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Abstract

The second order method as Newton step is a suitable technique in Online
Learning to guarantee regret bound. The large data is a challenge in Newton
method to store second order matrices as hessian. In this paper, we have
proposed a modified online Newton step that store first and second order
matrices of dimension m (classes) by d (features). we have used element wise
arithmetic operation to retain matrices size same. The modified second order
matrix size results in faster computations. Also, the mistake rate is at par
with respect to popular methods in literature. The experimental outcome
indicates that proposed method could be helpful to handle large multi class
datasets in common desktop machines using second order method as Newton
step.

Keywords: machine learning, online learning, online Newton step, element
wise multiplication, first and second order online learning

1. Introduction

Machine Learning (ML) plays decisive role in emerging Artificial Intelli-
gence (AI) applications and its data analysis. ML is a core sub-field of AI;
it results in self-learning platform to machines, without being explicitly pro-
grammed. These algorithms are enabled to learn, grow, change and develop
themselves. Conventional machine learning (batch based) is different from
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online learning paradigm as they require whole data at the time of train-
ing and these techniques are suffering from expensive re-training cost when
dealing with a new instance coming. In big data era, conventional learning
algorithms are more restrictive when data is huge and complex for real-world
applications [1]. Different from batch-based learning; Online Learning (OL)
includes important learning algorithms which are developed to learn mod-
els incrementally from data in a sequential manner [6],[5]. OL algorithms
overcome the limitation of batch-based learning as OL instantly update the
model when new instance arrives. Most of the OL algorithms are inspired
from online convex optimization. An online convex optimization consists of
a convex set S, and a convex payoff function lt. At step t, the online convex
optimization choose a weight vector wt ∈ S then it computes a loss lt(wt),
which is based on the convex payoff function lt(.) defined over a convex set
S [13]. The objective of the online learning algorithm to attain a minimum
regret bound, where regret is described as:

Rt =
T∑

t=1

lt(wt)− inf
w∗∈S

T∑

t=1

lt(w
∗), (1)

where w∗ is the minimum value of the payoff function as
T∑
t=1

lt(w) over the

convex set S.
Based upon the optimization techniques, OL algorithms categorized in the
following way: (i) first-order OL where only first-order feature information is
used [9],[19],[16],[8] (ii) second order OL where not only first-order but also
second order feature information used in training [15],[12], [14],[4]. The first
OL algorithm is Perceptron [17] based upon the first order derivation of the
cost function, which updates the model by adding and subtracting the loss
of the misclassified instance with a fixed weight. Recently, various meth-
ods were proposed based upon the first order OL by maximizing the margin
value. One developed Relaxed Online Margin Algorithm (ROMMA) [11] is
an incremental approach based upon the maximum margin. ROMMA used
the first-order derivation of the linear function for classification. Another
approach is Passive Aggressive (PA) [9] that classified the current instance
based upon the loss function, when the loss is zero updation is passive oth-
erwise updation is aggressive. By analyzing performance of the first-order
based OL techniques, we observe that large margin method are out-performed
the perceptron algorithm.
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In recent year, second order methods gain popularity as they overcome the
limitations of first-order method by exploiting the second order information.
The well known second order method is Second-Order Perceptron (SOP) [15],
which is the variant of whitened perceptron algorithm. In this work the au-
thor defined the interaction between eigenvalue of the correlation matrix of
the data and the target vector. There are various other large margin second
order online learning methods are proposed, such as Confidence-Weighted
(CW) [14] learning defined over the notation of confidence parameter. The
less confident parameters are updated more aggressively than confident one.
The limitation of CW, its aggressive hard margin strategy in noisy data.
To overcome this problem, researchers proposed the another variant of CW
learning based upon the adaptive regularization of each training instance. In
general, the performance and convergence rate of second-order OL is better
than the first-order algorithms.
The Online Newton Step (ONS) [3] is analogue of the Newton-Raphson
method [2]. It moves in the direction of the vector which inverse Hessian
multiplied by the gradient. In ONS case, the direction is H−1

