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Designing Multi-Attribute Procurement Mechanisms for
Assortment Planning

ABSTRACT

This research investigates how to design procurement mechanisms for assortment planning. We

consider that a retailer buys directly from a manufacturer who possesses private information about

the per-unit variable cost and per-variety setup cost. We first develop a screening model to assist

the retailer in integrating assortment planning into supply chain contracting processes when only

one manufacturer is available. We demonstrate that the screening mechanism is optimal among all

feasible procurement strategies. When there are multiple competing manufacturers, we propose

a supply contract auctioning mechanism and evaluate its performance. In this mechanism, the

retailer announces a contract menu and the manufacturer that bids the highest upfront fee paid to

the retailer wins the auction. The winner then chooses and executes a contract from the contract

menu. We show that when the retailer uses the optimal screening contract menu as the object of

the auction, it achieves the optimal procurement outcome if the screening contract menu does not

pay rent to any manufacturer type. This finding sheds light on the connection between screening

and auction mechanisms when there exists multi-dimensional private information.

[Keywords: Asymmetric Information, Assortment Planning, Auctions, Multi-attribute Procurement Contract]

INTRODUCTION

Because the assortment carried by a retailer could have a significant impact on the retailer’s profit

and sales, assortment planning has received a high level of priority from retailers, consultants,

and software developers. Retailers recognize that more product variants help their business by

catering to variety-seeking consumers (Coughlan et al., 2006). However, there are limits to the
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value of product variety. For instance, an additional variant sometimes adds little in the sense of

“real” variety to the consumers and creates variety fatigue (Boatwright & Nunes, 2001; Chen et

al., 2010). From an operational perspective, adding more variants inevitably increases the cost

and complexity of the procurement and production processes. Therefore, the cost of carrying a

wider assortment could eventually offset the benefits of adding more variants. When planning

their assortments, retailers must address the trade-off between the width (the number of variants)

and the depth (the inventory level of each variant) of their assortments.

The academic literature on assortment planning has grown rapidly over the past fifteen years.

A variety of optimization models have been developed to assist retailers in choosing the optimal

set of variants and the inventory level for each variant. Readers can refer to Kök et al. (2009) for a

comprehensive review. An important prerequisite of the extant models is that the cost information

is complete. However, many firms are reluctant to share sensitive information because of conflict-

ing interests (e.g., Cachon & Zhang, 2006; Kurtulus & Nakkas, 2011; Kaya & Özer, 2012; Li &

Sun, 2012). The informed firm often has an incentive to distort or hide information to gain strategic

advantages such as information rent. The concern about asymmetric information has become an

important issue for retailers in their procurement process. For example, Lockstrom et al. (2011)

interviewed the purchasing manager, quality manager, or general manager of sampled companies

and found that “there is a great deal of adversarial behavior where information asymmetry plays

an important role, rendering full openness very difficult. This is reflected in the low degree of open

book policies.”

We aim to extend the assortment planning literature by considering information asymmetry.

Our research is relevant and useful for retailers who are directly sourcing from foreign countries,

where cultural differences and lack of trust (Zhao et al., 2007) could exacerbate the problem of in-

formation asymmetry. We build the procurement mechanism design model for assortment planning

by incorporating the following three key features.

1. Direct Sourcing. Many retailers adopt the strategy of direct sourcing from overseas man-
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ufacturers. For example, when Guy Russo, the managing director of K-Mart Australia, took the

helm in 2009 and tried to reverse the fortunes of a bankrupt Aussie icon, he found that “the ma-

jority of products that we got, 95 percent of them, all came from Asia. They already did come

from Asia, but I was dealing with a local Australian agent. I was in shock when I saw the mark-up

that our agents were putting on, that we could remove totally, and then just pass on those savings

to customers.” By moving to a direct sourcing model, liaising with the same factories that supply

global retailers such as Wal-Mart and Tesco, K-Mart Australia has managed to reduce the purchase

cost of some goods by 50 percent and has passed the savings on to customers (Mitchell, 2012). Mr.

Russo said, ”When we can match the quality of those famous brands, and then deal direct with the

factory, we can deliver lowest prices.” Other retailers operating in Australia such as H&M (Robin,

2013) and Target (Lloyd, 2004) also adopted the direct sourcing model.

2. Multi-Dimensional Private Information. Because of the low degree of open book policies,

Asian manufacturers are tight-lipped about their production costs, which are usually of a multi-

dimensional nature. Take a garment factory as an example. The major steps of producing a garment

include: 1) making the colored fabric from yarn, 2) fabric relaxing, 3) spreading, forming the

layout and cutting, 4) embroidery and screen printing, 5) sewing, 6) spot cleaning and laundry, 7)

ironing, and 8) packaging and shipping (www.textileschool.com). If the extra variant differs from

others in color or fabric type, the factory must address the extra sorting and handling activities

before each of the major steps. The per-unit cost of producing a garment of different colors may

be the same, but the extra color could cost more. Because of information asymmetry (see, e.g.,

Lockstrom et al., 2011 and the references therein), the exact cost of producing an assortment is a

closely guarded secret of many manufacturers. By following the previous literature in Marketing

and Operations Management (e.g., Gaur & Honhon, 2006; Kurtulus & Nakkas, 2011), we assume

that the cost of producing an assortment is linear with respect to the total quantity and the number

of variants. We consider the use of screening and auction mechanisms to mitigate the effect of

information asymmetry and contribute to the literature by building a connection between these two
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mechanisms.

3. Seasonal Retailing. Many retailers such as H&M use seasonal models (Robin, 2013). For

example, stores are stocked with seasonal goods made by Asian manufacturers, and at the end of

the season, unsold items are marked down for clearance. Agrawal and Smith (2009) presented a

retail master calendar that describes the supply chain of two major American retailers that also

use the seasonal model. The time line of our model is consistent with this retail master calendar.

Because the planning horizon of each assortment contract is short, retailers must frequently manage

the joint decisions on assortment planning and procurement contracting. Two other industrial

characteristics are worth noting. The first characteristic is the supplier turnover, which is typical

for retailers that buy directly from Asian manufacturers. In a field trip to the Wal-Mart Procurement

Center in Southern China (organized by POMS Hong Kong Chapter), we learned that the supplier

turnover rate is approximately 20−35% annually. Wal-Mart is not the only company that deals with

supplier turnover. Readers can refer to the references cited by Swinney and Netessine (2009) for

more examples. The second characteristic is the uncertainty in the cost of raw materials attributed

to the increasing volatility in commodity markets (Levy & Ferazani, 2006). The fluctuation in

raw material costs could make the cost information obtained from the previous contracting cycle

no longer valid. In summary, at the time of contracting with a new (or an existing) manufacturer,

retailers usually do not possess all of the cost information but need to make joint decisions on

assortment and procurement.

These three key industrial features form the basis of our model. Specifically, we consider

a single-period newsvendor model in which the retailer jointly makes the assortment planning

and procurement contracting decisions. The manufacturer possesses multi-dimensional private

information regarding the volume-based production cost and the variant-based setup cost, which

directly affect the retailer’s decision on the width and depth of the assortment. We present the opti-

mal screening mechanism to achieve the optimal procurement outcome for the single-manufacturer

case. When there exist multiple competing manufacturers, we evaluate the performance of a sup-
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ply contract-auctioning mechanism. To the best of our knowledge, we are the first to consider

multi-dimensional private information in assortment planning.

RELATED LITERATURE

Our research is built upon two streams of literature: retail assortment planning and a multi-

dimensional mechanism design. The literature on retail assortment planning generally focuses

on how the consumers’ choice of a favorite variant from an assortment could affect the assortment

decision. It is typically assumed that the cost information is fully available when the retailer makes

the assortment decision. One of the most important results on assortment planning was obtained by

van Ryzin and Mahajan (1999). Under the assumption that all variants have an identical newsven-

dor ratio, van Ryzin and Mahajan demonstrated that the optimal assortment should consist of a

certain number of the most popular variants. Subsequent research extended the analysis to study

how the retailer’s assortment decisions could be affected by component commonality (Bernstein

et al., 2011), category captainship (Kurtulus & Nakkas, 2011), or endogenous pricing (Maddah &

Bish, 2007; Aydin & Porteus, 2008). Several other studies took a different route by relaxing the as-

sumption of an identical newsvendor ratio. For example, Li (2007) and Alptekinoğlu et al. (2009)

showed that the optimal assortment does not always include the most popular variants. Instead of

exhaustively reviewing the assortment planning literature, we refer readers to Kök et al. (2009) for

a comprehensive review.

