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Abstract:

This paper provides a holistic study of how stock prices vary in their response to

financial disclosures across different topics. Thereby, we specifically shed light

into the extensive amount of filings for which no a priori categorization of their

content exists. For this purpose, we utilize an approach from data mining – namely,

latent Dirichlet allocation – as a means of topic modeling. This technique facilitates

our task of automatically categorizing, ex ante, the content of more than 70,000

regulatory 8-K filings from U.S. companies. We then evaluate the subsequent

stock market reaction. Our empirical evidence suggests a considerable discrepancy

among various types of news stories in terms of their relevance and impact on

financial markets. For instance, we find a statistically significant abnormal return

in response to earnings results and credit rating, but also for disclosures regarding

business strategy, the health sector, as well as mergers and acquisitions. Our results

yield findings that benefit managers, investors and policy-makers by indicating how
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regulatory filings should be structured and the topics most likely to precede changes

in stock valuations.

Keywords: Data mining, News reception, Topic modeling, Text mining, Managerial

implications

1 Introduction

The efficient market hypothesis stipulates that investors consider all available in-

formation in their decision-making process and then adapt their trading accord-

ingly (Fama et al., 1969; Fama, 1970). In this context, regulations usually require

companies and managerial bodies to publish and distribute novel information via

standardized channels in order to guarantee that each piece of information is equally

available to all market participants. For instance, listed companies in the United

States are legally obligated to release disclosures in the form of so-called 8-K filings

via the Securities and Exchange Commission (SEC).

Financial markets incorporate information in both quantitative and qualitative forms

such as the semantic content of financial disclosures (Loughran and McDonald,

2016). This written content represents a rich source of information and thus adds to

the explanation of stock price dynamics as a response to financial events or account-

ing information. Examples of market-relevant information are addressed in studies

that investigate how financial markets respond to the language in newspaper articles
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(Tetlock, 2007; Tetlock et al., 2008), earnings reports (Loughran and McDonald,

2011) or other types of regulatory disclosures (Hanley and Hoberg, 2012).

Disclosures, such as Form 8-K filings in the U. S., are mandated to adhere to a

predefined structure. The underlying objective is to increase the ease with which the

filings can be processed by investors. To facilitate this goal, the regulator defines

specific sections in which information of a certain type has to be filed.1 Examples

belonging to specific firm events are section 2.01, reporting the completion of asset

acquisitions, or section 2.02, containing the results of operations and financial

conditions. For instance, Lerman and Livnat (2010) document market reactions (in

abnormal stock returns, return volatility and trading volume) to specific sections in

8-K filings. Similarly, Hanley and Hoberg (2012) study how the risk-related sections

in prospectuses from initial public offerings coincide with future litigation costs.

However, in practice, the majority of filings cannot make use of the aforementioned

structure, as their materials do not match the given subjects: instead, firms place their

content in section 8 (which incorporates all other events that have not been covered

by the predefined sections) or section 9 (for additional appendices). In fact, our

analysis later reveals that 22.74 % of all disclosures contain materials classified under

section 8 and 77.36 % contain optional appendices. Hence, rather than focusing on

1 See for example the current section rules for Form 8-K filings from the U. S. Securities and
Exchange Commission detailed at https://www.sec.gov/fast-answers/answersform8khtm.html.
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specific sections, it is necessary to perform a holistic study, including the content

from the free-text fields.

Yet little is known about which information – especially with regard to the unstruc-

tured materials in sections 8 and 9 – is relevant. Studying the relevance of individual

sections within filings merely answers the question of what aspects of an event are

informative to financial markets. However, such a study cannot adequately determine

which events are relevant in the first place. In this sense, we hypothesize that not all

news stories share the same degree of relevance, as some might convey anticipated

information that has already been incorporated into the market or previously been

released to the press, while others might not be decisive with regard to the future

performance of firms.

This paper contributes to the existing body of research by performing an empirical,

holistic study that dissects information reception with the help of data mining. The

data for this study consists of regulated 8-K filings from companies listed on the

New York Stock Exchange. We then categorize these disclosures according to their

underlying content via so-called topic modeling. For this purpose, we propose the

use of latent Dirichlet allocation (LDA) and compare the extracted topics from the

8-K filings to their average price reaction. This allows us to identify those topics that

are of relevance for investors. Altogether, our findings indicate that news reception

varies strongly across the different subjects of financial disclosures.

