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Operational Risk in Airline Crew Scheduling: Do Features of Flight 

Delays Matter? 

ABSTRACT 

Our work is motivated by the increasing demand in the aviation sector and simultaneously 

aggravated poor punctuality. The airlines play an important role to improve their service level 

and mitigate the profit risks incurred due to their poor resources planning. However, to 

identify and mitigate operational risks faced by the airlines is complicated, as they are coming 

from both internal and external factors. Due to the realistic nature, we explore the flying time 

characteristics, and further model the consecutive interdependent departure-arrival times. It is 

a key feature included in this study that has not been studied in literature. We characterize the 

flying time of each flight by the heteroscedastic regression model. The analytical closed-form 

for the recursive relationship of the expected departure and arrival times of connective flight 

legs is then carried out. Accordingly, we propose a novel data-driven bi-criteria mathematical 

model in which the interdependent structures of the departure and arrival times of the 

consecutive flights is incorporated into the robust optimization. A column generation-based 

algorithm is developed to solve the proposed model. We found that, for more than 23% of the 

flights explored, the expected flying times are significantly influenced by its actual departure 

times. The real-data based computational examples identify that our proposed model 

sufficiently improves the reliability of the crew pairings decisions by reducing the total 

deviated time from the schedules with a slight increase of the total basic crew operations cost. 

Some managerial implications for robust crew pairing and determination of robustness level 

are discussed as well. 

Subject Areas: Data-driven, Crew pairing, Robust optimization, and Operational risks. 

INTRODUCTION 

The aviation sector has achieved sharp development during the last two decades and 

contributes significantly to GDP, employment and social benefit. As reported by IATA in July 

2018, Air passenger volume has kept growing since 2010 after the Great Depression. The 

industry-wide revenue passenger kilometers (RPK) increased by 6.1% year-on-year in May 

2018. However, the steady increase in passengers demands each year aggravates the poor 

on-time performance of air transport. It is reported by Li and Song (2016), in the U.S., almost 

29% of delays occurred due to the air carrier, 36% were due to the aircraft arriving late, and 

31% were due to the National Aviation System. Only 4% of delays were due to heavy weather 
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conditions. Although the airlines have put a tremendous amount of money on their resources 

planning for achieving efficient operations, how to reduce the disruption risks in terms of the 

economic losses is still a challenging task to them.  

Among the airline operations problems, the crew pairing problems hold an important 

position. In 2017, the average crew costs per block minute reached $22.67, which ranked first 

among total direct operating costs per block minute (Airlines for America 2017). A crew 

pairing is a round-trip of a sequence of flights. An inefficient connection between flights 

incurs unnecessary long waiting time for the crew or large flight delays for the successive 

flights on schedule. In the existing literature, many studies focused on recovery control over 

crew pairing. Some severe disruptions can only be tackled by recovery options. However, 

most of the frictional disruptions can be reduced by proactive planning which may further 

decrease the utilization of recovery options. The existing research on proactive planning 

modeled the problems by discrete delays (Ahmadbeygi et al. 2010; Dunbar et al. 2014). Some 

studies adopted the worst case of the delay situation as inputs without using stochastic 

information (Ehrgott and Ryan 2002, Lu and Gzara 2015). In addition, they usually assumed 

independency between the departure and arrival delays. However, such assumption and 

simplification may violate the real situations.  

For the busiest international airports around the world, the departure time of the day is a 

key factor which influences the airports’ on-time performance. Reported by the Bureau of 

Transportation Statistics1, the best time to fly is between 6 and 7 a.m. Flights with scheduled 

departures in that timeframe are arrived just 8.6 minutes late, on average. However, for every 

hour later extra minutes of delays are expected for arrival time. The delay times may hit a 

peak between 6 and 7 p.m., and they remain at above 20 minutes. In a recent study, Chung et 

al. (2017) identified that the arrival time of the flight is affected by its departure time. On the 

other hand, shared by a manager of a major airline, some pilots may control the flight speed 

within some ranges to compensate for the long-propagated delay in practice. Obviously, the 

above discussion indicates that the flying time is not an independent random variable, but the 

one affected by its departure time, which further determines the arrival time. Therefore, in our 

study we relax the assumption and model the flying time in a more realistic way, which makes 

both theoretical and practical contributions. Our study identifies that the realistic 

consideration of the departure-arrival times interdependency can help match well between 

flights and crews, which reduces the time deviation from the schedules with a slight increase 

in basic crew cost. Because it makes avoid underestimate on the cascading risks and 

overestimate on the flight delays due to unnecessarily long buffer times.  

Although the topic regarding profit risk is popular in the supply chain management 

literature (Guo et al. 2017), it is seldom discussed and explored in the airline scheduling 

                                                      
1 For more details, please refer to the official website of Bureau of Transportation Statistics 

https://www.transtats.bts.gov/ONTIME/. 

https://www.transtats.bts.gov/ONTIME/
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literature, especially for the risk incurred due to the decision making on the operational level. 

Motivated by the high uncertainties and profit risks faced by the airlines as well as the 

aforementioned observations, we propose a novel data-driven bi-criteria robust optimization 

method. Fig. 1 presents the main workflow of the proposed optimization model. The key 

questions here are as follows: (i) How does the departure time of the flight leg affect its flying 

time and further determine the arrival time? (ii) How to model the interdependency between 

the departure and arrival times in the robust optimization? (iii) How does the interdependency 

of the departure and arrival times of each flight leg affect the robustness of the crew pairing 

and mitigate the operational risks?  