Mechanism design theory has been successfully applied to many supply chain problems with

asymmetric information. However, the multi-dimensional problem is much more difficult than

the one-dimensional problem. Readers can refer to Rochet and Stole (2003) for an excellent sur-

vey of the economics literature. The OM/SCM literature that uses mechanism design theory can

be categorized into two groups. The first group considers multi-attribute screening mechanisms

(e.g., the non-linear pricing mechanisms such as two-part tariffs) and one-dimensional informa-

tion. The number of published articles in this group is so large that we refer readers to Kaya and
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Özer (2012) for an updated literature review. The second group, which is the most relevant to

our research, considers multi-dimensional private information. The articles in the second group

are sparse. Chen-Ritzo et al. (2005) studied the use of multi-dimensional auctions in an experi-

ment where the suppliers possess private information regarding quality and lead time. Asker and

Cantillon (2010) evaluated the performance of scoring auctions and bargaining when the suppliers

possess private information regarding the fixed and marginal costs associated with product qual-

ity. Whereas these two articles used additive and separable objective functions, we consider an

objective function that is neither additive nor separable with respect to the number of varieties (an

integer variable) and the order quantity (a continuous variable).

We also consider the use of auctions in assortment planning when there are multiple manufac-

turers available. Che (1993) proposed a scoring auction in which the buyer announces a scoring

rule and suppliers are asked to bid on quality and price. The supplier who achieves the highest

score is selected as the winner. Chen (2007) developed a supply contract auction where the ob-

ject of the auction is a supply contract. The supplier who bids the highest price for the right to

execute the supply contract is selected as the winner and is then delegated to make the inventory

decision. In these two articles, the supplier’s private information is one-dimensional, while we

consider multi-dimensional private information.

THE SCREENING MODEL

We consider a single-period newsvendor model where a retailer jointly makes the assortment plan-

ning and procurement contracting decisions. The retail price of all the variants in the same assort-

ment is assumed to be r. This assumption is consistent with the common practice of many retail-

ers. For example, in a short visit to the two largest Australian retailers (Coles and Woolworths),

we found that the same price is charged for clothes, ice cream, shampoos, shoes, detergents, and

frozen foods in the same assortment. In the appendix, we provide a detailed discussion on relaxing

the assumption of exogenous price.
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We first consider the case that only one manufacturer is available. To facilitate the analysis,

we assume that there are two manufacturer types, denoted by type 1 and type 2, respectively. The

type of the manufacturer determines the cost of producing an assortment. We note that the variants

in the same assortment may have different physical attributes (e.g., clothes in the same assortment

differ in colors, patterns, or sizes) that do not affect quality or price. Hence, it is reasonable to

assume that the per-unit cost is constant. Because we consider multiple manufacturer types, the

per-unit cost should be manufacturer-dependent. Furthermore, when the retailer buys from the

manufacturer, the retailer must buy at least one variant. Hence, the variant-based setup cost is

assumed to be incurred for the second variant onward. To reflect these two features, the type-i

manufacturer is assumed to incur a total cost of ciQ + ki(n − 1)+ when producing an assortment

with n variants and total order quantity of Q units, where (z)+ = max(0, z). This convex cost

assumption is consistent with the previous literature in Marketing and Operations Management

(e.g., Gaur & Honhon, 2006; Kurtulus & Nakkas, 2011). We also assume that r > max{ci}. The

probability that the manufacturer is type-i is δi and (δ1 + δ2 = 1). Without a loss of generality, the

reservation value of each type of manufacturer is normalized to be zero.

There are many different ways to model how a typical consumer makes a purchasing decision

given an assortment. We adopt the multiplicative demand model used by Aydin and Porteus (2008)

and several others. Specifically, the demand for variant j offered in the assortment is Djqj(n),

where Dj is independently and identically distributed with cumulative distribution function (cdf)

F (·), and qj(n) is the proportion of consumers who buy variant j from an assortment with n

variants. Because Dj is identically and independently distributed, we write Dj as D whenever

convenient. We also assume that D is non-negative and has an upper bound d̄. We do not consider

stock-out based substitutions. In other words, a consumer who chooses variant j as the first choice

and finds the variant to be out of stock does not make a second attempt. This assumption was used

by van Ryzin and Mahajan (1999), Aydin and Porteus (2008), and many others.

Next, we derive the retailer’s expected sales revenue. The following lemma demonstrates that
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it is optimal for the retailer to use the equal service level (ESL) policy, under which the probability

of stock-out for each variant is equal.

Lemma 1 The equal service level policy is optimal.

This policy is easy to implement and is consistent with several previous results, such as those

obtained by van Ryzin and Mahajan (1999). Under the ESL policy, we can greatly streamline the

notation by using a single scalar x to determine the inventory level for each variant. Specifically,

let xqj(n) be the order quantity of variant j. We see that the probability of stock-out is identical

for each variant, but the order quantity for each variant is different and depends on the choice

probability qj(n). The retailer’s total expected sales revenue generated by an assortment with n

variants is

r
n∑
j=1

Emin (xqj(n), Dqj(n)) = rEmin (x,D)
n∑
j=1

qj(n) = rEmin (x,D)B(n), (1)

whereB(n) =
∑n

j=1 qj(n) is the proportion of consumers who attempt to buy from the assortment.

We observe that the total order quantity is Q = xB(n).

Note that instead of specifying the qj(n) function for each j, it is more convenient to specify the

B(n) function. We assume that B(n) is a concave increasing function of n that satisfies B(0) = 0

and B(n) ≤ 1 for any n ≥ 1. Using this demand model, we can recover many demand models

used in the previous research. For example, Kurtulus and Nakkas (2011) considered identical

variants and the multinomial logit (MNL) model. They showed that qj(n) = vr/(nvr + 1), where

the parameter vr is the attractiveness of variant j relative to the no-purchase option, which is

normalized to be 1. It is then easy to verify that B(n) = nvr/(nvr + 1) satisfies our assumption.

Now, suppose that the attractiveness is variant-specific in the MNL model. Similar to van Ryzin

and Mahajan (1999), the retailer should first add variant j if it is more popular than variant i.

We assume that v1 ≥ v2 ≥ ... ≥ vn, where vj is the attractiveness of variant j relative to the
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no-purchase option. We can then obtain that

B(n) =

∑n
j=1 vj∑n

j=1 vj + 1
.

Using the monotone property of vj , we can verify that B(n) satisfies our assumption.

The MNL model is commonly used in the assortment planning literature, but it has an undesir-

able property of independence from irrelevant alternatives (IIA). We can avoid such problems by

using a general form of the B(n) function, which depends on the underlying choice process. For

example, Gaur and Honhon (2006) considered the locational choice model and established that the

first-choice intervals of all the products must be adjacent. In their choice model, the probability

that a consumer buys from the assortment is B(n) = G(ln)−G(l1) = G(l1 + 2L(n− 1))−G(l1),

where lj denotes the location of product j on the preference spectrum, L represents the coverage

distance of each product, and consumers are distributed over the spectrum with cdf G(·) and pdf

g (·). If the g(·) is non-increasing (e.g., G follows the exponential or the uniform distribution), then

B(n) is a concave increasing function. Other models, which allow correlation over alternatives and

overcome the problem of the IIA property, include mixed logit, conditional probit, generalized ex-

treme values, and nested logit models (Train 2003). However, the choice probabilities of these

models often have no closed forms and require simulations to evaluate the values.