4



This piece of research reveals considerable implications for investors, management

and communication departments. First of all, our work exposes which news items

really matter to the audience and thus might be more relevant than others. We thus

contribute to the perception and communication of information (McKinney and

Yoos, 2010). Based on our findings, management and communication officers can

now devote more time to these specific topics and thus enhance their communication

with regard to relevant issues. On the other hand, practitioners can reduce effort

spent on less relevant items and, for instance, find more standardized ways of writing

and releasing these news stories. Above all, our work allows management – and

especially investor relations officers – to more easily anticipate the likeliest direction

of stock price changes subsequent to their news announcements. This knowledge

thus helps to reduce uncertainty and gain a better understanding of the consequences

of publicizing specific news stories. Finally, we make suggestions for policy-makers

on how to align the current structure of regulatory filings with our observations of

actual reporting needs.

The remainder of this paper is structured as follows. Section 2 provides an overview

of related works that utilize data mining to gain insights into news reception across

different content themes, while also deriving the relevance and novelty of our re-

search question. Section 3 then presents our data mining methodology in order to

empirically measure the reception of financial disclosures across different topics. Fi-

nally, the corresponding results are presented in Section 4, while Section 5 discusses
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implications for professionals, management and research in the fields of IS, data

mining and decision sciences.

2 Background

This section summarizes the reception of financial materials by stock markets with

a specific focus on previous efforts that also utilize data mining techniques. For

reasons of conciseness, an extensive theoretical foundation in light of the efficient

market hypothesis is given in the online appendix, which also includes a background

pertaining to regulatory communication of corporates.

The content of regulatory announcements have been found as a driver for changes in

future expectations and thus stock valuations (e. g. Loughran and McDonald, 2011,

2016). This relationship has further been studied with regard to different parts of 8-K

filings (Lerman and Livnat, 2010) and by different topics which presents the focus

of this paper. Here related studies typically investigate the effect of a single, specific

disclosure topic on the stock market, such as share issues, changes in corporate

governance, mergers and acquisitions (e. g. Chan, 2003; Tetlock, 2007; Vuolteenaho,

2002). However, the above studies only focus on one specific theme at a time and

ignore the large body of disclosures that do not belong to any of the given topics,

whereas we later present an approach by which perform a holistic analysis.
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There exists another venue of research that extracts multiple topics from a collected

body of publications and studies their influence on stock valuation. For instance,

previous research classifies newspaper headlines into 20 predefined world-event

categories in order to examine the effect of news on stock price movements (Nieder-

hoffer, 1971). This study reveals a general tendency of stock prices to rise following

positive newspaper headlines. However, it detects no statistically significant dif-

ference in price movements across different categories of newspaper headlines. A

potential reason originates from the fact that markets incorporate new information

very quickly and the novelty of information contained within frequently delayed

newspapers is relatively low.

Closest to our research is the study by Neuhierl et al. (2013), which investigates the

influence of new topics on abnormal returns. For this purpose, the authors manually

divide a large corpus of corporate press releases into 10 main and 60 subgroups.

They find that volatility tends to increase in the aftermath of a news release as a

possible result of valuation uncertainty. In particular, the authors find significant

reactions to news that is related to corporate strategies, customers and partners,

products and services, management changes and legal documents.

A similar research paper also uses an ex ante list of 14 predefined categories like

acquisition, deal, legal or award (Boudoukh et al., 2013). News items are then clas-

sified into these categories via rules from computational linguistics. Here the authors

find that a few particular topics, such as analyst recommendations and financials,
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result in days of extreme stock price movements. Similarly, Feuerriegel et al. (2016)

study topic-dependent reception of news for German ad hoc announcements, finding

differences in the market response. In a different study, a Naïve Bayes algorithm

is trained using a pre-labeled dataset that consists of articles from the Wall Street

Journal (Antweiler and Frank, 2006). The labeled topics then serve as the basis from

which to study the reaction of the stock market. Among others, this study observes

the tendency of the market to overreact, as abnormal returns show opposite signs

before and after publication. Moreover, the paper also reports a more prolonged

impact of news stories during a recession as opposed to an expansion.

As a major drawback, the approaches previously listed in the literature section are

typically driven by an ex ante list of given topics. In contrast, we extract topics

ex post to match our corpus. We thus implement an automated data mining procedure

that infers the topics from the language itself in a computerized fashion. For instance,

this methodology has previously been utilized, for instance, to discover risk types in

textual disclosures (Bao and Datta, 2014). By using the latent Dirichlet allocation

from data mining to extract topics, we benefit from three advantages: first, we

avoid a subjective bias from manual topic extraction and, second, we allow for

greater flexibility for the topic selection method to match our corpus. As a matter

of fact, we can even categorize the content in section 8 and 9 of 8-K filings into

different different themes. In addition, the data mining approach enables us to

process thousands of disclosures, thereby providing a comprehensive picture of news
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reception. Such an endeavor would be prohibitively difficult and costly with manual

labeling.