Based on the historical data which is from one of the global best-service airlines, the 

correlation analysis is conducted, which shows that, for more than 23% flight legs, the flying 

times are significantly influenced by the actual departure times from two dimensions, i.e., 

mean and variance. To make the problem tractable, we use the heteroscedastic regression 

model to predict the structure of the flying times. To reflect the real situation, a recursive 

relationship of the expected departure and arrival times of each flight leg is proposed and the 

corresponding analytical results are then obtained. 

By applying the obtained explicit expressions of the expected departure and arrival 

times, a new bi-criteria optimization model for the robust crew pairing problem is proposed to 

make a trade-off between cost and robustness. A novel penalty function is proposed which 

works as a measure of robustness. It aims to reduce the chance of propagated and primary 

delays as well as the chance of flight cancelation or the utilization of reserve crew due to the 

infeasibility of the crew plan. The computational examples demonstrate the cost-efficiency of 

the proposed model and verify the impacts of the interdependency between the departure and 

arrival times on the robustness of the crew pairing. The results suggest that an appropriate 

level of the robustness consideration may help the airlines attain the best cost-effective 

operations decisions. However, extreme risk-aversion for the flight delays may do more harm 

than good to the airlines. Moreover, the cost ratio of the basic crew cost to the compensation 

expenses due to flight delays may affect the impact of the robustness level on the optimal 

decisions. When the cost ratio is low, a higher robustness level can be set for a risk-averse 

decision maker. 

In the next section, we review some recent related studies. It is followed by the 

development of the data-driven robust optimization for the crew pairing problem, including 

the details of the model description, the predicted model of the flying time, the modeling of 

the consecutive departure and arrival times, and the bi-criteria robust optimization model. The 

proposed column generation approach for solving the bi-criteria robust optimization model is 

developed then. Accordingly, the computational study is performed and discussed regarding 

the impacts of the departure-arrival times interdependency as well as the robustness level on 

the operations decisions. In the end, we conclude the study with a further discussion of 
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managerial implications, a summary of the contributions and limitations of this study, and the 

possibilities for future research. All the proofs are included in the appendix. 

 

Figure 1: Workflow of the proposed data-driven robust optimization. 

 

 

 

LITERATURE REVIEW 

This paper mainly relates to two streams of literature, which includes robust crew pairing 

problems and big data analytics in operations management.  

 

Robust crew pairing problems 

As mentioned earlier, the stochastic variability in airline operations brings about large 

disruption cost and widespread negative impact on different aspects, including passengers, 

shippers, and airlines. So, more and more researchers study the robustness in airline 

operations and make a trade-off between cost and robustness. Although crew pairing is the 

last stage of the major airline operations (i.e., flight schedule design, fleet assignment, aircraft 

routing, and crew pairing), it occupies a tremendous expenditure of the airlines, which is just 

second after fuel cost. Therefore, robust crew pairing problems have drawn increasing 

attention from both academics and practitioners. In different studies, the robustness may have 

a specific definition, it mainly refers to the ability to remain the plans feasible or flexible 

under the variability or disruptions. The related studies can be mainly divided into three 

categories.  

 

Recovery control 
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The first category aims to provide recovery solutions when the disruptions happen, such as 

crew swaps, reserve crews, to remain the original schedules feasible. Shebalov and Klabjan 

(2006) produced robust crew schedules by maximizing the number of move-up crews with the 

constraint to control that the crew cost does not increase too much above the one under the 

traditional cost-oriented crew plan. Another robust version of the airline crew pairing problem 

was proposed by Muter et al. (2013), in which case the robustness refers to the ability to 

accommodate extra flights at the time of operation by disrupting the original plans as 

minimally as possible. The robustness is attained by incorporating the planned crew pairing 

with several predefined recovery solutions. Bayliss et al. (2017) proposed a scenario based 

mixed integer programming for an airline reserve crew scheduling problem under crew 

absence uncertainty and delay. The objective was to minimize the disruption level under a 

total set of input scenarios, which was measured by a defined delay cancellation ratio. 

Recently, based on the previous study, Bayliss et al. (2019) proposed a new probabilistic 

model for the reserve crew scheduling, in which the crew absence is assumed to follow a 

binominal distribution. The objective of the optimization model is to minimize the total flight 

cancelation and reserve induced delays. Recovery control is usually based on the planned 

schedules and without incorporation with data analytics on flight information. In this study, 

instead of considering severe disruption, i.e., flight cancelation, we propose a novel 

data-driven proactive plan in which a new measure of robustness is proposed. It aims to 

minimize both the departure and arrival delays as well as the over-time of each duty and 

pairing so as to reduce the chances of flight cancelation and the use of reserve crew induced 

by unproper crew scheduling. 