The sequence of events is as follows. i) The retailer meets with a manufacturer whose type (or

cost function) is private. ii) The retailer offers a menu of contracts and the manufacturer chooses

a contract from the menu. iii) The products are delivered to the retailer before the selling season

starts. iv) The retailer displays the assortment in the store. v) Consumers buy from the assortment.

Unmet demand is lost, and unsold inventory is salvaged with zero value. The zero salvage value is

introduced primarily to reduce the notational complexity; it does not qualitatively affect the final

results. The above timeline is consistent with the standard newsvendor model (e.g., van Ryzin and

Mahajan, 1999) and matches the retail master calendar presented by Agrawal and Smith (2009).

Using the multi-dimensional mechanism approach, it is sufficient to consider the following
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procurement mechanism. There are two contracts, denoted by contracts 1 and 2. Contract i spec-

ifies that the total payment to the manufacturer is Pi, the number of variants is ni, and the total

order quantity is Qi = xiB(ni). In the truth-revealing equilibrium, the type-i manufacturer takes

contract i. While various contracts such as buy-back or revenue-sharing can be implemented, we

note that different contracts require different sets of information and different levels of monitoring.

Other factors such as transportation costs, tax, currency regulations, and legal considerations also

play important roles in implementing them successfully (Kaya and Özer, 2012). For example, the

substantial costs of returning merchandise limit the application of buy-back contracts. In the book

and magazine markets, to reduce the cost of reserve logistics, only the covers are shipped to the

publisher, and the cost of stripping the books and destroying the damaged books is the responsi-

bility of the bookseller (Book Industry Study Group http://www.bisg.org). Another limitation of

buy-back contracts is the chain-wide damage if the downstream retailer engages in signaling ac-

tions (Dai et al., 2012). The cost of verifying the sales revenue is another reason that often limits

the application of revenue-sharing contracts. For example, the Walt Disney Company sued Block-

buster for cheating the video rental volume under a four-year revenue-sharing agreement (New

York Times, January 4, 2003).

Because we consider that the retailer is buying directly from overseas countries, the above

limitations (high transportation cost and high cost of verifying the sales of the foreign retailer or

the amount of unsold inventory) exist in our problem setting. In addition, the currency and tax

regulations in Asian countries (Zhao et al., 2007) could hinder the implementation of buy-back or

revenue-sharing contracts. Finally, we note that the payment to the manufacturer under a buy-back

or revenue-sharing contract is uncertain and depends on the realized demand. Because we consider

risk-neutral players, by letting Pi equal the expected payment of a buy-back or revenue-sharing

contract, we can induce the same outcome. Therefore, we focus our attention on the contract form

that does not involve the information of sales or unsold inventory.
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Assortment Contracting Problem

First, we derive the retailer’s objective function. Let N be the collection of all non-negative in-

tegers. Suppose that the manufacturer is type-i. Under contract i, the total chain profit is given

by

Ti(ni, xi) = rEmin (xi, D)B(ni)− cixiB(ni)− ki(ni − 1)+. (2)

We define the profit of the type-i manufacturer when contract i is chosen as follows:

wi = Pi − cixiB(ni)− ki(ni − 1)+.

Once we know the values of ni, xi, and wi, we can identify the parameters (Pi, ni, Qi) of contract

i. We also find that the retailer’s profit is rEmin (xi, D)B(ni)−Pi, which equals Ti(ni, xi)−wi.

In other words, the retailer’s profit is the total chain profit minus the manufacturer’s profit. We

observe that the retailer’s objective is

max
ni,xi,wi

Z = δ1 [T1(n1, x1)− w1] + δ2 [T2(n2, x2)− w2] . (3)

Next, we derive the constraints. Consider that the type-i manufacturer accepts contract i. This

manufacturer obtains a net profit of wi. By switching to contract j (i 6= j), this manufacturer

obtains a net profit of Pj − cixjB(nj) − ki(nj − 1)+. To lure the type-i manufacturer to take

contract i, it must hold that wi ≥ Pj − cixjB(nj)− ki(nj − 1)+, which is equivalent to

wi ≥ wj + (cj − ci)xjB(nj) + (kj − ki)(nj − 1)+. (4)

In summary, the retailer’s constraints are the following:

w1 ≥ w2 + (c2 − c1)x2B(n2) + (k2 − k1)(n2 − 1)+; (5)

w2 ≥ w1 + (c1 − c2)x1B(n1) + (k1 − k2)(n1 − 1)+; (6)

wi ≥ 0; (7)

ni ∈ N and d̄ ≥ xi ≥ 0. (8)
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Constraints (5) to (6) are the so-called incentive-compatibility (IC) constraints, constraint (7) is the

individual rationality (IR) constraint, and constraint (8) is the feasibility constraint.

Our formulation allows us to do the following. First, we can easily verify whether the retailer’s

assortment decision (i.e., the breadth and the depth of the assortment) is chain-optimal. Second,

we can easily identify how the chain profit is distributed between the retailer and each type of

manufacturer. If wi = 0, the type-i manufacturer does not make a profit that is greater than the

reservation value. We say that the type-i manufacturer does not receive any information rent. If

wi > 0, the type-imanufacturer makes a profit that is strictly greater than the reservation value. We

say that the type-imanufacturer receives an information rent. Third, constraints (5) to (6) reveal the

difference between the multi-dimensional model and the classic one-dimensional model. Define

Rij(nj, xj) = (cj − ci)xjB(nj) + (kj − ki)(nj − 1)+ (9)

as the incremental gain of the type-i manufacturer if it switches to contract j. Whenever it does

not cause any confusion, we write Rij(nj, xj) as Rij . A positive Rij implies that the type-i man-

ufacturer is able to fulfill contract j with a lower total cost. If this is the case, the retailer must

increase the payment in contract i to lure the type-i manufacturer. Note that the terms R12 and R21

will determine the rent paid to each type of manufacturer (see Lemma 3 in the next section). In the

classic one-dimensional model (for example when ki = kj), the incremental gain Rij only has one

term and its sign is definite. However, in our model, Rij in equation (9) has two terms. Therefore,

its sign is indefinite when ki > kj and ci < cj .

Chain Optimal Solution

The first benchmark is the chain optimal solution that maximizes Ti (ni, xi) in equation (2). We

need to introduce a few notations. Define πi(x) = rEmin (x,D) − cix as the newsvendor profit

when the inventory scalar is x. Let x̄i = F−1
(
r−ci
r

)
be the newsvendor solution. Let n̂i be the

solution of equation B′(n) = ki/πi(x̄i), where n̂i does not need to be an integer. Let bnc be the
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largest integer that is not greater than n and dne be the smallest integer that is greater than n. In

general, it holds that bnc ≤ n < dne and dne − bnc = 1. Now we provide the chain optimal

solution and chain optimal profit as follows:

Lemma 2 The chain optimal solution is

x̄i = F−1
(
r − ci
r

)
,

n̄i =


1 B′(1) < ki/πi(x̄i),
bn̂ic B′(1) ≥ ki/πi(x̄i) and Ti (bn̂ic, x̄i) ≥ Ti (dn̂ie , x̄i) ,
dn̂ie B′(1) ≥ ki/πi(x̄i) and Ti (bn̂ic, x̄i) < Ti (dn̂ie , x̄i) .

The chain optimal profit is Z̄ = δ1T1(n̄1, x̄1) + δ2T2(n̄2, x̄2).

OPTIMAL SCREENING SOLUTION

We solve the optimal multi-dimensional screening mechanism in two stages. First, we optimize

the rent wi paid to the manufacturer provided that the assortment parameters (ni, xi) are given.

Second, using the expressions of the optimal rents, we find the assortment parameters (n∗i , x
∗
i ) that

maximize the retailer’s expected profit.

Optimal Contract Menu

Suppose that the assortment parameters (ni, xi) are provided. Because the terms Ti(ni, xi) and Rij

are known and given, the retailer’s second-stage problem is to minimize the total expected rent,

which equals δ1w1 + δ2w2, subject to constraints (5) to (6). Note that this is a linear programming

(LP) problem with respect to w1 and w2, and the following Lemma summarizes the solution of this

problem.

