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ABSTRACT

We have developed a measure of the value of the customer’s waiting time that is
applicable to all queuing systems. Since the birth of the modern queuing theory over
100 years ago, this measure is the first addition to the list of the measures of performance
of general queues that includes the servers’ utilization factor, the expected queue length,
the expected waiting time, and some variations of the last two. The curves for trade-offs
between the servers’ utilization factor and the value of the customer’s time can be used
to supplement or replace the curves for trade-offs between the servers’ utilization factor
and the customer’s expected queue length (or expected waiting time) that have been a
fundamental part of the modern queuing theory. The decisions made with the value of
the customer’s waiting time will mirror the decision maker’s goals more closely than the
decisions made with the customer’s expected queue length or expected waiting time that
are surrogates for the value of the customer’s waiting time. Although our definition of
the value of the customer’s time is deceptively simple, its implications can be significant
and far reaching. It could change the way we pursue research in the queuing theory, the
way we teach the queuing theory, and the way we design queuing systems in practice.
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INTRODUCTION

The Role and Importance of Waiting Time

The role and importance of waiting time have been widely discussed in the eco-
nomics, marketing, and operations literature. Most service operations, including
banks, call centers, fast-food drive-through restaurants, health care facilities, and
retail stores, compete based on waiting time, price, and quality attributes. Hopp
(2008, p. 79) emphasizes that “waiting remains a major source of inefficiency in
many public- and private-sector systems.”

Tong and Rajagopalan (2014, p. 689) also emphasized the importance of
service time: “In many services, for example, website or landscape design, the value
or quality derived by a customer depends upon the service time, and this valuation
differs across customers. Customers procure the service based on the expected
value to be delivered, prices charged, and the timeliness of service.” Service time
and the resulting customer patience play a critical role in the design of queuing
systems. Wang, Lan, and Jiang (2016) “explore the impact of customer impatience
on the performance of a production service system that consists of one production
inventory subsystem and one service subsystem.” Zacharias and Pinedo (2017,
p. 639) analyzed a discrete multiserver model for scheduling customer arrivals
under no-shows where they “assign customers to time slots so that the service
system utilizes its resources efficiently and customers experience short waiting
times.”

Researchers have extensively documented that for waiting time in queues,
time is indeed money. Furthermore, although money can be transferred or ex-
changed, time saved and time lost cannot (Leclerc, Schmitt, & Dubé, 1995, p.
119). Becker (1965, p. 494) emphasized the value of time observing that “the full
costs of” obtaining services “would equals the sum of market prices and the fore-
gone value of the time used up.” The Food Marketing Institute (1985, 1986), in its
annual updates, reported that the consumers were willing to pay a higher price if
they had to wait for less time in checkout lines. Waiting time has the same effect as
price on consumer choices and on market share (Deacon & Sonstelie, 1985; Siferd,
Benton, & Ritzman, 1992; Allon, Federgruen, & Pierson, 2011). A maxim in the
fast-food drive-through industry is that for “every seven-second reduction in total
service time, sales will increase by 1% over time” (Hughlett, 2008). Allon et al.
(2011, p. 503) empirically validated that this maxim was “on average” correct.

The value of the customer’s waiting time depends on the context of waiting
and on the degree to which waiting is pleasurable (Kahneman & Tversky, 1984;
Larson, 1987; Maister, 2005). For example, Allon et al. (2011, p. 501) found that
the value for the customer of waiting time in the fast-food drive-through industry
was at least three times the value of time spent driving to the restaurant.

Long delays can impose a cost on the service provider because its customers
can decide not to seek services from the service provider in the future, or even
if they do seek the services, they can renege the queue or balk. Because these
decisions are driven by the customers’ perception of the cost of their time, this cost
is an important parameter in designing queueing systems.
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The Current State of the Art in Analyses of Waiting Lines and Its
Limitations

Most analyses and evaluations of queuing systems include computations of the
utilization factor (expected fraction of time the servers are busy), the expected
queue length, the expected waiting time, and some variations of the last two. These
measures are used so widely that they are the basis of at least one publicly available
online calculator for M/M/s queueing models.i