 

Integrated planning 

The second category aims to improve the robustness by integrated planning. These literature 

focused on the study of the interdependency between the aircraft schedules and crew 

schedules and its impact on the propagated delays. Mercier et al. (2005) proposed an 

enhanced model incorporating robustness to handle the linking constraints. That was to 

impose a penalty whenever a crew changes aircraft on a restricted connection. Here, the 

robustness was improved through minimization of the number of connections between the 

flight legs that are not flown by the same aircraft. Based on this study, Weide et al. (2010) 

proposed a non-robustness measure of an integrated solution, which is a sum of sit-time 

dependent penalties overall restricted aircraft changes. They extended their integrated 

approach to both technical crew case and flight attendants case. The propagated delay is 

directly affected by its parent’s flight’s delay, which equals the parent’s flight’s delay minus 

the slack time between the connected flights. Both aircraft-induced delay and crew-induced 

delay may contribute to it. By the analysis of the dependency of the aircraft routing and crew 

scheduling, Dunbar et al. (2012) accurately estimated the propagated delays with stochastic 
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information and minimized the cost of propagated delay in the integrated framework. An 

extensive study was done by Dunbar et al. (2014) with further consideration of re-timing for 

departure times. In the above-mentioned studies, they assumed the primary delays were 

independent of propagated delays. They were estimated according to the historical data, and 

the calculation of the propagated delay was based on the estimated values of primary delays 

induced by aircrafts and crews, respectively. Mohamed Ben Ahmed et al. (2018) proposed an 

integrated robust model for aircraft routing and crew pairing, in which a penalty would be 

induced for the cases when the critical aircraft and crew pairing connection occurs to avoid 

short buffer times. In reality, the cause of delay cannot be easily divided into aircraft-induced 

and crew-induced. Many other factors, such as airport congestion, air traffic control, etc., 

induces delays as well. On the other hand, the pilots may speed up as a way to complement its 

late departure time, which directly affects the final arrival time of the flight. Therefore, the 

primary delay is a random variable dependent on its propagated delay, which is simply 

assumed to be independent variables in the existing literature. Therefore, in our problem, we 

do not separate the delays due to different sources but focus on the study of the 

interdependency between the primary delay and its propagated delay. 

 

Proactive planning 

The third category mainly focuses on the study of proactive robust planning. Most of them 

took the measure of robustness by penalizing the delay related factors. Ehrgott and Ryan 

(2002) developed a bicriteria optimization framework to generate Pareto optimal schedules. 

The robustness was measured by a penalty function which was composed of the difference 

between buffer and worst-case delays. Schaefer et al. (2005) implemented a procedure for 

finding an appropriate solution to the problem of minimizing expected crew cost for crew 

scheduling with operations disruptions. The flight time disruption and ground delay were 

estimated by different probability distributions, respectively, including Gamma, Beta, Erlang. 

Schaefer and Nemhauser (2006) introduced a method for determining schedule perturbations 

that improved on-time performance without increasing crew costs. Yen and Birge (2006) 

developed a scenario-based stochastic model of the crew scheduling problem. They focused 

on the study of the interactions among crew pairings and its impact on the flight delays. The 

random variables, the flight delays in the stochastic model, was represented by a large number 

of scenarios which are generated by using truncated gamma or lognormal distribution to 

match disruption data from airlines. Ahmadbeygi et al. (2010) controlled the robustness of the 

crew scheduling by redistributing existing slack to reduce delay propagation. Minor 

modifications were made to the flight schedule (scheduled departure time) while leaving the 

original fleeting and crew scheduling decisions unchanged. Lu and Gzara (2015) presented a 

robust crew pairing formulation which was to optimize the problem against the worst 

instances. The robustness of the solutions was controlled by a user-defined parameter referred 
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to as a protection level that limits the number of delays. Data uncertainty was modeled by 

intervals which are set by the planner. Quesnel et al. (2017) extended the crew pairing 

problem with additional constraints on the limitation of the total working time at each crew 

base to improve the solution robustness of further crew assignment step. The estimation of 

propagated delay induced by crew scheduling was studied by Wei and Vaze (2018). The 

authors developed a robust process to generate crew itineraries that were similar to real-world 

airline crew itineraries, based on an accurate and stable estimation of crew-propagated delays 

and disruptions. Four different features, including aircraft change, pushback, crew legality, 

and crew swaps were proposed to investigate their impacts on the crew-propagated delay and 

disruption. Our study is related to the previous study done by Chung et al. (2017). The authors 

proposed a robust crew pairing and schedule optimization model for cascading delay risk. 

Flight arrival delay was estimated by cascade neural network based on the historical data. The 

results demonstrated that the prediction accuracy on flight arrival delay can be increased 

when relating it with the flight departure delay. 

Based on the previous results, we further analyze the interdependency between the 

flying time and its departure time in both practical and theoretical way. In that way, the flying 

time of a flight leg is represented as a heteroscedastic regression model which depends on the 

state of the random variable, i.e., its departure time. Different from the previous study, the 

main focus of this study is, through the analysis on the interdependency of the departure delay 

with propagated delay (coming from the delay of previous flight), to verify its impact on the 

robustness of the crew pairing decisions.  