t ∇t and the
matrix At is Hessian. Second-order algorithms such as ONS lead to lower
regret bound as compared to first-order methods. Our main contribution
in the proposed work is implementation of second-order algorithm analogue
to the Online Newton step. We have kept the dimension of first order and
second order derivatives same as objective function using element wise multi-
plication and inclusion of unit vectors or multiplication with feature vector.
Therefore, we are able to reduce the number of iterations required in the
previous used ONS. The main idea behind the change in dimension of ma-
trix is to reduce the calculation time of learning system. Our first order and
second order matrices as b and A, do not share same definition as gradient
and hessian matrices. Therefore, we have assigned names as matrices b and
A, differently from gradient and hessian notations, as used in literature work.
The highlights of the study are:

• A suitable second order online learning method using Newton step.

• First and second order matrices are of order m× d instead of d× d as
used in literature work.

• The promising online computation time cost as compared to previous
work and of complexity O(md).
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• Analysis of regret bound of proposed method.

The rest of the paper is organized as follows. The Section 2 presents the
notations used in this paper and the role of variables in convex optimization
problems. In section 3, we introduce the proposed Online Newton Step for
multiclass with the new dimensions of the matrices. In section 4, we present
the theoretical analysis and regret bound of the proposed method. In Sec-
tion 5, summarized the experiments based on the proposed method with the
benchmarks datasets. The section 6 concludes the paper with finding.

2. Preliminaries

In this section, we present the notations used in this paper, and formally
define the problem of second order convex optimization.

2.1. Notations

Table 1: Symbol descriptions

Notations Definitions

F Convex feasible set
X x1;x2; ....;xt

f min
w∈Rd×m

f(w) = log(1 + exp(−yt < xtw
T >) + λ||w||1

lt Convex loss function of tth interation
∇(f) Gradient of the loss function
∇2(f) Second order derivative of the loss function
Yt y1; y2; .....yt
||.|| Euclidean norm
RG(T ) Regret bound
m number of classes in data set
d number of feature in each vector xt

A second-order derivative of lt
g first order derivative of lt
AT Transpose of matrix A⊙

A.∗b element-wise multiplication
k ∇t

∇2

t
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In Table 1, we present the main symbols used in this paper. We have used
bold upper case character for matrix (e.g (A)) representation and A−1 and
AT denote the inverse and transpose of matrix respectively, small bold case
character represent the vector (x). ||x|| used for Euclidean norm of a vector
that is dual to itself. ∇ denote the first order derivative and ∇2 denote the
second order derivatives of the objective function.
In our case, the dimension of the second order derivative is m×d, where m is
the number of classes in respective data set and d is the number of features
in current vector xt.

2.2. Second order online convex optimization

Many online learning algorithms formulated as an online convex optimiza-
tion task. The main aim of second order methods is to exploits the second
order information to speed up the convergence of the optimization. The pop-
ular second order online algorithm is online Newton step. Like ONS, second
order methods update the model in sequence of consecutive rounds. At each
round t, the online learner pick a data vector xt from a convex set F such
that xt ∈ X . After the prediction is calculated on vector xt, a convex loss
function lt is revealed, then the online learner suffer from an instantaneous
loss lt(x). In second order online convex optimization, we assume that the
sequence of loss function l1, l2, ...., lT : X → R are fixed in advance. The main
goal of online learner is to minimize the regret. In second order learning, the
learner has access to the gradient as well as second order derivative of the
loss function at any point in the convex set F .

