial; all previous experience matters 

to learning. A pragmatic reason to leverage all learning experiences is that newly acquired 

knowledge can be fragile, requiring repeated exposures to be consolidated in memory (Bion 

et al., 2013; Horst & Samuelson, 2008; Vlach & Johnson, 2013). The more the learners 

repeatedly make a correct response, the more likely they will stay on the correct answer.

3.2.3. Effect of non-immediate trials—There are two plausible mechanisms through 

which previous trials can impact subsequent learning: “all-in-one” or “all-in-all.” On an 

“all-in-one” account, learners do not remember distant experiences. All previous experiences 

with a target word are condensed into the most recent hypothesis. On an “all-in-all” account, 

learners store and have access to not only the most recent experience but also distant past 

experiences. One way to distinguish “all-in-one” and “all-in-all” is to investigate learning 

performance followed incorrect responses. We compared two cases: (1) when all trials 

proceeding the immediate wrong trial were also incorrect and (2) when at least one of the 

trials before the incorrect previous trial was correct. As shown in Fig. 6, when at least one 

of the non-immediate pervious trials was right, accuracy on the current trial (M = 0.40, SD 
= 0.49, 95% CI [0.30, 0.52]) was significantly higher compared with cases in which all 

non-immediate previous trials were incorrect (M = 0.13, SD = 0.34, 95% CI [0.10, 0.16], 

β = 0.76, p < .001). Thus, even when learners guessed incorrectly on the most recent trial, 
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they retained information from the trials before that one and leveraged this information 

in subsequent learning. Thus, learners not only integrated cross-situational statistics across 

consecutive learning situations but also across distant learning situations.

We also counted the number of correct trials proceeding the immediate previous trial and 

examined whether those past trials could influence accuracy on the current trial. If learners 

only rely on the immediately previous trial to either accept or reject a mapping, there 

should be no impact from trials before the immediately previous trials. As shown in Fig. 7, 

regardless of accuracy of the immediately previous trial, the more previous trials on which 

learners gave correct responses, the more likely they were to be correct on the current trial 

(β = 0.79, p < .001). This finding provides further evidence that statistical learners use 

information not only from the immediately previous learning trial, but also encode and use 

all their past learning experiences in ambiguous learning contexts.

In summary, Experiment 2 showed that learners integrate information across a sequence 

of highly ambiguous situations to find the correct referent. Moreover, the set of detailed 

analyses on trial-by-trial data provided converging evidence that the amount of information 

that learners carried over was related to real-time learning performance and that all past 

learning experiences matter to learning. Cross-situational learning is a cumulative and 

continuous process that involves tracking and aggregating past experiences.

4. Experiment 3

In Experiment 2, participants were tested immediately after each vignette in order to 

collect trial-by-trial responses to estimate the course of cross-situational learning. However, 

language learners in the real world are not explicitly asked to retrieve information every 

time they hear a word. Because retrieval itself has been shown to improve learning (e.g., 

Karpicke & Roediger, 2008), in Experiment 3 we measured learning performance only at 

the end of the continuous learning session, without inserting intermediate test trials. If the 

overall learning results from Experiment 3 are similar to those from Experiment 2, then the 

computational mechanisms revealed by trial-by-trial results from Experiment 2 may be more 

likely to be at play in real-world continuous learning scenarios with no interruptions.

4.1. Method

4.1.1. Participants—Twenty-two Indiana University undergraduates (6 Males, Mage = 

20.00 years, SDage = 1.31 years) participated for course credits. None had participated in 

previous conditions or other similar experiments.

4.1.2. Materials—The same 60 ambiguous vignettes used in Experiment 2 were used. 

They were grouped into 12 blocks. Each block contained five ambiguous trials presented in 

the same order as in Experiment 2.

4.1.3. Procedure—The instructions were similar to those used in Experiment 2, except 

that we asked participants to guess only once at the end of each block.
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4.2. Results and discussion

We first compared participants’ final response accuracy with the fifth trial’s baseline 

accuracy tested in Experiment 1. After watching five vignettes all referring to the same 

target, participants’ accuracy (M = 0.50, 95% CI [0.44, 0.57]) was significantly higher than 

the comparable trials’ baseline accuracies (M = 0.13, 95% CI [0.08, 0.18], β = 1.95, p < 

.001). This result demonstrated that learners were able to learn from ambiguous learning 

trials without being tested explicitly.