 

Big data analytics in operations management 

In recent years, more and more operations management studies integrate big data analytics 

into their optimal decision-making processes. It has been widely applied in many areas such 

as revenue management, transportation management, risk analysis, and service operations 

(Choi et al. 2018; Cohen 2018). By leveraging the potential information hidden in big data, 

the decision makers seek to identify patterns and trends (Ettl et al. 2019), conduct predictive 

modeling and analytics (Demir 2014), and obtain superior strategies to facilitate their decision 

makings (Chan et al. 2016; Sun et al. 2019). Different big data analytics techniques are 

explored accordingly, such as statistics, machine learning and data mining. Each technique 

has its own strengths and weaknesses, which determines its suitable application fields. Among 

the statistical methods, regression models are commonly used in practice. For instance, Demir 

(2014) applied different data analytics techniques to forecast the patients at risk of unplanned 

readmissions. The results show that regression method had superior performance regarding 

predictive ability, compared to the data-driven methods. Ang et al. (2015) proposed a Lasso 

regression model called Q-Lasso method for wait time prediction, which provides insights for 

healthcare management. Sun et al. (2019) proposed a partially profiled LASSO regression 
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model to analyze the promotion effects on the retailer sales and profits, which provides 

implications on promotion strategies. Different from the existent studies, our study proposes a 

heteroscedastic regression model to capture the complex structure of the flying time of each 

flight leg according to historical data. 

DATA-DRIVEN ROBUST OPTIMIZATION FOR CREW PAIRING 

PROBLEM  

Our objective is to generate cost-robustness trade-off solutions for crew pairing by a new 

proposed bi-criteria optimization model. The robustness is measured by a new proposed 

penalty function. Although the planned crew pairing obeys the regulations by FAA in terms of 

maximum flying time and elapsed time in a duty, the stochastic variability and disruption in 

air operations often make the crew scheduling illegal due to overtime in reality. The airlines 

will pay extra for reserve crews or overtime compensation. We, therefore, set the expected 

time exceeding the maximum elapsed time as a measure of the solution robustness to control 

the illegal situations. The propagated delay is the main source of overtime. It involves many 

aspects, such as aircraft routing, crew schedules, primary delays, operational recovery actions, 

etc. We do not conduct analysis on each of these factors, but to analyze whether 

interdependency exists between the propagated delay and primary delay. Through the 

regression analysis, it is identified that there exists a significant relationship between the 

flying time of the flight leg and its departure time. Thus, a new approach is proposed to model 

the flying time, arrival time and departure time of each flight leg. The primary delay which 

depends on flying time in our case is no longer independent from its propagated delay. A 

detailed description of the problem is displayed in the following section. Afterward, the 

heteroscedastic regression analysis for modeling the characteristics of the flying time is 

explored. Finally, the bi-objective mathematical program is then formulated. 

 

Problem description 

A crew pairing is a crew trip composed of a set of flights {𝑗1, 𝑗2, … , 𝑗𝑛} ⊂ F, which starts and 

ends with the same specified station, called crew base. The crew pairings have to cover total 

flights F, and each flight j can only be served by one pairing. In the crew pairing, the flight 

legs are separated by rest periods. It usually refers to the overnight rest. The set of flight legs 

between two rest periods is called a duty. Meanwhile, there is a sit time between two 

consecutive legs in a duty, regulated as a minimum connection time for crews, aircrafts as 

well as passgengers. When a crew is on duty, they fly the consecutive flight legs under a 

series of regulations and contractual restrictions, for instance, the maximum flying time in a 

duty, a maximum elapsed time from the base of a pairing, etc. Under the consideration of 
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those constraints, the typical objective for a crew pairing problem is to minimize the planned 

crew cost. Introduced by Saddoune et al. (2013), the basic cost usually includes the fixed cost 

for the crew, deadhead cost, connection time cost, rest period cost, and pairing minimum duty 

guaranteed (PMDG) cost.  

Besides, a novel penalty function is proposed as a measure of robustness. It not only 

reflects the propagated delays, primary delays but also the disruption risk induced by 

exceeding the maximum elapsed time. Thus, two objective functions are established for both 

crew cost and potential risks from flight delay caused by the crew pairings. Our purpose is to 

get trade-off solutions by Pareto analysis. The calculation of the departure time and arrival 

time of each flight leg is the key factor for the penalty function. Under stochastic variability, 

they are random variables and linked each other by flying time. In the existing literature, the 

flying time or the block time was assumed to be independent of the departure time, which 

however does not hold in reality. In practice, the actual flight departure and arrival time can 

significantly deviate from the planned one by many factors, such as airport congestion, 

weather conditions, time of day, etc. We, therefore, assume it as a heteroscedastic regression 

model. The elaborate explanations in terms of relationship and calculation of the departure 

time, arrival time, and flying time of each flight leg are stated in the following section.  

 

The predictive model of flying time 

In this section, we identify the characteristics of the flying time of each flight leg by the 

regression model. Distinct regression models are used based on the characteristics of the data. 

For instance, Demir (2014) applied logistic regression and regression tree to predict 

patient-specific probability. As in the previous study (Chung et al. 2017), it is observed that 

the expected arrival delay of the flight is affected by its departure delay and the delay time is 

largely absorbed by the flight time. Inspired by this result, we further analyze how the flight 

time is affected by its departure time for each specific flight leg. Obviously, the flying time is 

affected by many other factors, such as flight numbers, departure and arrival airports, seasons 

and weekdays. In our problem, in order to incorporate the model of flying times into the 

proposed mathematical program and solved by the column generation, the two-variable 

regression analysis, given the other factors, is conducted between the mean/variance of the 

flying time and its departure time. The details regarding the modeling of flying time are 

discussed in the following.  