It is worth noting that most of the textual information in SEC-regulated 8-K filings

does not feature an explicit label denoting the topic of the content. This is particularly

true of the extensive appendices, e. g., press releases, which are typically attached

without specific information regarding their subject. As an example, 22.60 % of

disclosures include section 8 (“other events”) and 77.36 % have additional materials

attached to them in the form of an appendix. To overcome this gap, we extract the

corresponding topics using data mining in the following.

Accordingly, we later contribute to the literature by addressing our research questions:

what topics are covered by 8-K filings? Which topics trigger an abnormal return

of above/below zero? Which topics feature an above-average volatility? Based on

our empirical findings, we can then report an array of implications for researchers,

managers and policy-makers. In particular, we compare our identified topics to the

prescribed structure of 8-K filings in order to derive suggestions on how to align

both.

3 Methodology

This section details our methodology (see Figure 1) in order to investigate differences

in the reception of financial filings. First of all, we apply several preprocessing steps
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to transform the written materials into a mathematical structure. This format then

serves as input for the subsequent topic modeling by means of the latent Dirichlet

allocation. Finally, we perform an event study in order to calculate the abnormal

return corresponding to each publication.

Preprocessing
Latent Dirichlet 

Allocation

Evaluation

Event Study 
Methodology

News Corpus

Stock Market 
Data

News Topics

Abnormal Returns

Figure 1. Methodology studying variations in information reception across different
topics in financial disclosures.

3.1 Text Mining Procedure

Before we can carry out the topic modeling, we apply several preprocessing steps

that are common in text mining (Manning and Schütze, 1999). These operations

transform a running text into a matrix notation that allows for further calculations.

First of all, we remove terms (i. e. stop words) that frequently occur in the English

language, such as the, is or of. These are unlikely to contribute to the meaning of

the content and can thus be omitted. Here, we use a list of 174 stop words (Feinerer

et al., 2008). We then map related words together by reducing inflected words to

their stems. For this task, we utilize the so-called Porter stemming algorithm. The

next step is to create a document-term matrix which stores the frequencies of each
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stem that occurs in the document collection. Since document-term matrices exhibit

the full complexity of natural language, they can easily grow very large in size but

also become very sparse, i. e. contain many zero entries. We thus drop uncommon

words that appear in less than 5 % of all filings.

3.2 Topic Modeling via Latent Dirichlet Allocation

In this paper, we employ a state-of-the-art method from the text mining discipline

for topic modeling, namely, the latent Dirichlet allocation (LDA). The LDA is a

generative probabilistic model for extracting topics from a corpus (Blei, 2012). In

its representation, it assumes that every document contains a mixture of hidden (i. e.

latent) topics. The latter are defined as a probability distribution over the vocabulary.

Based on a pre-defined number of topics, we can then infer a topic by choosing that

which has the highest probability given a specific set of words. Accordingly, every

document is assumed to have been generated by the following two-stage process

(Blei et al., 2003; Blei, 2012):

1. For every document d in corpus D, one draws a random distribution θd of

topics, where entry θd,k gives the proportion of topic k in d. The random

variable θd follows a Dirichlet distribution with prior α given by

θd ∼ Dir(α), α = (α1,α2, . . . ,αK). (1)
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2. We now specify how words map onto topics. We thus select a topic zd,n from

θd for every word n in document d. Furthermore, one chooses a word wd,n over

a fixed vocabulary conditioned on the chosen topic zd,n. The corresponding

distribution is given by βk ∼ Dir(η) with prior η .

The joint likelihood is then

P(θ ,β ,w,z) =
D

∏
d=1

P(θd |α)
K

∏
k=1

P(βk |η)
N

∏
n=1

P(zd,n |θd)P(wd,n |zd,n). (2)

Unfortunately, it is impossible to directly maximize the joint probability as one can

merely observe documents and not topics. As remedy, the LDA sets out to find the

highest posterior distribution. The posterior distribution

P(θ ,β ,z |w,α,η) =
P(θ ,β ,w,z |α,η)

P(w |α,η)
(3)

is then obtained from dividing the joint likelihood by the marginal probability.