3. Modified Online Newton Step using element wise multiplication

In online learning, Newton method is second order optimization algo-
rithm, which iteratively updates the weight vector w ∈ Rd×m in a sequential
manner of an objective function f by computing direction dt and update
weight vector:

wt+1 = wt − ηt.dt, (2)

where ηt is a step size and dt is search direction. The benefit of using Newton
method is that f can be locally approximated around each wt, upto second
order, by the quadratic:

f(wt + dt) ≈ qwt
(dt) ≡ f(wt) +∇f(wt)

Tdt +
1

2
dTt Hdt, (3)
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where H = H(wt) is the Hessian matrix of f at wt. To move in a good
direction to, reduce to minimize this quadratic (q(wt)) with respect to dt,
to find a descent direction, we use a Newton algorithm. Computing and
storing the full Hessian matrix (H) takes O(d2) memory, which is infeasible
for high-dimensional functions such as the loss functions of neural nets with
large numbers of features.
The proposed work in this paper is an attempt to overcome the challenges
of Hessian complexity as O(d2). The goal of the present work is to facilitate
research an online learning optimization for large-scale data. We address a
logistic minimization problem defined as:

min
w∈Rd×m

f(w) = log(1 + exp(−yt < xtw
T >) + λ||w||1, (4)

where w ∈ R
d×m represent the model parameter and T define the number of

instances (xt, yt). L(< wt, xt >, yt) is the loss function.
The proposed algorithm is a online variant of the well know Newton method
[12] for finding the roots. In online learning, [5] at time t, the learner pick
one instance xt from the environment and then make a prediction of it’s class
label ŷ = sign(f(xt)), where f is a prediction function that maps the feature
vector to a real valued classification score. After the prediction, the true
class label is revealed from the environment and update the classifier, when
the learner makes a mistake (ŷt 6= yt ).
In this paper, we propose a new modified Newton step in online environment,
which keeps the dimension of second order matrix as well as first order matrix
same. The previous work on second order methods store the full information
of second order derivative of the objective function, which results in more
time to train the data when data is large. The new algorithm store the
matrices A and b, the dimension of A and b are m×d, where m is the number
of classes and d is the number of features in each instance. The proposed
algorithm ONS consist of two parts. 1) the size reduction of the second
order matrix with respect to dimension. 2) The present rule of updating the
classifier w. we discuss each part in detail follows.
In the algorithm 1, at tth round, the true label of yt of xt is revealed, we will
update the classifier to make sure that it suffer a small loss on the tth instance
and the new classifier wt is not far away from the previous classifier. Formally,
we want to update the classifier by minimizing the objective function that
is defined in equation 4. lt = max(0, 1 − ytw

T
t xt) is the hinge loss function

used.
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Algorithm 1 ONS using element wise multiplication

1: Input: learning rate ηt ; regularization parameter λ
2: Initialize: w1 = 0
3: for i=1 to T do
4: Receive xt ∈ X ;
5: Compute Ft = −yt < xt, w

T
t >

6: Make a prediction ŷt = sign(Ft);
7: Compute Loss lt = max(0, 1− Ft)
8: if lt > 0 then
9: Compute:f(wt) = log(1 + exp(−yt < xtw

T
t >) + λ||wt||1)

10: Compute b= ∇f(wt).yt
⊙

xt + λwt

11: Compute A=∇2f(wt) + λ
12: Compute step size ηt =

1

2
√
t

13: Compute the Newton direction: dt = A−1
⊙

b
14: update the classifier :wt+1 = wt − ηtdt
15: end if
16: end for

When lt > 0, we solve the minimization problem 4 in the following steps:

• Compute the ∇f(wt) and ∇2f(wt) of equation 4

b = ∇f(wt) = yt
⊙

xt(f(wt)
⊙

(1− f(wt)) + λwt (5)

A = ∇2f(wt) = x2
t b+ λ (6)

• Update the classifier parameter

wt+1 = wt − ηtA
−1

⊙
b (7)

In the first step, we compute the matrix b ∈ Rd×m, which is equivalent to first
order derivative of the logistic loss function Lt with regularization parameter
L1 regularization. In order to meet matrices multiplication criteria, we have
multiplication with unit vector to fullfill the element wise multiplication cri-
teria. This further help in strengthening our technique and results in low
mistake rate. In the second step, We update the classifier and the updated
equation is based upon Newton method for finding the root. Here we update
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weight matrix w ∈ Rd×m and perform element wise
⊙

multiplication. using
element wise multiplication, we maintain the first order as well as second
order derivative matrices dimensions as m × d. The source code in Matlab
for algorithm 1 given in Appendix 1.
The modify newton step algorithm is straight forward to implement, and
running time is O(md) per iteration give the second order matrix. In this
algorithm we use the step size ηt =

0.5√
t
.