 

Data source and preprocessing 

We obtained over two years of flight data (from April 2015 to March 2017) which is provided 

from one of the major flight data service providers. We select the data of one major global 

airline, which is headquartered in Hong Kong2. A flight network which involves 14 airports 

                                                      
2 Here we choose to apply the data of one main airline, whose flight network covers 35 countries and regions to 
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are investigated for data analysis. They are: 1. HKG (Hong Kong) 2. KIX (Osaka) 3. SIN 

(Singapore) 4. PEN (Penang) 5. OKA (Naha) 6. TPE (Taipei) 7. GUM (Guan) 8. ICN (Seoul) 

9. SGN (Ho Chi Minh City) 10. BKK (Bangkok) 11. CMB (Columbo) 12. MAA (Chennai) 13. 

BOM (Mumbai) 14. DEL (Delhi). Multiple dimensional data are collected, including flight 

number, date of flight, scheduled arrival time, actual arrival time, scheduled departure time, 

actual departure time, actual flight time, departure and arrival airports, and aircraft type. To 

avoid the negative influence incurred due to the messy data, we preprocess the raw data and 

measure the outliers by the following rules. Since early flight departures will not be a reason 

causing arrival delays and thus will not cause propagating delays, for any flight departures 

earlier than the scheduled departure time, it is considered as on-time departures in our model 

to avoid negative values in the calculations. This practice also consists with the robust 

planning in which the earlier departure of the flight is not considered (Ionescu et al., 2016, 

Chung et al., 2017). In addition, since this study is on a regular operational basis, any flight 

with a departure or arrival delay longer than 3 hours is regarded as an extreme case and is 

excluded as in Lan et al., 2006 and Ionescu et al., 2016. This is because those extreme cases 

can be regarded as severe disruptions, which normally cannot be handled by proactive robust 

planning.  

 

Heteroscedastic regression model 

As the scheduled departure time of the flights with the same flight number is varied 

throughout the year, the flight legs are divided into different groups according to the origin 

and destination airports as well as its departure time rather than by the flight number. Both 

departure and arrival times of each flight leg are random variables, which depend on the 

arrival time of its preceding flight leg and the actual flying time. Figs. 2 and 3 illustrate the 

frequencies of the actual departure and arrival times of a selected flight leg. The x-axis 

represents the actual departure/arrival time point. The actual departure and arrival times may 

have different patterns, but for flight regular uncertainties, they can be approximated by 

known probability distributions, such as Normal, Gamma, etc. Here, One-Sample 

Kolmogorov-Smirnov Test is applied to test if departure/arrival time fits a known distribution 

well. For instance, it is verified that the departure time illustrated in Fig.2 is well fitted by 

Normal distribution N(1066, 142), as the test statistics p = 0.2 > 0.05. However, the 

hypothesis that the arrival time in Fig.3 follows a Normal distribution is rejected as the test 

statistics p = 0.00 <0.05. This result is also intuitive, as the real situation is much more 

complex. More than one distribution would be involved. But, in our study, by conducting the 

Chi-square test, we choose Normal distribution to model the uncertainties of the departure 

and arrival time of all the flight legs to make the model tractable. Consequently, we define the 

                                                                                                                                                        
conduct our data analysis and computational experiments. It works as a representative to reflect the general 

situations faced by main airlines. 
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flight regular uncertainties occurring in the airline operations below. 

Definition 1. Flight regular uncertainties refer to recurring probabilistic activities or events 

in airline operations at airport or at air. Historical data are often available to characterize their 

probability distributions. 

 

 

 

Figure 2: An illustration on departure time distribution.  

 

Figure 3: An illustration on arrival time distribution. 

 

This definition is commonly used in the transport literature for the cases when shipping 

uncertainty is considered (Li et al. 2015). Figs. 4a and 4b display the correlation between the 

departure time and its flying time of a given flight leg. Fig. 4a shows the historical data of the 

flight departing from Hong Kong at 5 p.m. to London Heathrow at 6:20 a.m. There is a strong 

negative correlation between its departure time and flying time. This reflects the real practice 

that the aircraft would speed up to chase the planned arrival time, so the flying time is 

decreased when the departure time increases. On the other hand, Fig. 4b presents a strong 

positive correlation between the departure time and its flying time of the flight departing from 
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Hong Kong at 5 a.m. to Los Angeles at 5:25 p.m. This corresponds to the situations when the 

aircraft have to circle overhead and await permission to land when encountering the peak 

hour at the destination airport. On the other hand, it is observed that the volatility of the flying 

time varies along with the departure time. Motivated by the phenomenon, the systematic 

correlations analysis is conducted. The raw dataset is divided into 122 datasets corresponding 

to the specific departure time slots among 14 different airports from April 2015 to March 

2017. The statistics results verify that, for over 23% of the total flight legs explored, their 

expected flying times are significantly correlated to the actual departure times (i.e., the 

statistical measure of p-value is less than the significance level of 0.05). In addition, for 21% 

of the total flight legs, their flying time variances are significantly correlated to their actual 

departure times (i.e., the statistical measure of p-value is less than the significance level of 

0.05). It is shown that the correlation between the flying time and its departure time is related 

to the time slot when it gets departure from the airport, which does not exist for all the flight 

legs. This phenomenon is intuitive. As for the non-peak hours for the airport, the departure 

and arrival time would be on-time. However, for the flight legs departed at early in the 

afternoon, the flying time would be shorter to avoid facing airport congestion. While for those 

flight legs departed at late in the afternoon, the flying time would be longer due to the long 

queue to get landed.  