However, the denominator is generally computationally intractable because of the

dependence between β and θ . For this reason, one refers to approximate inference

techniques like variational expectation-maximization (Steyvers and Griffiths, 2013).2

In order to perform the LDA, we have to choose Dirichlet priors α and η that control

2 Another common alternative is Gibbs sampling, which is a variation of Markov Chain Monte
Carlo (MCMC).
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document-topic and topic-word distributions, respectively. We initialize all LDA

parameters by following the default values used in the original paper by Blei et al.

(2003).

In a next step, the latent Dirichlet allocation requires one to assign a unique iden-

tifier, i. e. topic name, to each of the extracted topics. To interpret a topic, one

typically examines a ranked list of the 3 to 30 most probable terms in that topic.

As a drawback, frequent and not decisive terms in the corpus commonly appear in

such lists and, hence, render it difficult to differentiate the meanings of the topics.

Consequently, recent research finds that ranking terms based on this probability

hampers interpretation (e. g. Chang et al., 2009).

To mitigate this issue, we utilize the term-topic relationship scheme from Sievert

and Shirley (2014) that facilitates topic interpretation by measuring the “relevance”

of a term to a topic. As a main benefit, this method results in more coherent and

interpretable topics (Sievert and Shirley, 2014). From a mathematical perspective,

relevance is a weighted average of the logarithms of a term’s probability within a

topic φk,n and its “lift”, where the “lift” is defined as the ratio of a term’s probability

within a topic φk,n to its marginal probability across the corpus pn. The relevance

score for word n in topic k is then calculated as

r(n,k |λ ) = λ log(φkn)+(1−λ ) log
(

φkn

pn

)
, (4)
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where λ is a weight given to topic k under word n relative to its lift. The relevance

measure can be balanced with 0 ≤ λ ≤ 1, by giving more weight to φ (λ = 1) or

to the lift (λ = 0). In our study, we choose λ = 0.6, as suggested by Sievert and

Shirley (2014) during an extensive analysis.

Finally, we need to determine how to assign a single topic to each announcement

since, originally, the latent Dirichlet allocation determines a topic distribution θd

for each disclosure d. Consistent with previous research, we assign each financial

disclosure to the topic with the highest probability of occurrence.

3.3 Event Study Design

We now present our event study design (cf. MacKinlay, 1997; Srinivasan et al., 2017)

in order to analyze the information value of a financial disclosure. This allows us

to estimate the effect of a publication on the stock market without confounding

influences. We then estimate a normal return in the absence of a disclosure and

compare it to the observed return. The difference yields the abnormal return that

can be attributed to the novel information from the financial disclosure entering the

market. The appendix outlines the event study methodology in depth. We report all

returns (in percent).

14



4 Empirical Findings

This section presents our empirical findings regarding an asymmetric information re-

ception across different topics in financial disclosures. In this paper, we hypothesize

that not all filings are equally relevant to the decision-making of investors. We thus

aim at identifying those topics that trigger a significant adjustment of the stock price.

For this purpose, we first present our underlying corpus of 8-K filings, followed by

descriptive insights. We then automatically categorize the 8-K filings according to

their subject using the latent Dirichlet allocation and study the average impact on

stock prices by topic.

4.1 Corpus

We proceeded as follows in order to create our corpus of 8-K filings: we downloaded

all 8-Ks, including headlines and amend documents, from the EDGAR website3

from the years 2004 to 2013. This gives a total set of 901,133 filings, which then

underwent several filtering steps. First, we select only filings from firms that are listed

on the New York Stock Exchange (NYSE). Second, in order to gain information

about the stock market reaction of investors, we remove filings for which we are not

able match the SEC CIK numbers to NYSE stock symbols. Third, we exclude filings

3 U. S. Securities and Exchange Commission: http://www.sec.gov.

15



that contain fewer than 150 words (Loughran and McDonald, 2011). Consistent

with the previous literature, we also remove penny stocks with a stock price below

$5, as these frequently feature a higher volatility and thus may misrepresent the true

magnitude of abnormal returns (Konchitchki and O’Leary, 2011). These filtering

steps result in a final corpus of 73,986 filings.

4.2 Descriptive Statistics

We now investigate the frequency and length of the filings in the following. Our

corpus covers a total of 863 different companies, while the median number of filings

per firm is 85.73 (with a standard deviation of 66.73). The total range goes from a

minimum of 1 to a maximum of 501 for a single firm.