Lemma 3 The second stage problem is feasible if and only if R12 + R21 ≤ 0. Provided that

R12 +R21 ≤ 0, the optimal rent is wi = max (0, Rij) for i = 1, 2.
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We now move our attention to solving the first-stage problem. Using Lemma 3, we can write

the retailer’s profit as follows:

Z = δ1 [T1(n1, x1)−max (0, R12(n2, x2))] + δ2 [T2(n2, x2)−max (0, R21(n1, x1))]

= δ1

[
T1(n1, x1)−

δ2
δ1

max (0, R21(n1, x1))

]
+ δ2

[
T2(n2, x2)−

δ1
δ2

max (0, R12(n2, x2))

]
= δ1Λ1(n1, x1) + δ2Λ2(n2, x2). (10)

The term Λi(ni, xi) is called the virtual surplus, which equals the chain profit minus the information

rent that must be paid to the manufacturer depending on the manufacturer’s type. An immediate

observation from equation (10) is that the optimal screening solution can be found by optimizing

the virtual surplus Λi(ni, xi) for each type i. Define

(n∗i , x
∗
i ) = arg max

ni∈N,xi≥0
{Λi(ni, xi)} . (11)

Theorem 1 The retailer’s optimal screening mechanism is to offer contract i (i = 1, 2); if it

satisfies that the number of variants is n∗i , the total order quantity is Q∗i = x∗iB(n∗i ), and the

payment is

P ∗i = ciQ
∗
i + ki(n

∗
i − 1)+ + max

(
0, Rij(n

∗
j , x
∗
j)
)
.

The retailer’s optimal expected profit is Z∗ = δ1Λ1(n
∗
1, x
∗
1) + δ2Λ2(n

∗
2, x
∗
2).

Although Theorem 1 characterizes the optimal screening mechanism, it still requires us to

optimize the virtual surplus.

Optimizing Virtual Surplus

Next, we investigate how to optimize the virtual surplus, which is given by

Λi(ni, xi) = Ti(ni, xi)−
δj
δi

max(0, Rji(ni, xi))

= rEmin (xi, D)B(ni)− cixiB(ni)− ki(ni − 1)+

−δj
δi

max
(
0, (ci − cj)xiB(ni) + (ki − kj)(ni − 1)+

)
. (12)
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We observe that the virtual surplus Λi(ni, xi) is a complex piece-wise function. We define a useful

identity as follows:

R̄ij = R̄ij(n̄j, x̄j) = (cj − ci)x̄jB(n̄j) + (kj − ki)(n̄j − 1)+. (13)

There is an important intermediate result in relation to R̄ij .

Lemma 4 1) It satisfies that R̄12 + R̄21 ≤ 0. 2) If R̄ij > 0, where i 6= j and {i, j} ∈ {1, 2}, then

Ti (n̄i, x̄i) > Tj (n̄j, x̄j).

Part 1) of Lemma 4 implies that at least one R̄ij must be negative. Hence, regarding the

optimization of the virtual surplus, we have two cases to consider: case 1) when both R̄12 and R̄21

are negative, and case 2) when 0 < R̄ij ≤ −R̄ji.

We first consider case 1) with both R̄12 and R̄21 being negative. Using the expression of the

virtual surplus in equation (12), we find that Λi(ni, xi) ≤ Ti(ni, xi), where the equal sign holds

if and only if Rji(ni, xi) ≤ 0. Because (n̄i, x̄i) maximizes Ti(ni, xi) and both R̄12 and R̄21 are

negative, we conclude that the chain-optimal assortment parameters (n̄i, x̄i) maximize the retailer’s

profit in equation (10). We summarize this result as follows:

Corollary 1 If both R̄12 and R̄21 are non-positive, then the retailer’s optimal screening mechanism

is to offer contract i (i = 1, 2), which specifies that the number of variants is n∗i = n̄i, the total

order quantity is Q∗i = Q̄i = x̄iB(n̄i), and the payment is P ∗i = ciQ̄i + ki(n̄i− 1)+. The retailer’s

optimal expected profit Z∗ equals the optimal chain profit Z̄.

Corollary 1 identifies a situation such that the retailer takes the entire supply chain surplus,

which is maximized. This outcome does not arise in the classic one-dimensional model. To see this

point, suppose ki = kj , which implies that the two manufacturer types differ only in the per-unit

cost. We see that the incremental gainsRij(n, x) = (cj−ci)xB(n) andRji(n, x) = (ci−cj)xB(n)

have opposite signs for any given (n, x). Because the optimal rents are wi = max(0, Rij) and
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wj = max(0, Rji) according to Lemma 3, one of the manufacturer types must receive information

rent. Specifically, part 2) of Lemma 4 demonstrates that the manufacturer type that generates a

higher chain optimal profit receives information rent. In our two-dimensional model, recall that

the incremental gain is Rij(n, x) = (cj− ci)xB(n) + (kj−ki)(n−1)+. When cj > ci and ki < kj

(in this case, we say that the per-unit cost and per-variety cost are negatively correlated), the sign of

Rij(n, x) is indefinite. As such, it is possible for the retailer to avoid paying any information rent.

We also notice that the negative correlation between the volume-based cost and the variety-based

cost exists in many factories (readers can refer to page 28 in Cachon & Terwiesch, 2012 for some

practical examples).

It remains difficult to explicitly characterize the condition such that Corollary 1 holds. There

are two main reasons: i) the number of varieties is an integer variable and ii) the incremental

gain R̄ij function given by equation (13) is a complex non-linear function involving 4 parame-

ters (c1, c2, k1, k2). To obtain additional insights, we provide a numerical example to illustrate

Corollary 1.

Example 1 We assume that the retail price is r = 10 and that the demand D is uniformly dis-

tributed over the interval (0, 40). The B(n) function is assumed to be n
n+1

, which can be viewed

as the MNL model with v0 = exp(0) = 1 and vr = 1. The probability that the manufacturer is

type-1 is 0.5 (i.e., δ1 = δ2 = 0.5). The total production cost of the type-1 (type-2) manufacturer

is assumed to be 2Q + 8(n − 1)+ (c2Q + k2(n − 1)+, respectively), where Q is the total order

quantity and n is the number of variants. This setting implies that we fix the cost parameters of the

type-1 manufacturer at (c1 = 2, k1 = 8) and vary that of the type-2. For any given pair of (c2, k2),

we solve the optimal contract by using Theorem 1.

Now consider that the type-2 manufacturer’s production cost parameters are (c2 = 1.5, k2 =

17), where the type-2 manufacturer has a lower volume-based cost (i.e., c2 < c1) and higher

variety-based cost (i.e., k2 > k1). We find that R̄12 = −2.33 and R̄21 = −6, indicating that
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Corollary 1 holds. Therefore, the optimal assortment is determined by x∗1 = x̄1 = 0.8, n∗1 = n̄1 =

3, x∗2 = x̄2 = 0.85, and n∗2 = n̄2 = 2; and the retailer’s expected profit is 79.67.

We observe that the per-unit cost and per-variety cost are negatively correlated in Example

1. In our two-type model, the negative correlation implies that the type-i manufacturer has a low

per-unit cost but a high per-variant cost, whereas the type-j manufacturer has a high per-unit cost

but a low per-variant cost. Our results indicate that the optimal menu includes two contracts: a

large-quantity-and-low-variety contract and a small-quantity-and-high-variety contract. The first

contract matches the cost profile of the type-i manufacturer; whereas the second matches the cost

profile of the type-j manufacturer.

The parameter space complementary to the condition specified in Corollary 1 is that either R̄12

or R̄21 is positive. If R̄ij is positive, it means that 0 < R̄ij ≤ −R̄ji, which is the remaining case

2) of Lemma 4. Part 2) of Lemma 4 illustrates that the type-i manufacturer generates a larger

optimal chain profit than the type-j manufacturer does. Hence, we call the type-i manufacturer the

”top” agent and the type-j manufacturer the ”bottom” agent. With R̄ji ≤ 0, from equation (12) we

observe that the assortment parameters for the top agent are set at the chain-optimal levels (i.e., the

optimal assortment parameters defined by equation (11) satisfy that n∗i = n̄i and x∗i = x̄i). Hence,

our remaining task is to maximize the virtual surplus associated with the type-j manufacturer.