 

Figure 4: Illustrations on the correlation between departure time and flying time. 

 

a. Negative correlation. 

 

 

b. Positive correlation. 

 

     Consequently, in the case of heteroscedasticity, a parametric shape of the flying time for 

this conditional volatility is considered as follows. The rationality of modeling the flying time 

as a heteroscedastic regression model can be mainly stated from two aspects in our study. 

Firstly, according to the description and correlation analysis on the historical data, it is found 

that both mean and variance of the flying time are affected by its departure time. The 

heteroscedastic regression model well shapes the characteristics of the flying time from two 

aspects, i.e., mean and variance. Secondly, due to the simple structure of the heteroscedastic 

regression model, the analytical closed-form of the flying time can be smoothly applied to the 
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following modeling of departure and arrival times of each flight leg, which helps to obtain a 

tractable mathematical optimization framework. 

 

Assumption 1. The flying time of leg j 𝐹𝑇𝑗(𝑇) which depends on its departure time T can be 

modeled into a regression relationship as  

𝐹𝑇𝑗(𝑇) = 𝜇𝑗(𝑇) + 𝜎𝑗(𝑇)𝜖.              

Here T is a random variable and is independent with 𝜖, and 𝜖 is taken to be a standard 

normal random variable. 

The flying time 𝐹𝑇𝑗(𝑇) is assumed to be a heteroscedastic regression model (Yu and 

Jones 2004). Two aspects of the distribution of the flying time conditional on T = t are 

expected to be estimated, i.e., the regression mean function 𝜇𝑗(𝑡) = 𝐸(𝐹𝑇𝑗(𝑇)|𝑇 = 𝑡) and 

the regression variance function 𝜎𝑗
2(𝑡) = 𝑉𝑎𝑟(𝐹𝑇𝑗(𝑇)|𝑇 = 𝑡). 

To make the problem tractable and work well with the mathematical modeling in the 

following section, here we assume the regression mean function is in the form of simple 

linear function, i.e. 𝜇𝑗(𝑡) = 𝛽0 + 𝛽1𝑡. The coefficients are first estimated by the ordinary 

least squares criterion (OLS) and refined by weighted least squares (WLS) procedures to 

remove the impact of heteroscedasticity on the parameters estimation. The main focus here is 

to have an efficient regression parameter estimation for the regression variance function 

𝜎𝑗
2(𝑡). There are two main streams to solve the heteroscedastic linear model, i.e., parametric 

and nonparametric approaches. For the parametric approach, the variance function 𝜎𝑗,𝜃
2 (𝑡) is 

assumed to be known, where 𝜃  is the parameters vector to be estimated. For the 

nonparametric approach, kernel-based nonparametric local estimation for variance function is 

widely used in the statistics literature (e.g., Carroll 1982; Fan and Yao 1998; Heuchenne and 

Laurent 2017). In this study, both approaches are explored and the main procedures for the 

estimator of the variance function in conjunction with the estimator of the mean function are 

constructed as follows: 

 

(1) Let �̂�𝐿 = OLS estimate, with �̂�𝐿
, = (�̂�0, �̂�1). 

(2) Let 𝑟2 be the vector of squared residuals, i.e., 𝑟𝑖
2 = (𝐹𝑇(𝑡𝑖) − �̂�0 − �̂�1𝑡𝑖)2. 

(3a) (For parametric approach) Let 𝜃 be the OLS estimator that minimizes the sum of 

squares errors, i.e., min
𝜃

∑ [𝑟𝑖
2 − 𝜎𝜃

2(𝑡)]2𝑛
𝑖=1 . Here, n equals the sample size.  

(3b) (For nonparametric approach) Let 𝑣(𝑡) = ∑ 𝑟𝑖
2𝑛

𝑖=1 𝐾 (
𝑡𝑖−𝑡

𝑏
) {∑ K(

𝑡𝑖−𝑡

𝑏
)𝑛

𝑖=1 }−1, where K(∙

) is a kernel function, b is the bandwidth, and n equals the sample size.  

(4a) Define �̂�2(𝑡𝑖) = 𝜎�̂�
2(𝑡𝑖), and compute the WLS estimate �̂�𝑤 = (�̂�0𝑤 , �̂�1𝑤) and 

corresponding squared residuals, i.e., �̃�𝑖
2 = (𝐹𝑇(𝑡𝑖) − �̂�0𝑤 − �̂�1𝑤𝑡𝑖)2. 

(4b) Define �̂�2(𝑡𝑖) = 𝑣(𝑡𝑖), and compute the WLS estimate �̂�𝑤 = (�̂�0𝑤, �̂�1𝑤) and 

corresponding squared residuals, i.e., �̃�𝑖
2 = (𝐹𝑇(𝑡𝑖) − �̂�0𝑤 − �̂�1𝑤𝑡𝑖)2. 

(5) Repeat (3) and obtain the conditional variance function 𝜎�̃�
2(𝑡)/ �̃�(𝑡). 
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Several researchers have discussed different rules of bandwidth selection. Please refer to 

Fan and Gijbels 1995 for more details. In this study, the selection of the bandwidth b is based 

on the mean squares errors (MSE). In addition, as most commonly used in the literature, we 

apply the Gaussian kernel function for the conditional variance estimate. In terms of 

parametric function 𝜎𝜃
2(𝑡), different functions displayed in Table 1 are tested. The specific 

parametric variance function for each flight leg is selected according to the goodness-of-fit.  