To determine the design parameters of a queuing system, decision-makers
compare available alternatives based on these measures and make a trade-off be-
tween the servers’ utilization factor and the expected queue length (or the expected
waiting time). Although they generally know the cost of the servers’ utilization
factor, they treat expected queue length and expected waiting time as surrogates for
the cost of the customer’s waiting time which varies from customer to customer.
Another approach for determining the design parameters of a queuing system is
to minimize the sum of the costs of the servers’ time and the estimated cost of
the customers’ time (Gross & Harris, 1998, p. 9; Hillier & Lieberman, 2005, pp.
813–818). Although the cost of the servers’ time is easy to estimate, the cost of the
customer’s waiting time is not easy to estimate partly because different customers
have different costs of their waiting times.

Organization of This Article

In “The Value of the Customer’s Time” section, we define the value of the customer
waiting time for general queues. In “The M/M/s Models” section, we analyze the
value of the customer waiting time for the M/M/s models. In “Computations for the
M/M/s Models” section, we provide computations for the M/M/s models and the
curves for trade-offs between the servers’ utilization and the value of the customer
waiting time for nine different values of the number of servers. We also discuss their
role in managerial decisions. In “A Numerical Example” section 5, we describe a
numerical example. In “The Value of the Customer’s Time and Optimization of
Queues” section, we discuss optimization of queues and the relationship between
the optimized values and the value of the customer waiting time. In the concluding
section, we discuss implications of our work to practice research, and teaching.

THE VALUE OF THE CUSTOMER’S TIME

Notations

s = Number of servers.
Lqs = Average length of the queue of waiting customers. From the Little’s

Law, this length is equal to the product of customers’ arrival rate multiplied by
their average waiting time, and thus it also represents the mean waiting time for
all customers per unit of time.

ρ = Server’s utilization factor, 0 < ρ < 1.

Ss = (1 − ρ)s = Mean server idle time for all servers per unit of time.
If we compared two queues with unequal waiting times in the same system

or two different systems, the one with the longer waiting time would imply that
i http://www.free-onlinecalculator.com/
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the system has assigned a lower value of the customer’s time to it than to the other
queue. Thus, every queue has a value of the customer’s waiting time. This is the
underlying rationale for our definition. We define α, the value of the customer’s
waiting time, as the ratio of the marginal changes in Ss and the marginal changes
in Lqs where Ss represents the mean server idle time for all servers per unit of time
and Lqs represents the average length of the queue of waiting customers, and it is
equal to the mean waiting time for all customers per unit of time:

α = − dSs

dLqs

= −
dSs

dρ

dLqs

dρ

.

The negative sign in the expression shows that an increase (decrease) in the
denominator results in a decrease (increase) in the numerator. Substituting the
value of Ss = (1 − ρ) s in the equation above, we get

α = −
dSs

dρ

dLqs

dρ

= −
d[(1−ρ)s]

dρ

dLqs

dρ

= s

[
dLqs

dρ

]−1

. (1)

Equation (1) will hold if Lqs is differentiable with respect to ρ. Theoretically,
the empirical variant of (1) given below will also hold if the function for Lqs was
empirical and not differentiable.

α = s

[
�Lqs

�ρ

]−1

. (2)

The definition in (1) holds for all possible designs of any queuing system. In
both (1) and (2), α gives the value of the customer’s waiting time as a multiple of
the cost of the server’s idle time. A numerical value equal to α for the value of the
customer’s waiting time in a queuing system means that the system is designed on
the assumption that the value of the customer’s waiting time is α times the cost of
the server’s idle time.

The value of the customer’s waiting time and the cost of the customer’s
waiting time are two different concepts. The former is an attribute or a characteristic
(or a measure of performance) of a queuing system that is implicit in its design,
and the latter is the opportunity cost of each customer’s time, regardless of who
estimates it. The value of the customer’s waiting time for a queue will be the same
for each customer, but the cost of the customer’s waiting time will vary from the
customer to customer. If there is a change in the number of servers or in the service
rate per server, the value of the customer’s waiting time assigned by the system
will change in the same direction, but the cost of each customer’s waiting time
will remain unchanged. Conversely, if we replace a customer population that has
a low average cost of waiting time with a customer population that has a high
average cost of waiting time, the value of the customer’s waiting time assigned by
the system will remain unchanged.