Table 1 shows descriptive statistics of the abnormal returns at the end of the trading

day for the 8-K filings corpus. The mean change in abnormal returns for all 8-K

filings in our sample is 0.0361 %. Out of all disclosures, a total of 36,587 resulted in

a positive abnormal return, while 37,378 evoked a negative response. The abnormal

stock market returns (in %) entail a standard deviation of 4.03 and median close to

zero. Furthermore, Table 2 compares the characteristics of the corpus across each

year. Evidently, the frequency and length of filings, as well as the number of covered

firms, increases with each year.
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4.3 Topic Extraction

Regulated 8-K filings from stock-listed companies in the U. S. do not feature a code

or label specifying the theme of their content. We overcome this gap by extracting the

corresponding topics using the latent Dirichlet allocation. To perform this method,

we have to choose ex ante the number of topics that we want to identify. This

is different from other machine learning algorithms whereby one optimizes, for

example, the number of clusters by cross-validation or heuristics. Concordant with

related research, we run our analysis with 20 topics (Blei et al., 2003; Ramage et al.,

2009; Niederhoffer, 1971). In addition, we also test a wide range, from merely

10 topics up to 40 topics, finding affirmative insights (see appendix for further

details).

Finally, we assign an unique identifier, i. e. topic name, to each of the extracted

topics. Specifically, we infer the individual topic names from the most relevant

terms occurring in each given topic. For example, stemmed words, such as director,

appoint, vote, elect, suggest a topic related to changes in management or corporate

governance. On the other hand, words stems such as gas, energy, or oil represent

disclosures that are related to the energy sector. A complete list of extracted topics

and relevant terms is provided in the online appendix.

Table 3 provides descriptive statistics on the extracted topics, thereby indicating

that the majority of documents are assigned to one of two topics, namely, earnings
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results and public relations, while the rest are distributed in a fairly even fashion

across the remaining ones. Interestingly, the high share of, e. g., earnings results as

a frequent topic in financial news is also consistent with findings from the existing

literature (Carter and Soo, 1999). The table also shows that there are substantial

differences regarding the filing lengths even across relatively similar news themes.

For example, filings related to income statements exhibit an 80 % greater length

in terms of included words as compared to earnings results. A thorough manual

assessment of the corresponding filings reveals that earnings results typically contain

a large proportion of highly compressed qualitative content, including particularly

relevant business outlooks. In contrast, income statements consist of a larger amount

of quantitative numbers, as well as less informative standard texts and regulatory

notes.
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#Covered
Firms

#Filings Mean Filing Length
(#Stemmed Words)

Energy Sector 169 3779 1289.42
Insurance Sector 197 3761 2509.05
Change of Trustee 480 2075 14,644.95
Real Estate 149 2975 2897.59
Corporate Structure 540 1575 11,359.47
Loan Payment 567 1940 23,273.82
Amendment of Shareholder Rights 487 1738 3550.16
Earnings Results 672 14,246 1489.70
Securities Sales 496 2317 8039.96
Stock Option Award 670 5971 2748.03
Credit Rating 417 1246 4394.45
Income Statements 496 5592 2680.31
Business Strategy 581 6892 994.12
Securities Lending 326 1523 3368.34
Management Change 719 5105 1710.42
Healthcare Sector 83 507 6821.64
Tax Report 255 524 34,204.59
Stock Dilution 98 386 7706.84
Mergers and Acquisitions 295 612 13,167.53
Public Relations 699 11,222 409.99

Table 3. Descriptive statistics across all extracted topics.

4.4 Stock Market Response Across Disclosure Topics

We now investigate how the average stock market reaction to financial disclosures

is related to the identified topics. For this purpose, we compare the distribution of

abnormal returns for each topic. The farther away from a zero abnormal return, the
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more strongly a given topic is linked to an actual investment decision by investors.

This can also be statistically tested by, e. g., a t-test.

According to Table 4, we observe the following overall pattern. First, the median

abnormal returns are closely located around zero for most topics. However, several

topics – such as business strategy – exhibit a positive median abnormal return,

whereas mergers and acquisitions and management change, among others, show a

negative impact on the market.

Table 4 also reflects the outcome of hypothesis testing. Here we bootstrap confi-

dence intervals with N = 200 replacements due to the small number of observations.

According to our results, a total number of five topics yield a p-value below the

threshold of the 5 % statistical significance level. Specifically, we find a statistically

significant effect in a negative direction for earnings results and mergers and acqui-

sitions. These topics are linked to negative median abnormal returns of −0.01 % and

−0.03 %, respectively. On the other hand, business strategy, healthcare sector, and

credit rating are linked to positive market responses.
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No. Topic Name Abnormal Return

Median Abs. Median p-Val. Std. Dev.