Table 1: List of parametric regression variance functions 

1. �̂�2(𝑡) = 𝜃0 + 𝜃1𝑡 6. �̂�2(𝑡) = 𝜃0 + 𝜃1𝑙𝑛𝑡 

2. �̂�2(𝑡) = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2 7. �̂�2(𝑡) = 𝜃0𝑒𝜃1𝑡 

3. �̂�2(𝑡) = 𝜃0 + 𝜃1𝑡 + 𝜃2𝑡2 + 𝜃3𝑡3 8. �̂�2(𝑡) = 𝜃0 ∙ 𝜃1
𝑡
 

4. ln (�̂�2(𝑡)) = 𝜃0 + 𝜃1𝑡 9. �̂�2(𝑡) = 𝜃0 ∙ 𝑡𝜃1  

5. ln (�̂�2(𝑡)) = 𝜃0 + 𝜃1
1

𝑡
 10. �̂�2(𝑡) = 𝜃0 + 𝜃1

1

𝑡
 

 

Figure 5: illustration of the estimation under parametric and nonparametric approaches. 

a. Regression mean function with positive correlation 

b. Regression mean function with negative correlation. 

*Upper and lower bounds are determined by the departure-time-dependent standard deviation of the flying time. 
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Evaluating the predicted performance of models 

Table 2 shows the statistics R2 adjusted and mean squares error (MSE) of the estimated mean 

regression models under different models. It is verified that there is a strong linear correlation 

between the expected flying time and its departure time. The impact of heteroscedasticity is 

well removed by the weighted least squares procedures. The R2 adjusted is increased to 0.971 

from 0.145 by parametric WLS. However, the corresponding R2 adjusted under kernel-type 

variance estimator is increased to 0.310, much less than 0.971. The main reason behind that is, 

the nonparametric model is much sensitive to the quantity of the given data. Once data 

deficiencies exist at some points, a large error will be incurred, which largely affects the 

estimation of the mean function. Fig. 5 illustrates the predicted value of the conditional 

variance function under parametric and nonparametric approaches. It is obvious that the 

goodness-of-fit by the kernel-type estimator is much better than that of the parametric 

estimator. However, there is no explicit expression of the kernel-based variance function 

which is not compatible with further modeling of the robust optimization. Besides, its data 

sensitivity may also affect the robustness of the final plans on the crew pairings. Therefore, 

we apply the parametric approach to estimate both mean and variance regression functions. 

 

Table 2: Model performance. 

Models 𝑅2 adjusted MSE 

OLS 0.145 244.6 

Parametric WLS 0.971 240.1 

kernel-type WLS 0.310 242.4 

 

Modeling of the consecutive departure and arrival times 

In this section, we model the consecutive departure and arrival times of the flights in each 

duty, which are expressed into the recursive formulas.  

Firstly, we start from the arrival time of the first flight j leg arr(𝑗) in a given duty. To 

obtain the arrival time of the leg j, we have the following recursive formula: 

arr(𝑗) = 𝑑𝑒𝑝(𝑗) + 𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗)), ∀ 𝑗 ∈ 𝐹.  (1) 

It equals the sum of the departure time denoted as 𝑑𝑒𝑝(𝑗) and its corresponding flying time 

denoted as 𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗)). Accordingly, we take expectation on both sides of Eq. (1), then we 

have the expected arrival time of flight leg j as follows: 

E[arr(𝑗)] = E[𝑑𝑒𝑝(𝑗) + 𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗))]           

        = E[𝑑𝑒𝑝(𝑗)] + E [E[𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗))|dep(𝑗) = 𝑡]]  

        = E[𝑑𝑒𝑝(𝑗)] + E[𝜇𝑗(𝑡)], ∀ 𝑗 ∈ 𝐹.                                  

(2) 

Refer to Jula et al. (2006) and Fu and Rilett (1998), as here 𝜇𝑗(𝑡) is a linear function, the 
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mean and variance of 𝑎𝑟𝑟(𝑗) can be expressed exactly as: 

𝐸[𝑎𝑟𝑟(𝑗)] = 𝐸[𝑑𝑒𝑝(𝑗)] + 𝜇𝑗(𝐸[𝑑𝑒𝑝(𝑗)])          (3) 

𝑉𝑎𝑟[𝑎𝑟𝑟(𝑗)] = (1 + 𝜇𝑗
′ (E[𝑑𝑒𝑝(𝑗)]))

2
𝑉𝑎𝑟[𝑑𝑒𝑝(𝑗)] + 𝜎𝑗

2(𝐸[𝑑𝑒𝑝(𝑗)])    (4) 

Obviously, they cannot directly be generated without the mean and variance of its departure 

time, i.e., E[𝑑𝑒𝑝(𝑗)] and 𝑉𝑎𝑟[𝑑𝑒𝑝(𝑗)]. Hence, we further explore the explicit expression of 

the departure time dep(𝑗). Accordingly, we have the following assumptions: 

Assumption 2. The aircraft is always available.  

Assumption 3. The first leg 𝑗𝑠
𝑑 in each duty d is expected to be an on-time departure, 

i.e., E[dep( 𝑗𝑠
𝑑)] = 𝑑𝑒𝑝𝑠(𝑗𝑠

𝑑). A primary variance 𝑉𝑎𝑟[dep( 𝑗𝑠
𝑑)] = 𝑣𝑗 is given to the first 

leg of each duty. 