Note that because R̄ij is positive, the chain-optimal solution does not maximize the virtual surplus

Λj(nj, xj), which implies that the assortment parameters for the bottom agent are distorted (i.e.,

(n∗j , x
∗
j) 6= (n̄j, x̄j)). This finding extends the classic one-dimensional result. Specifically, an

important characteristic of the optimal one-dimensional mechanism is no distortion at the top and

downward distortion at the bottom (see Rochet & Stole, 2003). In the one-dimensional context, for

example, when k1 = k2, the downward distortion would imply that Q∗j < Q̄j . We will show later

that the conjecture of downward distortion is not necessarily true in the multi-dimensional context.
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Notice that the virtual surplus associated with type-j is

Λj(nj, xj) =

{
Tj(nj, xj) if Rij(nj, xj) ≤ 0
Tj(nj, xj)− δi

δj
Rij(nj, xj) if Rij(nj, xj) ≥ 0.

Therefore, we need to consider two local optimal solutions. The first local optimal solution,(
naj , x

a
j

)
, is obtained by solving

max
nj∈N,xj≥0

{Tj(nj, xj)} , subject to Rij(nj, xj) ≤ 0; (14)

whereas the second local optimal solution,
(
nbj, x

b
j

)
, is obtained by solving

max
nj∈N,xj≥0

{
Tj(nj, xj)−

δi
δj
Rij(nj, xj)

}
, subject to Rij(nj, xj) ≥ 0. (15)

By comparing Λj(n
a
j , x

a
j ) with Λj(n

b
j, x

b
j), we can find the global optimal solution (n∗j , x

∗
j), and the

following Corollary characterizes the optimal mechanism for the remaining case 2) of Lemma 4.

Corollary 2 Suppose that R̄ij > 0 where i 6= j and {i, j} ∈ {1, 2}. There are two cases:

a) If Λj(n
a
j , x

a
j ) ≥ Λj(n

b
j, x

b
j), the retailer’s optimal screening mechanism is to offer contract-i,

which satisfies that the number of variants is n∗i = n̄i, the total order quantity is Q∗i = Q̄i =

x̄iB(n̄i), and the payment is P ∗i = ciQ̄i + ki(n̄i − 1)+; contract-j satisfies that the number

of variants is n∗j = naj , the total order quantity is Q∗j = xajB(naj ), and the payment is P ∗j =

cjQ
∗
j+kj(n

a
j−1)+. The retailer’s optimal expected profit is Z∗ = δiTi(n̄i, x̄i)+δjTj(n

a
j , x

a
j ).

b) If Λj(n
a
j , x

a
j ) < Λj(n

b
j, x

b
j), the retailer’s optimal screening mechanism is to offer contract-i,

which satisfies that the number of variants is n∗i = n̄i, the total order quantity is Q∗i =

Q̄i = x̄iB(n̄i), and the payment is Rij(n
b
j, x

b
j) + ciQ

∗
i + ki(n̄i − 1)+; contract-j satisfies

that the number of variants is n∗j = nbj , the total order quantity is Q∗j = xbjB(nbj), and

the payment is P ∗j = cjQ
b
j + kj(n

b
j − 1)+. The retailer’s optimal expected profit is Z∗ =

δiTi(n̄i, x̄i) + δj

[
Tj(n

b
j, x

b
j)− δi

δj
Rij(n

b
j, x

b
j)
]
.
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Corollary 2 offers a few insights that are worth mentioning. The first insight is in relation

to the rent paid to the manufacturer. In case a) of Corollary 2, neither manufacturer receives

any information rent. The payment to the manufacturer just covers the total cost to produce the

assortment. This outcome never arises in the one-dimensional context. In case b) of Corollary 2,

the type-i manufacturer receives a positive rent, whereas the type-j manufacturer does not. The

outcome of case b) is similar to the classic one-dimensional result. The second insight is in relation

to the downward distortion conjecture. Consider case b) of Corollary 2 as an example. The first

derivative of Tj(nj, xj)− δi
δj
Rij(nj, xj) with respect to xj is

− δi
δj

(cj − ci)B(nj) +B(nj) [r − rF (xj)− cj] .

Letting the above equation be 0, we find that the optimal inventory scalar is

xbj = F−1
(
r − cj
r
− δi(cj − ci)

δjr

)
.

Recall that r−cj
r

is the chain-optimal newsvendor ratio. The term δi(cj−ci)
δjr

measures the magnitude

of the distortion on the service level. Note that the sign of cj − ci could be positive or negative,

which determines the direction of distortions. For instance, it is possible that cj− ci < 0, kj−ki >

0, and R̄ij > 0. In this case, the type-i manufacturer has an advantage in the variety-based cost,

which offsets the disadvantage in the volume-based cost so that the type-i manufacturer generates

a larger optimal chain profit than the type-j manufacturer does. Because cj − ci < 0, the order

quantity is distorted upward, which is in contrast to the downward distortion result in the classic

one-dimensional context. The following example illustrates the main results of Corollary 2.

Example 2 Consider another pair of cost parameters for the type-2 manufacturer. Let c2 = 1.5

and k2 = 13; and any other parameters in Example 1 remain unchanged. We find R̄12 = −6.33

and R̄21 = 2, indicating that Corollary 1 does not hold. However, R12(n
∗
2, x
∗
2) = −6.33 and

R21(n
∗
1, x
∗
1) = −2.2 imply that both manufacturer types receive zero rent, which means that the

precondition of Corollary 2a) is satisfied. The parameters of the optimal assortment are x∗1 = x̄1 =
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0.8, n∗1 = 4 > n̄1 = 3, x∗2 = x̄2 = 0.85, and n∗2 = n̄2 = 2; the retailer’s expected profit is 81.67.

We observe that the width of the assortment for the type-1 manufacturer is distorted upward.

Next, suppose that c2 = 2.5 and k2 = 10, where the type-1 manufacturer dominates the type-2

manufacturer. We have R12(n
∗
2, x
∗
2) = 11.33 and R21(n

∗
1, x
∗
1) = −16, which satisfies the condition

of Corollary 2b) because the type-1 manufacturer receives a rent of 11.33, and the type-2 manufac-

turer receives zero rent. We find that the parameters of the optimal assortment are x∗1 = x̄1 = 0.8,

n∗1 = n̄1 = 3, x∗2 = 0.7 < x̄2 = 0.75, and n∗2 = n̄2 = 2; the retailer’s expected profit is 66.67. We

see that the service level of the assortment for the type-2 manufacturer is distorted downward.

AUCTION MECHANISM

When there are multiple manufacturers, it is well known that the optimal procurement mechanism

with multi-dimensional private information is difficult to characterize and implement (see the dis-

cussions by Chen-Ritzo, et al. 2005 and Asker and Cantillon, 2010). Next, we investigate the case

with multiple competing manufacturers and present our findings.

Upper Bound

To facilitate the analysis, we continue to use the two-type model and assume that there are N

competing manufacturers. The type of each manufacturer can be either type-1 with probability δ or

type-2 with probability 1−δ. Without a loss of generality, we assume that T2(n̄2, x̄2) > T1(n̄1, x̄1).

Using the methodology presented by Asker and Cantillon (2010), we formulate the optimization

model to find the upper bound of the optimal profit that the retailer can obtain among all feasible

procurement strategies. We summarize the result as follows:

Theorem 2 When there are N ≥ 1 manufacturers available, the highest expected profit that the

retailer can attain among all feasible procurement strategies is

ZU = δNΛ1(n
∗
1, x
∗
1) + (1− δN)Λ2(n

∗
2, x
∗
2), (16)
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where the virtual surplus Λi(ni, xi) is given by equation (12) and the assortment parameter (n∗i , x
∗
i )

is given by equation (11).