3.1. Theoretical Analysis of modify Newton Step

As discussed by Zinkevich [19], we have follow the same definition 1. Our
proof is different from Zinkevich, as we have used ∇t

∇2

t

instead of ∇t only.

Definition 1. A feasible set F ∈ Rn and a loss sequence {l1, l2, ...} where
lt : F → R is a convex function in online convex optimization problem.
A vector xt ∈ F , at step t, it receives the loss function lt.

Definition 2. In an algorithm A, a convex problem for F and {l1, l2, ...}, if
{w1, w2, ...} are selected vector by A, until time T , the loss of A is:

LA(T ) =

T∑

t=1

lt(wt)

static feasible solution loss for w ∈ F is

Lw(T ) =

T∑

t=1

lt(w)

Algorithm A regret is

RA(T ) = LA(T )−min
w∈F

Lw(T ) (8)

We are specifying some parameters in order to state results in respect of
regret of algorithm bounded.

||F || = max
w,w∗∈F

d(w,w∗)

||k|| = sup
w∈F,t∈1,2,...,T

||kt(w)||,

where d(w,w∗) = ||w − w∗||, here is the first results derived in this paper.
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Theorem 1. if ηt = 0.5/
√
t, the regret of the modified Newton step is:

RG(T ) ≤ (||F ||2 + ||k||2)
√
T

Therefore, lim supT→∞RG(T )/T ≤ 0

Proof. For all t, there exist a kt ∈ Rn such that lt(w) = kt · w for all w.
we compute w1, w2, ... by running the algorithm and begin with arbitrary
l1, l2, ... We define kt = ∇lt(wt). For all w, lt(w) = kt · w to change lt, the
algorithm behavior is same as:

lt(w) ≥ (lt(wt)) · (w − wt) + lt(wt)

Therefore, for all w∗ ∈ F : lt(w
∗) ≥ kt · (w∗ − wt) + lt(wt). Thus:

lt(wt)− lt(w
∗) ≤ lt(wt)− (kt · (w∗ − wt) + lt(wt))

≤ kt · wt − kt · w∗

This regret is least with respect to modified sequence of functions. Now, for
w∗ on round t,we find regret bound as,

wt+1 = wt − ηt
∇t

∇2

t

= wt − ηtkt where kt =
∇t

∇2

t

wt+1 − w∗ = wt − w∗ − ηtkt
(wt+1 − w∗)2 = ((wt − w∗)− ηtkt)

2

= (wt − w∗)2 − 2(wt − w∗)ηtkt + η2t ||kt||2

Also, ||kt|| ≤ ||k||

(wt+1 − w∗)2 ≤ 1

2ηt
((wt − w∗)2 − (wt − w∗)2)) +

ηt
2
||k||2

Now, by summing we get,

RG(T ) =
∑T

t=1
(wt − w∗) · kt

≤ ∑T
t=1

1

2ηt
((wt − w∗)2 − (wt+1 − w∗)2) + ηt

2
||k||2

≤ 1

2η1
(w1 − w∗)2 − 1

2ηT
(wT+1 − w∗)2 + 1

2

∑T

t=2(
1

ηt
− 1

ηt−1

)(wt − w∗)2 + ||k||2
2

∑T

t=1 ηt

≤ ||F ||2( 1

2η1
+ 1

2

∑T
t=2(

1

ηt
− 1

ηt−1

)) + ||k||2
2

∑T
t=1 ηt

≤ ||F ||2 1

2ηT
+ ||k||2

2

∑T

t=1 ηt

9



Now, if we define ηt =
1

2
√
t
,

∑T

t=1 ηt =
∑T

t=1
1

2
√
ηt

≤ 1 + 1

2

∫ T

t=1
2
√
t

≤ 1 + (
√
T − 1)