One can use (1) to compute the value of the customer’s waiting time for a
range of options for the design of a queue for further evaluation, and thus one can
generate curves for trade-offs between the value of the customer’s time and the
utilization factor ρ for a set of values of s, the number of servers. These curves will
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be analogous to the curves for trade-offs between the servers’ utilization factor and
the customer’s expected queue length (or expected waiting time). The decisions
made with the value of the customer’s time should mirror the decision maker’s
goals more closely than the decisions made with the surrogates of the value of the
customer’s time: the customer’s expected queue length or their expected waiting
time.

Robinson and Chen (2011) developed a method for estimating the value of
the customer’s time for an optimal transient the GI/G/m queue in appointment
scheduling. Their model is a special case of ours, and its results can be obtained
from our model. Their other contribution is in finding the upper and the lower
bounds on the value of α for the GI/G/m queues because several parameters in
the expression for α in the GI/G/m queues are unknown.

THE M/M/s MODELS

We derive an expression for the value of customer’s waiting time for the M/M/s
models that are the most elementary Markovian birth–death queuing models widely
deployed in practice. The arrival process is Poisson, and each of the s servers is
independent, and they have identical exponential service-time distributions. These
models have been widely discussed in the literature (Sobel, 1969; Purdue, 1974;
Levhari & Luski, 1978; Pegden & Rosenshine, 1987; L’Ecuyer, Giroux, & Glynn,
1994; Hopp, 2008).

Hillier and Lieberman (2005, p. 788) provide the following expression for
Lqs for the M/M/s queues:

Lqs =
(

λ
μ

)s

ρ

s!(1 − ρ)2

{[∑s−1
n=0

(
λ
μ

)n

n!

]
+

(
λ
μ

)s

s!
1

1−(λ/sμ)

} .

Substituting (λ/μ) = sρ,

Lqs = (sρ)sρ

s!(1−ρ)2
{[∑s−1

n=0
(sρ)n

n!

]
+ (sρ)s

s!
1

1−ρ

} or

Lqs = (sρ)sρ

s!(1−ρ)2
[∑s−1

n=0
(sρ)n

n!

]
+(1−ρ)(sρ)s

.
(3)

The Value of the Customer’s Waiting Time for the M/M/s Queues

Theorem 1: ‘M/M/s queues,

α = s
{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2

(sρ)s
{

(1−ρ)s![s+1−(2s−1)ρ+sρ2]
[∑s−1

n=0
(sρ)n

n!

]
+(sρ)s[s+1−2sρ+sρ2]

}
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Proof

Differentiating (3),

dLqs

dρ
= [ss(sρ)s−1ρ+(sρ)s]

{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}
{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2 −

(sρ)sρ
{
s!2(ρ−1)

[∑s−1
n = 0

(sρ)n

n!

]
+s!(1−ρ)2s

[∑s−2
n = 0

(sρ)n

n!

]
+ss(sρ)s−1(1−ρ)−(sρ)s

}
{
s!(1−ρ)2

[∑s−1
n = 0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2 .

(4)

We simplify only the numerators in the two parts of (4). We first simplify the
first square bracket in the first part to get

dLqs

dρ
= (s+1)(sρ)s

{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}
{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2 −

(sρ)sρ
{
s!2(ρ−1)

[∑s−1
n = 0

(sρ)n

n!

]
+s!(1−ρ)2s

[∑s−2
n = 0

(sρ)n

n!

]
+s2(sρ)s−1(1−ρ)−(sρ)s

}
{
s!(1−ρ)2

[∑s−1
n = 0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2 .

We combine the two parts by taking out the common denominator and (sρ)s

and then combining similar expressions in the remainders of the two parts:

dLqs

dρ
= (sρ)s{

s!(1 − ρ)2
[∑s−1

n=0
(sρ)n

n!

]
+ (1 − ρ) (sρ)s

}2 ×

⎧⎪⎨
⎪⎩

[
(s+1) s!(1−ρ)2+s!2ρ (1−ρ)

] [
s−1∑

n = 0

(sρ)n

n!