1 Energy Sector −0.01 1.07 0.71 2.86
2 Insurance Sector −0.03 1.11 0.21 4.10
3 Change of Trustee 0.01 0.87 0.36 2.62
4 Real Estate −0.07 1.04 0.84 2.45
5 Corporate Structure −0.08 1.21 0.10 6.71
6 Loan Payment −0.04 1.01 0.15 6.09
7 Amendment of Shareholder Rights −0.03 1.16 0.66 3.61
8 Earnings Results −0.01 2.15 0.02 5.40
9 Securities Sales −0.02 0.97 0.90 2.63
10 Stock Option Award −0.04 1.02 0.30 2.66
11 Credit Rating 0.00 1.10 0.04 4.25
12 Income Statements 0.07 1.69 0.12 4.81
13 Business Strategy 0.04 1.20 0.01 3.40
14 Securities Lending −0.04 0.85 0.52 4.45
15 Management Change −0.08 0.94 0.90 2.57
16 Healthcare Sector 0.03 1.20 0.02 3.83
17 Tax Report −0.07 1.07 0.97 5.11
18 Stock Dilution 0.15 1.46 0.22 4.08
19 Mergers and Acquisitions −0.03 1.28 0.05 3.12
20 Public Relations −0.04 1.08 0.87 3.10

Table 4. Summary statistics for abnormal return (in %) across all extracted topics.
Bold font highlights topics that are statistically significant at the 5 % significance
level. Due to the small number of observations, we perform bootstrapping with

N = 200 replacements.
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4.5 Asymmetric Reception

In order to investigate potential asymmetries regarding the reception of different

news topics, we now focus on the bandwidth of abnormal returns. As some topics

might lead to higher stock price movements on average, a higher volatility implicitly

suggests a larger variety in information content for investors.

We start by analyzing how the absolute abnormal returns differ across the identified

news topics. As shown in the second column of Table 4, the median absolute

abnormal returns show a large spread, ranging from 0.85 % for securities lending

to 2.15 % for earnings results. In order to test whether these differences between

medians are statistically significant, we utilize a Kruskal-Wallis test. According

to our results, the null hypothesis that the median absolute abnormal return is

equal across all topics is strongly rejected at the 1 % significance level. Hence,

the information content and attention that individual filings receive from investors

cannot be assumed to be fixed, but rather depends on the news topic.

Next, we verify this finding using the standard deviation of the abnormal returns

(in percent) as an alternative measure for the stock market volatility. Also here,

we observe a large spread regarding the volatility of the abnormal stock market

returns. The standard deviation for the individual topics ranges from 2.45 to 6.71.

Interestingly, we find a smaller bandwidth for, e. g., real estate, which accounts

for a standard deviation of 2.45, while, e. g., corporate structure (6.71) and loan
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payment (6.09) feature a higher variance and, therefore, a higher information level.

Such a homogeneity of variances can also be tested statistically. For this purpose, we

draw upon the Bartlett’s test in order to investigate the null hypothesis that all topics

are drawn from populations with equal variances. The null hypothesis is strongly

rejected at the 1 % significance level. Thus, once again, we see that the information

level of 8-K filings strongly differs across the individual topics.

4.6 Comparison to Previous Research

We now compare our findings to previous research. We thus discuss the topics with

a statistically significant, non-zero influence on the stock market in the following.

• Earnings results. This topic yields the highest volatility among all the signif-

icant topics. Furthermore, we also find a negative median abnormal return

for disclosures, which largely corresponds to previous research by Lucas and

McDonald (1990). In this same vein, Loughran and McDonald (2011) studied

regulatory earnings reports whose tone is linked to the subsequent stock return.

Even hidden or difficult-to-attain materials, such as footnotes, in earnings

reports are eventually reflected in market prices (Bloomfield, 2002). Li (2008)

observed a clear link between the readability of annual reports and firm perfor-

mance, further bolstering the notion that investors pay close attention to this

subject. Altogether, this data suggests a decisive role of this topic in relation to

the performance of stocks.
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• Credit rating. Credit-related materials typically convey highly relevant infor-

mation to the capital market regarding the value of the borrowing firm. Such

materials have thus been found to explain movements in stock prices (Lummer

and McConnell, 1989).

• Business strategy. The significant effect of business strategy is often impelled

by positively connoted long-term projects (Woolridge and Snow, 1990); for

instance, with regard to international operations (Elango et al., 2013). This type

of information might be conveyed by the optional appendices containing press-

related materials. Similarly, newspapers tend to discuss not individual financial

figures from firms, but rather the overall outlook or strategy. Consistent with

our results, newspaper articles have also been found to relate to stock price

changes (Tetlock, 2007; Tetlock et al., 2008).