Several observations can be made from Theorem 2. First, when N = 1, Theorem 1 indicates

that the optimal profit of the screening mechanism is Z∗ = δΛ1(n
∗
1, x
∗
1) + (1 − δ)Λ2(n

∗
2, x
∗
2),

which equals ZU . Hence, when there is only one available manufacturer, the mechanism derived

in Theorem 1 is optimal among all feasible procurement strategies (rather than just being optimal

among the screening mechanisms). Second, when N increases, the probability that there exists a

type-2 manufacturer in the pool increases. Thus, the upper bound of the retailer’s optimal profit

increases. Third, if we can design a mechanism that gives the retailer an expected profit equal ZU ,

then we know that this mechanism is indeed optimal.

Supply Contract Auction

Chen (2007) proposed a supply contract auction in which participating manufacturers are asked to

bid for the right to execute a contract menu. If the retailer uses the optimal screening contract menu

as the object of the auction, he shows that this supply contract auction delivers the optimal outcome

to the retailer when the private information is represented by a one-dimensional and continuous

scalar. An advantage of this auction mechanism is that the retailer does not need to know the

number of manufacturers in advance because the object in the auction is independent of the number

of manufacturers. By following the idea of Chen (2007), we present a similar auction mechanism

with the following details. The retailer first announces a contract menu with two contracts. The

contracts on the menu are specified in Theorem 1. All participating manufacturers are asked to

submit a bid for the right to execute the contract menu. We adopt the Vickery auction format under

which each manufacturer bids the true valuation and the winner pays the second highest price.

We first characterize the optimal bidding strategy for a manufacturer. For this supply contract

auction, different manufacturers value the right to execute the contract menu differently, and the

rent associated with contract-i is w∗i = Rji(n
∗
i , x
∗
i ). Thus, we see that the type-i manufacturer
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values this right for w∗i because if it wins the auction, it will execute contract-i and attain a surplus

of w∗i . Next, we derive the expected profit of the auction. Recall that the type-2 manufacturer is

the top type and Corollaries 1 and 2 suggest that w∗2 ≥ w∗1 = 0. Therefore, we need to consider the

following two events: i) When there are at least two type-2 manufacturers in the pool, the auction

price is w∗2. ii) When there is no more than one type-2 manufacturer in the pool, the auction price

is w∗1 = 0. The first event occurs with probability 1 − δN − NδN−1(1 − δ), whereas the second

event occurs with probability δN + NδN−1(1− δ). Hence, the expected revenue from the auction

is
[
1− δN −NδN−1(1− δ)

]
w∗2.

Next, we derive the total expected profit of the supply contract auction. We note that the

chance that the winning manufacturer is type-2 is 1 − δN . Whenever a type-2 manufacturer wins

the auction (if the bids are tied, we assume that the retailer uses a lottery to determine the winner),

the retailer obtains an expected profit of T2(n∗2, x
∗
2) − w∗2. On the other hand, the chance that the

winning manufacturer is type-1 is δN . If this event occurs, the retailer attains an expected profit

of T1(n∗1, x
∗
1) − w∗1 = T1(n

∗
1, x
∗
1) because w∗1 = 0. Thus, the retailer’s total expected profit of this

mechanism is

ZA = δNT1(n
∗
1, x
∗
1) +

(
1− δN

)
[T2(n

∗
2, x
∗
2)− w∗2] +

[
1− δN −NδN−1(1− δ)

]
w∗2

= δNT1(n
∗
1, x
∗
1) +

(
1− δN

)
T2(n

∗
2, x
∗
2)−NδN−1(1− δ)w∗2.

Next, we investigate the performance of this supply contract auction. Using equation (12), we

find that Λ1(n
∗
1, x
∗
1) = T1(n

∗
1, x
∗
1)− 1−δ

δ
w∗2 and Λ2(n

∗
2, x
∗
2) = T2(n

∗
2, x
∗
2). As such, we observe that

equation (16) can be re-written as

ZU = δNT1(n
∗
1, x
∗
1) + (1− δN)T2(n

∗
2, x
∗
2)− δN−1(1− δ)w∗2.

By comparing ZU and ZA, it yields that the difference between two terms is (N − 1) δN−1(1 −

δ)w∗2. Therefore, when w∗2 = 0 (which occurs if the conditions in Corollary 1 or case a) of Corol-

lary 2 are satisfied), we see that the gap is zero and that the supply contract auction is optimal

among all feasible procurement strategies.
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Theorem 3 Suppose that the screening contract menu specified in Theorem 1 gives zero rent to

each manufacturer type. Using this contract menu as the object of the supply contract auction, the

retailer achieves the optimal procurement outcome.

Finally, we consider the remaining case when w∗2 > 0 (which arises if case b) of Corollary

2 occurs). Chen (2007) showed that with a continuous one-dimensional type, his supply contract

auction implements the optimal procurement outcome. The gap between ZU and ZA is positive in

our model when w∗2 > 0. However, we emphasize that this positive gap does not imply that our

proposed auction cannot yield the optimal outcome because ZU is an upper bound, and the discrete

nature of our two-type model causes the positive gap.

CONCLUSION

Currently, many retailers in developed countries directly source from overseas manufacturers. At

the time of signing a procurement contract, the production cost information is often incomplete

because of various industrial characteristics such as manufacturer turnover, uncertainty in raw ma-

terial costs, and a low degree of open book policies. To mitigate the adverse effect of information

asymmetry, we apply the theory of multi-dimensional mechanism design to assortment planning.

Specifically, we develop a procurement-assortment joint optimization model with three industrial

features: direct sourcing, multi-dimensional private information, and seasonal retailing. When

there is only one qualified manufacturer available, we demonstrate that the screening mechanism

can achieve the optimal procurement outcome. When there are multiple competing manufactur-

ers, we show that a supply contact auctioning mechanism can achieve the optimal procurement

outcome under certain conditions.

In the classic one-dimensional model, the retailer cannot maximize the chain profit because of

information asymmetry. In the multi-dimensional model, we find that the retailer can overcome

information asymmetry and maximize the chain profit under certain conditions. For example, a
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manufacturer’s production system could be either efficient (which has a low volume-based cost)

or flexible (which has a low variety-based cost). Then, the retailer can offer two contracts on the

menu: a high-volume-low-variety contract and a low-volume-high-variety contract. Facing these

two contracts, the efficient (flexible) manufacturer that only excels in volume-based (variety-based)

costs finds it disadvantageous to accept the low-volume-high-variety (high-volume-low-variety,

respectively) contract. By optimizing the contract parameters, the retailer can substantially reduce

information rent and increase the profit.

When there exist multiple competing manufacturers, we evaluate the performance of a supply

contract auctioning mechanism. In this auction, the retailer announces a contract menu that deter-

mines the payment to the manufacturer according to the manufacturer’s two-dimensional decision

on variety and quantity. The key of the analysis is to design the “object” for the auction, which is

the contract menu announced by the retailer. We find that the retailer can implement the optimal

procurement outcome by using the optimal screening contract menu as the object in the auction

if the optimal screening contract menu does not pay information rent to any manufacturer type.

This result again underscores the importance for the retailer to leverage the negative correlation in

a multi-dimensional environment.

Although our analysis is based on an assortment-planning setting, we believe that the manage-

rial insights can be generalized to other problem contexts, for example, where a supplier possesses

multi-dimensional private information regarding delivery time and quality. In addition, we note

that our supply contract auctioning mechanism is consistent with the practice of vendor-manager-

inventory (VMI) and an upfront fee (or slotting fee). Therefore, by applying our procurement

strategies to the practice, we see that the winning supplier is the one who is willing to pay the

highest upfront fee to manage the assortment on the retailer’s behalf. Further, we note that the

contract menu used in the auction process could be the same as that for the one-manufacturer case.

In other words, if the retailer knows how to optimally write a procurement contract when only one

manufacturer is available, then the same contract can be used to achieve the optimal procurement
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outcome even when there are multiple manufacturers.