]
− s!(1−ρ)2sρ

[
s−2∑

n = 0

(sρ)n

n!

]
+

(s + 1) (1 − ρ) (sρ)s − ρs2(sρ)s−1 (1 − ρ) + ρ(sρ)s

⎫⎪⎬
⎪⎭ .

We combine and simplify the last three expressions in the numerator:

dLqs

dρ
= (sρ)s{

s!(1 − ρ)2
[∑s−1

n = 0
(sρ)n

n!

]
+ (1 − ρ) (sρ)s

}2 ×

{
(1−ρ) s! [(s+1) (1−ρ)+2ρ]

[
s−1∑

n = 0

(sρ)n

n!

]
− s!(1−ρ)2sρ

[
s−2∑

n = 0

(sρ)n

n!

]
+ (sρ)s

}
.

We add and subtract s!(1 − ρ)2sρ[ (sρ)s−1

(s−1)! ] to the expression after the multi-
plication sign:

dLqs

dρ
= (sρ)s{

s!(1 − ρ)2
[∑s−1

n=0
(sρ)n

n!

]
+ (1 − ρ) (sρ)s

}2 ×

⎧⎪⎪⎨
⎪⎪⎩

(1 − ρ) s! [(s + 1) (1 − ρ) + 2ρ]

[
s−1∑

n = 0

(s)n

n!

]
− s!(1 − ρ)2sρ

[
s−2∑

n = 0

(sρ)n

n!

]
−

s!(1 − ρ)2sρ
[

(sρ)s−1

(s−1)!

]
+ s!(1 − ρ)2sρ

[
(sρ)s−1

(s−1)!

]
+ (sρ)s

⎫⎪⎪⎬
⎪⎪⎭ .
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We can combine the expression with the summation from n = 0 to n =
(s − 2) with the expression that follows it so that the resulting expression will have
summation from n = 0 to n = (s − 1):

dLqs

dρ
= (sρ)s{

s!(1 − ρ)2
[∑s−1

n=0
(sρ)n

n!

]
+ (1 − ρ) (sρ)s

}2 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − ρ) s! [(s + 1) (1 − ρ) + 2ρ]

[
s−1∑

n = 0

(sρ)n

n!

]
−

s!(1 − ρ)2sρ

[
s−1∑

n = 0

(sρ)n

n!

]
+ s!(1 − ρ)2sρ

[
(sρ)s−1

(s−1)!

]
+ (sρ)s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We can combine the first two expressions in the curly bracket, and then
combine the remaining two expressions in the curly bracket:

dLqs

dρ
= (sρ)s

{
(1−ρ)s![s+1−(2s−1)ρ+sρ2]

[∑s−1
n=0

(sρ)n

n!

]
+(sρ)s[s+1−2sρ+sρ2]

}
{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2 . (5)

From (1),

α = s

[
dLqs

dρ

]−1

Substituting the value of dLqs/dρ from (5) into the equation above,

α = s
{
s!(1−ρ)2

[∑s−1
n=0

(sρ)n

n!

]
+(1−ρ)(sρ)s

}2

(sρ)s
{

(1−ρ)s![s+1−(2s−1)ρ+sρ2]
[∑s−1

n=0
(sρ)n

n!

]
+(sρ)s[s+1−2sρ+sρ2]

} . QED.

COMPUTATIONS FOR THE M/M/s MODELS

Table 1 contains computations for the relationship between the utilization factor,
ρ, and the value of the customer’s time, α, for 13 different values of s.

Figure 1 is a plot of the computations in Table 1 for nine values of
s = 1, 2, 3, 5, 7, 10, 15, 20, and 25, and it shows how α changes with ρ

for various values of s. As in the case of trade-offs between the server’s utiliza-
tion and the average queue length (or average waiting time), both Table 1 and
Figure 1 show the economies of scale with the increasing number of servers. With
these curves for trade-offs between ρ, the utilization factor, and α, the value of
the customer’s waiting time as a multiple of the cost of the server’s idle time, the
decision maker can easily converge on a desirable value of α.