• Healthcare sector. Our results show that disclosures in the healthcare sector

have a significantly positive effect on the stock market. Similar evidence has

also recently been reported by Feuerriegel et al. (2016). Interestingly, this

also coincides with the fact that the healthcare industry has performed above

average over the last decade (Arouri and Nguyen, 2010).

• Mergers and acquisitions. In contrast, disclosures related to mergers and

acquisitions are linked to a negative price change on average. According to

Cartwright and Schoenberg (2006), bidding firms frequently experience share
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price under-performance during the acquisition of another company. This

is in contrast to the findings of earlier works on mergers and acquisitions,

which predominantly focused on the announcement day. For instance, the

work of Dodd (1980) identifies a positive market reaction regarding the price

of a target firm subsequent to the announcement of an intended merger. Anal-

ogously, target firms achieve significantly positive abnormal returns during

these announcement day (Asquith et al., 1983). In contrast, our study monitors

all events related to such a process and incorporates them into our dataset.

Hence, our filings also reflect the various hurdles associated with a merger or

acquisition, as well as a potential failure of the process.

Our above discussion emphasizes the need for accurately labeling events in regulatory

filings, especially with regard to the different phases of mergers and acquisitions.

However, the current structure of 8-K filings falls short of this goal and we thus put

forth suggestions in the next section.

5 Implications

In the following, we discuss the implications of our research as it allows for a

better comprehension of decision-making in a financial context. Accordingly, our

work not only contributes to research in the field of decision sciences, but is also

highly relevant for executives and professionals when releasing information on firm

performance to the public.
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5.1 Implications for Research

The above results contribute to an understanding of how humans process information

encoded in natural language. Our findings provide evidence that the reception and

responses of investors varies greatly according to the story in question. As such,

investors seem to selectively focus their attention only on certain themes.

Moreover, we also provide an intriguing approach for researchers in the fields of data

mining and decision sciences to replicate our methodology for better understanding

decision-making. By utilizing methods for topic modeling, researchers can process

large volumes of textual materials without prior knowledge. When linking these

insights to exogenous variables, topics are ranked accordingly and one finds topics

with the highest information value. This can be applied to numerous domains beyond

finance, such as social media, blog posts or user-generated content in recommender

systems – thereby broadening our knowledge of how information and especially

natural language facilitates decision-making; see e. g. Sul et al. (2017); Lu et al.

(2012).

A number of works in the field (e.,g. Henry, 2008; Loughran and McDonald, 2011;

Tetlock, 2007; Tetlock et al., 2008) treat all financial disclosures alike, without

considering a potential heterogeneity in the reception across topics. Our work,

however, is positioned around recent analyses in finance-related research according

to which the response to financial materials cannot be assumed to be independent of
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decision-making strategies (Schiffels et al., ming; Taylor, 1975). Instead, researchers

must accurately identify and account for such confounding factors in order to achieve

rigor.

5.2 Implications for Policy-Makers

Our findings open an avenue for policy-makers to create value from data mining

techniques. Currently, regulatory filings in the U. S. and other countries are dis-

tributed via standardized channels but not in a standardized format. Hence, filtering

by topic is hardly possible given the status quo. To alleviate this, one could require

firms to assign topic codes to each filing in order to facilitate filtering. Moreover,

additional prerequisites regarding the format could improve machine readability. In

fact, our findings have already found their way into recent projects of policy-makers,

such as the Financial Reporting Council. The Financial Reporting Council is the

U. K. regulator for corporate reporting, whom we advised based on this research to

strive for improved financial reporting by the above means.

Since natural language still remains a challenge for computers to understand cor-

rectly, also adding semantic annotations (or linked data) could greatly facilitate

this task (e. g. Storey et al., 2008). In a next step, this form of structured informa-

tion could also ease the process of information filtering for all investors (including

automated traders). Simultaneously, semantic structures show a potential path to-
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wards decreasing uncertainty regarding meaning and the subjective interpretation of

financial materials and indirectly leveraging transparency.

Our results also yield insights into how the structure of regulatory filings might be

improved in the future. Our analysis reveals only a partial match between the topics

identified in Table 4 and the actual sections mandated by the U. S. Securities and

Exchange Commission. We observe that specific sectors – namely energy, insurance

and healthcare – make over-proportional use of free-text fields. Two options might be

suitable to better reflect the publication needs of these firms, as well as the processing

capabilities of potential investors. One the one hand, it might be possible to augment

regulatory filings with a sector code in order to signal the market area in which the

firm operates (or which the disclosure relates to). On the other hand, this might

serve as the starting point for a rigorous, in-depth content analysis whereby it is

determined that the current section names match with the disclosed information.