≤
√
T

After putting the value of
∑T

t=1 ηt, we get regret bound as,

RG(T ) ≤ (||F ||2 + ||k||2)
√
T

4. Experiments

Experiments of the proposed method were performed on multi-class clas-
sification datasets, i.e satimage, mnist, acoustic and protein. All the date-
sets are downloaded from LIBSVM website. We selected the four mutli-class
classification datasets and table 2 shows the statistics of the datasets used in
experimentations. All experiments are performed in MATLAB environment
on a single computer with 3.4 GHz Intel core i7 processor and 8 GB RAM
running under window 10 operating system.
We have compared our proposed modified ONS algorithm against the two
following baselines:

• The modified ONS change the dimension of second order as well as first
order matrices which is A and b from d× d to m× d.

• In modified ONS, We use the element wise multiplication denote by
⊙

in Table 1 for reduction of matrices multiplication complexity.

To make a fair comparison, our modified ONS adopts the same experimental
setting. We select randomly each feature vector xt at a time t, the regular-
ization parameter λ = 0.001 and the learning rate ηt =

1

2
√
t
. After that, all

experimental results are reported by averaging the 20 runs with the help of
Libol [18]. We add our proposed algorithm in Libol library and compare all
the state-of-art second order algorithms.
We compare the proposed second order modified Newton step algorithm with
the existing second order online learning algorithms [14], [10], [7]. In addition
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ONS is the baseline technique with full information feedback. To accelerate
the computational efficiency, the modify newton step employ a pure newton
formula.

wt+1 = wt − ηt · A−1
t bTt (9)

To compute A−1
t in time O(md) where m is the number of classes in multi-

class dataset and d is feature vector in each record t, using the matrix-vector
and vector-vector product after the A−1

t and gTt .
We have compared our algorithm against state-of-art algorithms using libol
library [18]. We evaluate different second order online learning methods in the
term of classification task. we select the Hinge loss l(wt) = max(0, 1−ytw

T
t xt)

as a classifier. In this experiment, the step size of ONS ηt =
1

2
√
t
. The results

are shown in Figure 3. We find that the modify Newton step is much more
efficient in term of running time and memory consumption.
In addition, the proposed second order online learning algorithm ONS con-
verges faster than the other second order online learning methods used in
experimentation. Hence, present approach provide a principled way to deal
with large-scale online learning problems. Experimental results are presented
using tables comparing the mistake rate, number of updates and time.
The Table 2 is shows the summarized detail of datasets.

Dataset n=#instaces d= #features m = #classes type
satimage 3104 36 6 classification
mnist 60000 780 10 classification
acoustic 78823 50 3 classification
Protein 17766 357 3 classification

Table 2: Summary of datasets in the experiment

The Table 3 shows the empirical results of the satimage dataset, which
contain 3104 instances, each instance contain 34 features and 6 classes. In
table 3, columns contains the algorithm name, mistake rate, number of up-
dates, and time in seconds for respective algorithm. Our approach performed
better in time cost as compared other methods. For mistake rate, we are close
to SCW and SCW2 and outperformed the CW and ARROW algorithm.

The Table 4 present the experimentation results of the MNIST dataset,
which contain 60000 instances and each instance contain 780 features with
10 classes. The MNIST dataset results, we are 40 times faster than other

11



Data Set: satimage (#instances=3104,#features=36,#classes=6)
Algorithm: mistake #updates time (s)
CW 0.191 +/-0.004 907.2 +/-21.0 0.253 +/-0.020
AROW 0.172 +/-0.008 2106.6 +/-43.4 0.308 +/-0.019
SCW1 0.153 +/-0.004 795.2 +/-35.3 0.265 +/-0.023
SCW2 0.157 +/-0.003 1004.8 +/-35.7 0.268 +/-0.032
ONS 0.171 +/-0.003 1321.2 +/-19.8 0.171 +/-0.006

Table 3: Results of satimage dataset

algorithms using the proposed algorithm. Our approaches also outperformed
in the mistake rate which is less than in all second order online learning
algorithm.