APPENDIX

Proof of Lemma 1

We first prove an intermediate result as follows. Suppose that g(y) is a strictly concave function

and that (e1, e2, ..., en) are positive constants. Consider the following optimization problem:

max
yi

Y =
n∑
i=1

eig(yi) subject to
n∑
i=1

eiyi = Q.

The Lagrangian of the above contained optimization is

L =
n∑
i=1

eig(yi)− β

(
n∑
i=1

eiyi −Q

)
,

where β is the Lagrangian multiplier. Solving the first order condition with respect to yi, we find

that {
y∗1 = y∗2 = ... = y∗n = Q∑n

i=1 ei
= y∗

β∗ = dg(y)
dy
|y=y∗ .

Next, we use the contradiction method to prove Lemma 1. Suppose that the retailer does not

adopt the ESL policy and that the assortment contains n varieties. Let xj (j = 1, 2..., n) be the

inventory scalar associated with variant j. The total order quantity is Q1 =
∑n

j=1 xjqj(n). The

retailer’s sales revenue is

n∑
j=1

rEmin(xjqj(n), Dqj(n)) =
n∑
j=1

qj(n)rEmin(xj, D).

Because qj(n) is given and rEmin(x,D) is concave in x, we can apply the intermediate result.

We conclude that the retailer’s revenue can be improved by setting the inventory scalars xj to be

all equal and keeping the total order quantity unchanged. Therefore, the solution that uses unequal

inventory scalars cannot be optimal.
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Proof of Lemma 2

From equation (2), we observe that for any given n, the optimal inventory level must maximize

the newsvendor profit function πi (x). The relevant first order condition leads to the newsvendor

solution x̄i = F−1
(
r−ci
r

)
. Furthermore, the first derivative with respect to n is B′(n)π̄i − ki,

and the second derivative is B′′(n)πi (x̄i) ≤ 0. Note that the variety-based setup cost is ki(ni −

1). If B′(1)πi (x̄i) < ki, then it is optimal for the retailer to buy only one variety (n̄i = 1). If

B′(1)πi (x̄i) ≥ ki, then there exists a solution n̂i such that B′(n̂i)πi (x̄i) = ki. Therefore, the

optimal breadth of the assortment must be either bn̂ic or dn̂ie.

Proof of Lemma 3

Figure 1 depicts the feasible region and the optimal solution of the LP problem. In the plane where

the vertical axis is the w1-axis and the horizontal axis is the w2-axis, constraint (5) corresponds to

the area above the straight line w1 = w2 +R12 and constraint (6) corresponds to the area below the

straight line w1 = w2 −R21.

INSERT FIGURE 1 ABOVE HERE!

From constraints (5) to (6), we observe that R12 + R21 ≤ 0, hence, the second stage problem

is feasible if and only if R12 + R21 ≤ 0. The optimal solution of the LP is the following (please

refer to Figure 1). i) When both R12 and R21 are non-positive, w1 = w2 = 0 is feasible and

minimizes the total expected rent. ii) When R12 > 0, then R21 ≤ −R12 < 0. The solution to the

LP is w1 = R12 and w2 = 0. Because of symmetry, we find that if R21 > 0, then the optimal

rents are w1 = 0 and w2 = R21. In summary, the second stage problem is feasible if and only if

R12 +R21 ≤ 0 and the optimal rent is wi = max(0, Rij).

Proof of Lemma 4

1) Using the definition of the chain-optimal solutions, we find that

T1(n̄1, x̄1) + T2(n̄2, x̄2) ≥ T1(n̄2, x̄2) + T2(n̄1, x̄1).
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By expanding the terms, we re-write the above inequality as follows:

B(n̄1)rEmin(x̄1, D)− c1x̄1B(n̄1)− k1(n̄1 − 1)+ +B(n̄2)rEmin(x̄2, D)− c2x̄2B(n̄2)− k2(n̄2 − 1)+

≥ B(n̄2)rEmin(x̄2, D)− c1x̄2B(n̄2)− k1(n̄2 − 1)+ +B(n̄1)rEmin(x̄1, D)− c2x̄1B(n̄1)− k2(n̄1 − 1)+.

With some algebra, we obtain

−c1x̄1B(n̄1)−k1(n̄1−1)+−c2x̄2B(n̄2)−k2(n̄2−1)+ ≥ −c1x̄2B(n̄2)−k1(n̄2−1)+−c2x̄1B(n̄1)−k2(n̄1−1)+,

which is equivalent to

0 ≥ c1x̄1B(n̄1)− c2x̄1B(n̄1) + k1(n̄1 − 1)+ − k2(n̄1 − 1)+

+c2x̄2B(n̄2)− c1x̄2B(n̄2) + k2(n̄2 − 1)+ − k1(n̄2 − 1)+

= R̄21 + R̄12.

2) Using the ranking that Ti(n̄i, x̄i) ≥ Ti(n̄j, x̄j) and the assumption that R̄ij > 0, we find

Ti(n̄i, x̄i) > Ti(n̄j, x̄j)− R̄ij

= B(n̄j)rEmin(x̄j, D)− cix̄jB(n̄j)− ki(n̄j − 1)+ − (cj − ci)x̄jB(n̄j)− (kj − ki)(n̄j − 1)+

= B(n̄j)rEmin(x̄j, D)− cjx̄jB(n̄j)− kj(n̄j − 1)+

= Tj(n̄j, x̄j).

Proof of Theorem 2

With risk-neutrality, the manufacturer’s surplus depends on its expected payment and expected

winning probability. Let yi be the probability of winning the contract-i conditional on it being type

i, and let Pi be the expected payment the manufacturer receives. Additionally, let wi denote type-i

manufacturer’s equilibrium expected surplus. In other words,wi = Pi−yi (cixiB(ni) + ki(ni − 1)+).

The retailer’s expected profit from a feasible procurement mechanism is

Z = N
∑
i∈{1,2}

δi (yiTi(ni, xi)− wi) .
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The retailer seeks to maximize the above expression by choosing (ni, xi, wi, yi). Here, (ni, xi)

determine the assortment characteristics, wi determines the rent, and yi determines how the mech-

anism operates. The IC constraint is

wi ≥ wj + yjRij(nj, xj), for i 6= j and {i, j} ∈ {1, 2}.

Note that the RHS of the above IC constraint is different from that in equation (4). When there

are N > 1 manufacturers available, yj ≤ 1; whereas in the screening model, there is only one

manufacturer, and yj = 1 (i.e., no competition makes the winning probability 1). The IR constraint

is wi ≥ 0, and the feasibility constraints on the assortment decision are ni ∈ N and 0 ≤ xi ≤ d̄.

There is another set of feasibility constraints on the winning probability yi. We need to ensure

that the probability of awarding the contract to a subset of the types is always less than or equal to

the probability of such types in the population:

N
∑

s∈{1,2}

δiyi ≤ 1−

1−
∑

s∈{1,2}

δi

N

for all subsets s in {1, 2} .

Finally, the total probability must be 1, which implies

N
∑
i∈{1,2}

δiyi = 1.

We first optimize the rent wi when all the other parameters are given. Again, the insights of

Lemma 3 carry over. The optimal rent is wi = yj max (0, Rij). Substituting the optimal rent into

the retailer’s profit function, we find that

Z = N [δ1 (y1T1(n1, x1)− y2 max (0, R12 (n2, x2))) + δ2 (y2T2(n2, x2)− y1 max (0, R21(n1, x1)))]

= Nδ1y1

[
T1(n1, x1)−

δ2
δ1

max (0, R21(n1, x1))

]
+Nδ2y2

[
T2(n2, x2)−

δ1
δ2

max (0, R12(n2, x2))

]
=

∑
i={1,2}

NδiyiΛi(ni, xi),

where Λi(ni, xi) is the virtual surplus defined in equation (12). We see that the assortment param-

eters defined in equation (11) are optimal. Because the type-2 manufacturer generates a higher
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chain profit, the mechanism should select the type-2 manufacturer whenever there is a type-2 man-

ufacturer available. Note that the probability that there is a type-2 manufacturer amongN available

manufacturers is 1− δN . Hence, the optimal winning probability y∗2 must satisfy Nδ2y∗2 = 1− δN ,

which also implies that Nδ1y∗1 = δN because the total probability must be 1. We observe that the

retailer’s optimal profit is

ZU = δNΛ1(n
∗
1, x
∗
1) + (1− δN)Λ2(n

∗
2, x
∗
2),

where the assortment parameters (n∗i , x
∗
i ) are given by equation (11).