We also see an overlap between sections and identified topics for a variety of issues.

Examples include corporate structure (item 6.02 refers to a change of trustee), stock

dilution (item 3.01 addresses delistings) and amendments (item 5.03). However,

other topics entail a considerably more granular sectional structure than suggested by

our analysis: management change (items 5.01 to 5.08 dissect individual actions such

as changes in control of registrant to shareholder director nominations) and financial

information (item 2.02 deals with operation results, item 2.03 with other obligations,

etc.). This observation is supported by earlier literature on management changes

30



(e. g. Bonnier and Bruner, 1989; Warner et al., 1988). Similarly, our discussion

in Section 4.6 highlights the importance of financial results for the performance

of firms. The more granular structure also reflects the human categorization by

Neuhierl et al. (2013).

Yet the following items might be prevalent enough to justify sections of their own:

real estate (largely conveying expressions related to leases, estates or building size

belonging to firms), tax report (e. g. section 2 could be extended by a corresponding

item) or mergers and acquisitions. With regard to the latter, Neuhierl et al. (2013)

specifically distinguish intent and target, as well as subforms. In addition, section 9

is frequently utilized for both financial statements and exhibits containing additional

materials (i. e. largely press releases). Since one of our topics specifically refers

to press releases, policy-makers could consider splitting this section into two sepa-

rate parts, such that investors can easily distinguish them. In contrast to Neuhierl

et al. (2013), our LDA does not point towards categories covering meetings/events,

products/services and legal.

5.3 Implications for Management and Professionals

With regard to managerial implications, we draw our attention to how information

management influences firm performance (Mithas et al., 2011). Our findings provide

decision support for managers by addressing the question of which subjects actually
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matter to investors. This helps managers and communication professionals to priori-

tize in which press releases to invest the most effort. Simultaneously, they can use

the above framework based on data mining techniques to monitor and understand

the performance of other firms relative to their own as an approach to competitive

intelligence (Pröllochs and Feuerriegel, 2018; Zheng et al., 2012).

On the other hand, our approach outlines potential gains for professionals who need

to process large quantities of disclosures in order to identify relevant information,

such as investors or media bodies. By utilizing the LDA for topic identification, one

can easily automate filtering for information. This is especially helpful when topic

codes are not available, as in the current setting. Overall, our work contributes to

the existing body of research regarding how the narrative content of disclosures can

provide decision support for investors (Feuerriegel and Prendinger, 2016; Kraus and

Feuerriegel, 2017; Pröllochs et al., 2016; Schumaker and Chen, 2009).

5.4 Opportunities for Future Research

Our work opens an avenue for future research related to decision sciences. While we

have mainly focused on information reception, it would be an interesting extension

to study information requirements and information needs on an individual basis. The

former represents information that is objectively necessary for a trading decision,

while the latter denotes what is subjectively considered to be relevant (cf. Zimbra

et al., 2015). With further advances in text mining, one might be able to analyze
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information demand (i. e. what is sought by investors in decision-making) and

extract the relevant parts of disclosures. In addition, it is also an intriguing task

to study the reasons that underlie the different characteristics of decision-making

across individual topics.

6 Concluding Remarks

Investors modify their trading in the wake of financial disclosures, yet not all filings

appear equally relevant. It is thus the objective of this paper to contribute a holistic

study of 8-K filings across different subjects. For this purpose, we utilize the latent

Dirichlet allocation, as it allows us to automatically analyze thousands of 8-K filings

from U. S. companies with respect to their content. This especially allows us to

categorize the three-quarters of filings for which the content does not match the

given list of topic codes, i. e. entailing textual materials in rubrics labeled as “other

events” or appendices.

Our analysis yields a list of 20 topics reflecting the themes with the greatest need

for reporting by businesses. Furthermore, our results provide evidence that stock

market participants process information asymmetrically: a set of 5 topics triggers

abnormal returns that are different from zero at a statistically significant level. Based

on these findings, executives and communication professionals can immediately

leverage our findings and focus their efforts on the stories that are relevant to the

audience. By correctly interpreting acquired information, investors can improve their
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decision-making when buying and selling in order to increase the performance of

their portfolio (Oztekin et al., 2016). Policy-makers can bring the reporting structure

in line with the actual needs of firms.
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