We then compared final accuracies in Experiment 3 with accuracies from the final trial 

of blocks in Experiment 2 (Mexp2 = 0.49, 95% CI [0.43, 0.56]). We found no difference 

between Experiments 2 and 3 (β = 0.08, p = .76), suggesting that trial-by-trial testing did not 

impact learners’ overall learning performance observed in Experiment 2.

5. Discussion

In three Human Simulation experiments using videos collected from the child’s own 

view, we analyzed the course of cross-situational learning in order to determine which 

mechanisms people use to learn across multiple ambiguous learning situations. Specifically, 

we found evidence supporting that: (1) Naming events that occur during naturalistic parent–

child joint play vary in their degrees of ambiguity. There is a subset of highly ambiguous 

naming instances, creating a word learning challenge. (2) Learners store and keep track 

of past knowledge when learning new words from highly ambiguous situations. Learners’ 

performance increases as more information comes in, regardless of its quality, suggesting 

that cross-situational learning is a process that benefits from continuous information 

integration. (3) Learning performances is robust across different testing procedures.

5.1. Cross-Situational word learning is a continuous process, not one-and-done

Many studies of early word learning start with the referential uncertainty problem. Decades 

of research shows that the referential uncertainty can be solved through either one-shot 

learning from a single unambiguous learning situation (e.g., Behrend et al., 2001; Carey, 

2010; Carey & Bartlett, 1978; Goodman et al., 1998; Heibeck & Markman, 1987; Horst & 

Samuelson, 2008; Jaswal & Markman, 2001; Markson & Bloom, 1997; Spiegel & Halberda, 

2011; Waxman & Booth, 2000; Wilkinson & Mazzitelli, 2003; Woodward et al., 1994) or 

cross-situational learning from multiple ambiguous situations (Chen et al., 2018; Fitneva 

& Christiansen, 2011; Koehne & Crocker, 2015; Monaghan et al., 2015; Onnis et al., 

2011; Wang & Mintz, 2018; Yu & Smith, 2007, Zettersten & Saffran, 2019). One-shot 

learning relies on clear learning situations in order to build correct word-referent mappings. 

Observational studies in the real world have documented that children and parents do 

sometimes jointly create clear learning situations in their daily life (Yoshida & Smith, 2008; 

Yu et al., 2009; Yu & Smith, 2012b). Moreover, experimental studies in the laboratory show 

that children are capable of using various cues to disambiguate a learning situation and build 

a correct word-object mapping in a single encounter (Baldwin, 1991, 1993; Tomasello & 

Farrar, 1986). Both social cues provided by parents and knowledge previously acquired by 

children seem to play a critical role in reducing the uncertainty (Frank et al., 2009; Goodman 

et al., 1998). However, the results of our study suggest that learners may adjust the mappings 
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over the course of subsequent learning even after they acquire the mappings through “one

shot” learning. Even after making a correct response, learning was not done; learners did not 

always stay with the correct mapping on subsequent trials. Instead, they sometimes switched 

to an incorrect mapping and then switched back to the correct one later on. The dynamics 

of their trial-by-trial responses between right and incorrect answers suggest that learners 

constantly update their knowledge as new information enters the learning system. Learning 

is not one-and-done, but rather a continuous process. It involves not only discovering new 

knowledge from the sea of data but also consolidating newly acquired knowledge.

Recent research on memory development shows that retaining newly acquired knowledge 

is challenging for young children (Vlach, 2019). For example, even though the ability to 

fast-map a word to its correct referent emerges as young as 17 months of age (Halberda, 

2003), 24-month-old infants do not retain newly learned word-referent mappings after a 

5-min delay (Bion et al., 2013; Horst & Samuelson, 2008). Similar results have been found 

in 3-year-old children and adults (Vlach & Sandhofer, 2012). These results challenge the 

one-shot learning solution (Carey & Bartlett, 1978) because information retention may not 

be as easy as previously believed, and it is necessary to integrate memory constraints into 

any word learning account (Soh & Yang, 2021). Word learning may have to build on 

continuously accumulating statistical evidence from repeated exposures (Bion et al., 2013).