Benchmark Utilization Factor and Iso-Customer–Value Curves

We designate α = 1 the benchmark for the values of α, denote by ρsb the value
of ρ for which α = 1, and call this value of ρ the benchmark utilization factor.
Table 2 contains the values of ρsb for 13 different values of s when α = 1, that is,
when the value of the customer’s time is equal to the value of the server’s time. For
α = 1, each value of ρsb in Table 2 represents utilization for specified values of s.
As one would expect, with the economies of scale from the increasing number of
servers, the utilization of servers increases asymptotically toward 1 as the number
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Figure 1: The relationship between the utilization factor, ρ, and the value of the
customer’s time, α for various values of s.

Table 2: The relationship between the number of servers s and the benchmark
utilization factor ρsb for α = 1.

s 1 2 3 4 5 6 7

ρ sb 0.2929 0.4682 0.5552 0.6095 0.6476 0.6761 0.6988
s 8 9 10 15 20 25
ρ sb 0.7171 0.7326 0.7455 0.7908 0.8178 0.8361

of servers approaches �. Figure 2 is a plot of Table 2 where we have connected
the various values of ρsb. We call this piecewise linear function the iso-customer–
value curve for α = 1. One can generate a set of iso-customer–value curves for
other values of α. The higher the value of α, the lower will be the location of the
curve and vice versa, but all curves will increase asymptotically toward one as the
number of servers approaches �.

The Value of the Customer’s Waiting Time for the M/M/1 Queue

The M/M/1 queue is the “classical Poisson-input, exponential-service, single-server
queue” (Gross & Harris, 1998, p. 53). It is widely deployed in practice, and a visible
example is the waiting line at fast-food drive-through restaurants.

The average number of customers waiting in the queue:

Lq1 = ρ2

1 − ρ
. (6)

Thus, dLq1

dρ
= ρ(2−ρ)

(1−ρ)2 .
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Figure 2: An iso-customer–value curve for α = 1: The relationship be-
tween the number of servers s and the benchmark utilization factor ρsb for
α = 1.

This result gives

α = (s = 1)

[
dLq1

dρ

]−1

= (1 − ρ)2

ρ (2 − ρ)
. (7)

This expression is as simple as the expressions for the expected queue length
or the expected waiting time in an M/M/1 queue.

Managerial Decisions

Currently, the decision-makers compare available alternatives for the designs of a
queue and make a trade-off between the servers’ utilization factor and the expected
queue length (or the expected waiting time), which they treat as surrogates for the
value of the customer’s time. The literature contains both sets of trade-off curves.
The trade-off curves for the value of the customer’s waiting time are the new set of
curves which the managers can use in addition to or in place of the trade-off curves
for the expected queue length or the expected waiting time. The decisions made
with the value of the customer’s waiting time will mirror the decision maker’s goals
more closely than the decisions made with the customer’s expected queue length
or expected waiting time, which are surrogates for the value of the customer’s
waiting time.
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Table 3: Two scenarios for the County Hospital.

Measures of Performance One Doctor Two Doctors

ρ, the utilization factor 2/3 1/3
Lq , the expected queue length 4/3 1/12
L, the expected number of patients in the queuing

system
2 3/4

Wq , the expected waiting time in the queue for each
patient

40 minutes 2.5 minutes

W , the expected waiting time in the system for each
patient

60 minutes 22.5 minutes

α, the value per unit of patients’ waiting time as a
multiple of the cost per unit of doctors’ idle time

0.125 2.4615

A NUMERICAL EXAMPLE

The Value of the Patient’s Time in an M/M/1 Queue and an M/M/2 Queue

Hillier and Lieberman (2005, pp. 766 and 790–791) provide an example of an
emergency room of the “County Hospital” where emergency cases arrive at random
and thus follow a Poisson input process, leading to an exponential distribution for
interarrival times. The time a doctor spends treating emergency patients can be
approximated by an exponential distribution. Currently, at any hour, the emergency
room has one doctor, but, because of an increase in emergency cases, the hospital
is exploring the possibility of increasing to two doctors at any hour. The average
emergency-case arrival rate is two per hour, that is, λ = 2, and the average service
rate is three patients per hour, that is, μ = 3. Table 3 contains various measures
of performance, including the value per unit of patients’ waiting time as a multiple
of the cost per unit of doctors’ idle time in the two scenarios.