It is noteworthy that knowing the optimal parameters (n∗i , x
∗
i , w

∗
i , y
∗
i ) is still insufficient to

characterize the mechanism that is optimal among all feasible strategies. The term Pi used in this

formulation includes the payment for executing contract-i, subtracting any upfront fee that may

be required for winning the contract. In the special case that N = 1, there is no upfront fee,

and Pi is the contract payment for executing contract-i. When N > 1, the manufacturer may

be asked to pay an upfront fee in the selection process. Therefore, knowing the value of (Pi, yi)

alone, we cannot fully describe how the optimal mechanism actually operates. Readers can refer

to Asker and Cantillon (2010) and the references therein for more discussions about the difficulties

in implementing the optimal mechanism.

Alternative Demand Model

The first possible direction to extend our research is to consider the demand model used in van

Ryzin and Mahajan (1999). Specifically, we can assume that Dj , the demand for variant j, is a

normal random variable with mean λqj(n) and variance λqj(n). The choice probability is qj(n) =

v/(nv + 1), which follows the MNL model and v is the attractiveness of identical variant j. The
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chain profit function becomes

Ti(ni, xi) = −ki(ni − 1)+ +

ni∑
k=1

[rEmin (xi, Dj)− cixi]

= −ki(ni − 1)+ − nicixi + nir

[
λv

nv + 1
+

√
λv

nv + 1
(−f(z) + z(1− F (z)))

]
,

where z = xi−λvr/(nvr+1)√
λvr/(nvr+1)

is the z-score, f(z) is the PDF and F (z) is the CDF of the standard

normal distribution. The adoption of this alternative demand model does not change the structure

of the constraints because the IC constraint is still

wi ≥ wj + (cj − ci)xjnj + (kj − ki)(nj − 1)+ = wj + R̃ij(nj, xj).

Similar to Lemma 3, we find that the optimal rent is max
(

0, R̃ij(nj, xj)
)

and hence, the virtual

surplus is

Λi(ni, xi) = Ti(ni, xi)−
δj
δi

max
(

0, R̃ij(nj, xj)
)
.

The retailer’s profit is δ1Λ1(n1, x1) + δ2Λ2(n2, x2). By optimizing the virtual surplus, we find the

optimal mechanism.

Endogenous Price

It is possible to consider that the price of the assortment is endogenous. Note that the contract on

the menu specifies the parameters (Pi, Qi, ni) but does not reveal the assortment price. We assume

that a typical consumer attains a utility of Uj = u−r+εj by consuming one unit of variant j, where

u is the maximum price that the consumer is willing to pay for the product, r is the retail price of the

assortment (where r ≤ u), and εj is an identically and independently distributed Gumbel random

variable with mean 0 and the shape factor normalized to 1. The no-purchase option gives a typical

consumer zero utility. The attractiveness of variant j equals vj = exp(u− r) and the attractiveness

of the no-purchase option equals v0 = exp(0) = 1. Hence, the typical consumer chooses variant j

with probability

qj(n, r) =
exp(u− r)

n exp(u− r) + 1
.
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Using the multiplicative demand model, the price-sensitive demand for variant j is Dj(r) =

qj(n, r)D. The probability that a consumer makes an attempt to buy from the assortment with

n variants is B(n, r) = n exp(u−r)
n exp(u−r)+1

. Under the ESL policy, we can write the retailer’s objective

function as the following:

max
ri,wi,ni,xi

Z =

{
δ1 [B(n1, r1) (r1Emin(x1, D)− c1x1)− k1(n1 − 1)+ − w1]
+δ2 [B(n2, r2) (r2Emin(x2, D)− c2x2)− k2(n2 − 1)+ − w2]

}
.

We define the virtual surplus as

Λi(ni, xi) = πi(ri, ni, xi)− ki(ni − 1)+ − δj
δi

max (0, Rij) ,

where the newsvendor profit function πi(r, n, x) is given by

πi(r, n, x) =
n exp(u− r)

n exp(u− r) + 1
[rEmin(x,D)− cix] . (17)

We find that the retailer’s profit is δ1Λ1(n1, x1) + δ2Λ2(n2, x2), which implies that by optimizing

the virtual surplus, we can find the optimal mechanism.

To optimize the virtual surplus, we need to specify the condition such that πi(r, n, x) is jointly

quasi-concave or jointly concave for any given n. Recently, Kocabıyıkŏglu and Popescu (2011)

made important contributions toward identifying the condition that guarantees that πi(r, n, x) is

jointly quasi-concave or jointly concave. They proposed the Lost Sales Rate (LSR) elasticity,

which is given by

ε(r, x) =
rFr(r, x)

1− F (r, x)
,

where F (r, x) = Pr(D(r) ≤ x) is the CDF of the price-dependent demand and Fr(r, x) is the

partial derivative with respect to r. If the LSR elasticity exceeds 0.5 (globally, respectively, path-

wise), then πi(r, n, x) is jointly concave. If the LSR elasticity is increasing along with inventory

or price, then πi(r, n, x) is jointly quasi-concave.

Lemma 5 The newsvendor profit function πi(r, n, x) defined in equation (17) is jointly quasi-

concave in (r, x) for any given n ≥ 1 if the random noise D has an increasing failure rate.
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The quasi-concavity allows us to optimize the virtual surplus by using the first-order condition.

Again, the three cases described in Corollaries 1 to 2 remain qualitatively unchanged. However,

the retailer’s profit increases because of two reasons. First, the retailer can now adjust the price

optimally when matching with different manufacturer types. Second, the retailer distorts less sig-

nificantly in the contract parameters.

Proof of Lemma 5

We apply Corollary 2 of Kocabiyikoğlu and Popescu (2011) to prove that the newsvendor profit

function πi(r, n, x) defined in equation (17) is jointly quasi-concave for any given n ≥ 1. Note

that the price-dependent stochastic demand is D(r) = qj(n, r)D = D exp(u−r)
1+n exp(u−r) . We need to first

verify that rd(r) is concave in r, which is a pre-requisite of Kocabiyikoğlu and Popescu (2011).

Note that rd(r) = rλ exp(u−r)
1+n exp(u−r) . The second derivative with respect to r is

d2

dr2

(
rλ exp(u− r)

1 + n exp(u− r)

)
=
λ (reu−r − 2eu−r − 2ne2u−2r − nre2u−2r)

3neu−r + 3n2e2u−2r + n3e3u−3r + 1
.

Because n ≥ 1 and r ≤ u, the numerator is negative (i.e., reu−r − nre2u−2r < 0 and −2eu−r −

2ne2u−2r < 0).

The second step is to verify whether r∂qj(n,r)

∂r
is decreasing in r for any given n ≥ 1. With some

algebra, we find

r∂qj(n, r)

∂r
= r

∂

∂r

(
exp(u− r)

n exp(u− r) + 1

)
=

−reu−r

2neu−r + n2e2u−2r + 1

and

∂

∂r

(
−reu−r

2neu−r + n2e2u−2r + 1

)
=
−eu−r [1 + 2neu−r + n2e2u−2r + p (n2e2u−2r − 1)]

4neu−r + 6n2e2u−2r + n4e4u−4r + 4n3eu−re2u−2r + 1
.

Because n2e2u−2r ≥ 1 for any r ≤ u and n ≥ 1, we observe that the denominator is positive

and the numerator is negative. Therefore, r∂qj(n,r)

∂r
is decreasing in r for any given n ≥ 1. If the

random noise D has an increasing failure rate, then all the conditions stated in Kocabiyikoğlu and

Popescu (2011) are satisfied; and πi(r, n, x) is jointly quasi-concave.
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Figure 1: Feasible region and optimal rents
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