A continuous learning process built on statistical evidence over time may seem to be slow 

and inefficient relative to one-shot learning. However, because the learning environment 

is noisy, knowledge acquired on the first encounter with a word may be inaccurate or 

incomplete. Therefore, one-shot learning without prior knowledge can be fragile and error

prone. A more robust and reliable solution is for learners to continuously update their 

knowledge based on new information, perhaps changing less as stored representations 

converge. Especially in an early stage, a learning system can benefit by accumulating 

statistical evidence as much as possible to build a solid foundation. After this initial stage, 

one-shot learning becomes more robust and emerges as an efficient way to accelerate 

the speed of vocabulary acquisition. Several computational simulations (McMurray, 2007; 

Yu, 2008) have shown the computational mechanism through which the same associative 

learning model becomes much more efficient just by leveraging accumulated knowledge 

over time.

5.2. An integrated view of associative learning and hypothesis testing

What learning mechanism is responsible for the continuous learning process proposed 

above? Two prominent accounts of statistical learning—associative learning and 

hypothesis testing—have been traditionally characterized as fundamentally different. Recent 

computational and experimental evidence suggests the opposite. Rather than attempting 

to adjudicate between these two learning frameworks even more, a few recent behavioral 

studies (e.g., Romberg & Yu, 2014; Roembke & McMurray, 2016) were designed to 

investigate the potential interactions between explicit hypothesis testing and implicit 

associative learning processes. In a study done by Romberg and Yu (2014) using a cross

situational word learning paradigm, participants were asked to generate explicit hypotheses 

while aggregating trial-by-trial statistical information. They found that hypotheses are 
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generalized based on the co-occurrence statistics accumulated through associative learning. 

This result suggests that both computational mechanisms may be involved in cross

situational learning (Romberg & Yu, 2014) and that they may work together in an integrated 

learning system. Relatedly, a recent variant of the PbV model called Pursuit (Stevens et al., 

2017; Yang, 2020) has also demonstrated how hypothesis testing and associative learning 

can be integrated. Unlike PbV, in the Pursuit model, rejected hypotheses are not completely 

disregarded, but instead are retained for later evaluation. Similar to PbV, the Pursuit model 

also only stores one referent per learning instance. Stevens et al. (2017) ran a series of 

model comparisons and found that the Pursuit model outperforms associative learning and 

PbV models (Yang, 2020). Although the Pursuit model is still called a localist model where 

learners store one referent at the time, the fact that rejected hypotheses can be later retrieved 

and evaluated suggest that past knowledge plays a role and learning does not only rely on 

information provided at the moment.

In addition, computational analyses of the two learning mechanisms reveal that hypothesis 

testing can be viewed as a special case of associative learning when a simulated associative 

learner is selective and focus only on a small set of associations (Yu & Smith, 2012a). 

Similarly, Yurovsky and Frank (2015)argued that when learning a new word, participants 

not only encode the hypothesized referent but also encode several additional mappings at 

the same time and the different learning patterns found in support of either learning model 

depend on the complexity of the learning tasks.

5.3. Quantifying egocentric input using the HSP

HSP was originally developed to use adults to “simulate” child learners. Because adult 

learners have a developed conceptual system, using adults allows researchers to bypass 

concept development and isolate the problem of mapping those concepts to linguistic labels 