Insights from the numerical example: If one were to decide without con-
sidering the value of the customer time, one would use either Wq , the expected
waiting time in the queue for each patient for a trade-off between Wq and utilization
or Lq , the expected queue length for a trade-off between Lq and utilization. The
values of Wq and Lq for one doctor are 16 times those for two doctors. However,
if one were to use the value per unit of the patient’s waiting time as a multiple of
the cost per unit of a doctor’s idle time, with the addition of another doctor, this
value increases 19.7 times, from 0.125 to 2.4615. We focus on three things. First,
although 16 and 19.7 differ by about 20%, their relative numerical values confirm
that both are sensitive to the waiting time. Second, whereas the waiting time is
only a surrogate for the dollar value of the customer’s time, the value per unit of
the patient’s waiting time has real dollar value because it is a multiple of the cost
per unit of a doctor’s idle time that has a dollar value. Third, whereas the decision
in this binary choice is likely to be the same under either criterion, this is not likely
to be so when the range of choice is much wider and a decision with real money
value would obviously meet the goals of the organization more effectively than a
decision based on a surrogate criterion.
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THE VALUE OF THE CUSTOMER’S TIME AND OPTIMIZATION
OF QUEUES

Singhal, Singhal, and Kumar (2018) minimize the sum of the servers’ idle time
costs and the customers’ waiting costs. They show that the value of the customer’s
waiting time, α, is equal to the ratio α∗ = Cw /Ci , that is, the ratio of the cost
of customer’s waiting time and the cost of each server’s idle time when the sum
of the costs of the servers’ time and the estimated cost of the customers’ time
is minimized. However, cost minimization cannot be used for external customers
because the customers’ waiting costs vary from customer to customer and a service
provider does not know what these costs are. In any case, a service provider would
not want to minimize the sum of the two costs because the goal of a service provider
is to minimize its costs or maximize its profits while taking into consideration the
customers’ demand function regarding their costs of waiting. Furthermore, the
system cost function for the sum of the two costs is not always convex or even
quasi-convex (unimodal).

However, one could minimize the sum of the two costs when the firm has
internal customers and the cost function is convex or quasi-convex. Singhal et al.
(2018) describe an application of minimization of the system costs for a machine
shop that has internal customers.

CONCLUSIONS

A New Fundamental Measure of Performance

Since the birth of the modern queuing theory over 100 years ago, our measure
of the value of the customer’s waiting time is the first addition to the list of the
measures of performance of general queues that includes the servers’ utilization
factor, the expected queue length, the expected waiting time, and some variations
of the last two. Although the measures like the utilization of the server’s time are
related to the server and the expected waiting time and the expected queue length
are related the customer, the value of the customer’s waiting time as a multiple of
the cost of the server’s idle time is related to both.

A New Set of Trade-off Curves for Choosing Parameters of a Queuing
System

The curves for trade-offs between the servers’ utilization factor and the customer’s
expected queue length (or the expected waiting time) for determining the number
of servers and for making investments in enhancing the service rate of each server
have been a fundamental part of the modern queuing theory since its development
over a century ago. Our curves for trade-offs between the value of the customer’s
waiting time and the utilization factor can be used to supplement or replace those
curves. The decisions made with the value of the customer’s waiting time will
mirror the decision maker’s goals more closely than the decisions made with the
customer’s expected queue length or expected waiting time, which are surrogates
for the value of the customer’s waiting time.
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Research Opportunities

Researchers have an opportunity to explore the possibility of deriving expressions
for the value of the customer’s waiting time when they compute the customer’s
expected queue length (or expected waiting time) for any queuing system. As a
first step, they have an opportunity to generate the curves for trade-offs between
the value of the customer’s time and the utilization factor ρ for a set of values of s,
the number of servers for some of the basic queuing systems, similar to what we
have done for the M/M/s queues.

Although our definition of the value of the customer’s time is deceptively
simple, its implications can be significant and far reaching. It could change the way
we pursue research in the queuing theory, the way we teach the queuing theory,
and the way we design queuing systems in practice.
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