Data Set: mnist (#instances=60000,#features=780,#classes=10)
Algorithm: mistake #updates time (s)
CW 0.133 +/-0.002 15310.4 +/-87.9 462.148 +/-2.911
AROW 0.446 +/-0.079 29992.8 +/-3590.6 671.282 +/-80.369
SCW1 0.188 +/-0.002 13809.0 +/-124.5 313.469 +/-3.043
SCW2 0.130 +/-0.002 15207.0 +/-56.1 344.911 +/-2.255
ONS 0.111 +/-0.001 21063.4 +/-124.9 5.902 +/-0.015

Table 4: Results of MNIST dataset

The Table 5 shows the empirical results of the acoustic dataset, which
contain the 78823 instances, 50 feature of each instance and 3 classes. our
approach also outperformed in time as shown in the table 5 and we find that
our approach results in minimum updates.

Data Set: acoustic (#instances=78823,#features=50, #classes=3)
Algorithm: mistake updates time (s)
CW 0.413 +/-0.001 48342.6 +/-106.9 9.224 +/-0.255
AROW 0.321 +/-0.001 77391.6 +/-62.3 11.769 +/-0.338
SCW1 0.344 +/-0.009 35305.4 +/-2004.5 8.217 +/-0.392
SCW2 0.322 +/-0.001 69253.4 +/-120.4 11.250 +/-0.296
ONS 0.343 +/-0.007 31932.2 +/-114.6 4.213 +/-0.118

Table 5: Results of acoustic dataset
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The table 6 shows the results of the Protein dataset, which contains the
17766 instances, each instance contain 357 features and 3 classes. we also
outperformed in the terms of time comparison and close to mistake rate
achieved by other algorithms.

Data Set: Protein ( #instances=17766, #features=357, #classes=3 )
Algorithm: mistake updates time (s)
CW 0.432 +/-0.002 11742.4 +/-47.5 31.420 +/-3.337
AROW 0.342 +/-0.002 17012.4 +/-10.2 42.742 +/-0.214
SCW1 0.374 +/-0.003 9312.2 +/-42.6 24.088 +/-0.115
SCW2 0.348 +/-0.001 11848.4 +/-70.9 30.351 +/-0.219
ONS 0.406 +/-0.002 15525.0 +/-63.3 1.406 +/-0.006

Table 6: Results of Protein dataset

The figures [1],[2],[3],[4] shows the comparison of CW, AROW, SCW and
SCW2 algorithms. Our proposed modified ONS shown in solid black line in
figures [1],[2],[3],[4]. All figure include three parts, first part of figure shows
the cumulative mistake rate, second part of fighure shows the number of up-
dates and third part of figure shows the times in second.
The figure 1 shows the comparison between second order online learning al-
gorithms discuss in literature with the multiclass classification dataset satim-
age. We outperformed in terms of time taken in comparison to other methods
and better than CW and AROW for the mistake rate.

The figure 2 shows the results of MNIST dataset, our results are better
in mistake rate and time comparison. The mistake rate is also less and time
is 45 times less then other algorithms used in experimentation. The figure
3 shows the results of acoustic data, in which, we performed better in time.
The figure 4 shown the result of Protein dataset, in which, we are 30 times
faster than other algorithms.

5. Conclusion

The proposed method is an effort for second order online learning tech-
nique in order to address the challenging second order matrix size in large-
scale dataset. We tackle the problem of second order matrix size by reducing
the size of second order and first order matrices as m×d, using element wise
multiplication to retain the matrix size. We theoretically analyzed the regret

13



Figure 1: SATIMAGE dataset results
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bound of the proposed method and conducted a set of experiments to exam-
ine it’s empirical evaluation in training time and accuracy. We also applied
large-scale classification datasets and results shows that our proposed algo-
rithm do not need special hardware and could perform in common desktop
machines. Our approach results in promising online computation time cost
as discussed in experiment section. This further strengthen our approach as
suitable second order learning to use in real time applications.
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Figure 2: MNIST dataset results
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Figure 3: ACOUSTIC dataset results
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Figure 4: Protein dataset results
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