(e.g., Bloom, 2000; Gleitman, 1990; Smith, 2000). In the HSP, adults are instructed to guess 

what parents would say to their children by watching a third-person-view vignette. Because 

an event shown in third-person view can be highly ambiguous, adults often need to make 

an inference about what the parent may have in mind in order to guess what the parent 

may say at the moment. In the present study, however, egocentric videos from the child’s 

view reflect the learner’s personal view of an event, which have been found to be visually 

salient and less ambiguous (Yu & Smith, 2012b; Yurovsky et al., 2013). After watching a 

first-person view vignette, adult learners tend to rely on the perceptual information in view 

to make their guesses. In other words, instead of guessing what parents would say to their 

children in a particular context, adult learners are describing what they see using a linguistic 

label. Although this label may not be the one that children hear from parents, it reflects what 

perceptual information is embedded in the scene, therefore, can help us quantify the visual 

input children perceive in the moment. This measure is particularly useful for understanding 

word learning because to successfully learn a word, children need to derive word-to-world 

relations from the learning input. We can understand one important aspect of this problem 

by quantifying the alignment between what learners see with what they hear. HSP can be 

viewed as a good way to reveal what children see, as expressed in linguistic labels from 

adults.

Zhang et al. Page 13

Cogn Sci. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using this approach, a recent study provided new evidence on the inherent difficulty in 

learning verbs. For example, after seeing a vignette in which a parent is putting a toy phone 

close to her ear, adults provided multiple labels to describe the observed event, such as 

“putting,” “calling,” “talking,” and “answering.” All those linguistic labels could fit well 

in the situation, but only one of them may match with exactly what the parent said at the 

moment (Zhang et al., 2020). Inferring the correct word meaning from multiple equally 

suitable options is a challenging task for young learners. The linguistic labels provided by 

adults in the HSP can be directly compared with the words produced by parents at the same 

moments, which is a useful way to quantify the uncertainty that children experience from 

their own point of view.

6. Conclusion

Adapting the HSP, this research illustrates the value of characterizing the quality of naming 

events in the corpus of naturalistic interactions collected from infants’ egocentric views. 

It also shows how we can understand the mechanisms responsible for integrating across 

the kind of ambiguous naming events that children see. Our results provide evidence 

that even though individual learning moments can be highly ambiguous, the statistical 

regularities embedded across multiple ambiguous naming events can still support learning 

by information integration. In other words, the correct signal can be found among 

considerable noise.
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Fig. 1. 
Both highly unambiguous (a) and highly ambiguous (b) vignettes were used in Experiment 

1. The named object “mickey” can be easily identified in (a) as the dominant object in view, 

but not in (b) which contains multiple competing objects at the naming moment.
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Fig. 2. 
Distribution of response accuracy across vignettes. Consistent with Yurovsky et al. (2013), 

trial accuracies vary across different naming instances. Only ambiguous trials with less than 

70% accuracy were used in the following studies.
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Fig. 3. 
Mean accuracy across five ambiguous naming instances in Experiment 2 (Blue) and baseline 

accuracy of all ambiguous trials in Experiment 1 (Orange). Participants’ response accuracy 

was significantly above baseline and improved across trials. Dots represent group means, 

and error bars represent 95% confidence intervals.
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Fig. 4. 
Current trial accuracy as a function of previous trial accuracy. Participants were more likely 

to respond correctly on the current trial if they also responded correctly on the previous trial. 

Bars represent group means, and error bars represent 95% confidence intervals.
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Fig. 5. 
Accuracy on each trial as a function of the number of correct responses on previous trials. 

For each subplot, the x-axis shows the number of correct previous responses. Checks and 

crosses in the parentheses indicate all possible response patterns for previous trials. The y

axis shows current trial accuracy. Accuracy improved with more correct previous responses, 

indicating that the information accumulated on prior trials influences subsequent learning. 

Bars represent group means, and error bars represent 95% confidence intervals. Pie charts 

show the proportion of each type of instances.
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Fig. 6. 
Among trials that were proceeded by an incorrect response, accuracies on the current trial 

differed depend on whether all non-immediately previous trials were incorrect or at least one 

of the non-immediately previous trials was correct. Bars represent group means, and error 

bars represent 95% confidence intervals.
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Fig. 7. 
Accuracy (y-axis) as a function of the number of correct responses from non-immediately 
previous trials (x-axis). Regardless of accuracy of the immediate previously trial, accuracy 

on the current trial increased proportionally with the number of correct responses from 

non-immediately previous trials. Learners thus use information not just from the most recent 

previous trial but also from other more distant trials. Bars represent group means, and error 

bars represent 95% confidence intervals. Pie charts show the proportion of each type of 

instance.
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