Note that, the superscript s refers to the scheduled time of departure. The primary 

variance is the time deviation which is not induced by the crew schedule. Assumption 2 does 

not hold in reality when the aircraft changes happen. The arrival time of the aircraft may also 

be affected by its previous crew schedules. In this case, the crew schedules get intersected due 

to aircraft changes and their interaction further affects the flight delay, which is not our 

purpose of the study. In order to make our study focus on the interdependency of propagated 

delay and primary delay, and make the problem tractable, we do not consider the case when 

the aircraft is not available and the crew has to wait. 

Under Assumption 2, we get the expression of dep(𝑗) as follows: 

dep(𝑗) = Max(𝑑𝑒𝑝𝑠(𝑗), 𝑎𝑟𝑟(𝑗−) + Minsit), ∀ 𝑗 ∈ 𝐹.           (5) 

where, 𝑗− is the preceding leg of flight leg 𝑗. 

By taking expectation on both sides of Eq. (5), we have: 

𝐸[dep(𝑗)] = E[Max(𝑑𝑒𝑝𝑠(𝑗), 𝑎𝑟𝑟(𝑗−) + Minsit)], ∀ 𝑗 ∈ 𝐹.          (6) 

Under the Assumption 3, there is no need for the crew to wait for the connected flight, 

thus the departure time of the connected flight leg 𝑑𝑒𝑝(𝑗) is the maximum time between its 

scheduled departure time 𝑑𝑒𝑝𝑠(𝑗) and the sum of the arrival time of preceding flight leg 

𝑎𝑟𝑟(𝑖) and required minimum connection time 𝑀𝑖𝑛𝑠𝑖𝑡. Thus, Eqs. (3), (4) and (6) are 

composed of the recursive formulas for the calculation of the expected departure and arrival 

time of each leg in a duty. Their calculation is critical as it is much related to the measure of 

robustness in the optimization. Here, the challenge is to find the mean and variance of dep(𝑗). 

Firstly, given the probability distribution of 𝑎𝑟𝑟(𝑗)  with mean and variance equal to 

E[𝑎𝑟𝑟(𝑗)] and Var[𝑎𝑟𝑟(𝑗)], the mean and variance of the departure time of leg j, i.e., 

E[dep(𝑗)] and Var[𝑑𝑒𝑝(𝑗)], can be calculated according to the following proposition. 

Before we develop the specific close-form of the mean and variance of departure time for leg 

j, we first present the general case in Lemma 1. 
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Lemma 1. The mean and variance of 𝑋 = max {𝑋1, 𝑐}, where 𝑋1 follows normal distribution 

𝒩(𝜇, 𝜎2) and c are a constant, can be formulated into the following equations, respectively. 

𝐸(𝑋) = 𝜇𝛷 [
𝜇−𝑐

𝜎
] + 𝑐𝛷 [

𝑐−𝜇

𝜎
] + 𝜎𝜙 [

𝑐−𝜇

𝜎
],          (7) 

𝑉𝑎𝑟(𝑋) = (𝜇2 + 𝜎2)𝛷 [
𝜇−𝑐

𝜎
] + 𝑐2𝛷 [

𝑐−𝜇

𝜎
] + (𝜇 + 𝑐)𝜎𝜙 [

𝑐−𝜇

𝜎
] − [𝐸(𝑋)]2,    (8) 

where 𝛷[∙] is the cumulative distribution function of the standard normal distribution, 𝜙[∙] 

is the probability density function of the standard normal distribution.  

Proof: See appendix. 

Fig. 6 presents the impacts of the statistical parameters of the arrival time of the 

preceding leg on those of the departure time of its successive flight leg. It is identified that 

there is an amplification effect of the arrival delay on the departure delay from two 

dimensions, i.e., mean and variance. This implies that a well-controlled flying time may help 

mitigate further propagated delay due to late arrivals. 

For robustness checking, the analysis is further conducted for the case of Gamma 

distribution, which shows similar results as Normal distribution. It implies that the 

interrelationship between the arrival time and departure time of the consecutive flight legs is 

not affected by the properties of the probability distributions. The amplification effect 

between the arrival delay of the preceding leg and the departure delay of its successive leg is 

insensitive to the patterns of the probability distributions. For more details, please refer to the 

appendix. 

 

Figure 6: Illustration of the relationship between (𝜇, 𝜎2) and (𝐸(𝑥), 𝑉𝑎𝑟(𝑥)). 

 

To make the problem tractable, we assume the departure time dep(𝑗), the arrival time 

arr(𝑗) and the flying time of each flight leg j FT(dep(𝑗)) follow the same probability 

distribution. In other words, if the departure time is assumed to follow a normal distribution, 

then its arrival time is also approximated to follow a normal distribution with 𝐸[𝑎𝑟𝑟(𝑗)] and 

𝑉𝑎𝑟[𝑎𝑟𝑟(𝑗)], vice versa. As verified by Ehmke et al. (2015), the percent error by such 
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probability distribution approximation is within 1%. Therefore, under the setting of the 

normal distribution, the mean and variance of flight leg j can be calculated according to the 

Eqs. (7) and (8), and the details have been presented in Proposition 1. 

Proposition 1. In a given duty, the mean and variance of the consecutive flight leg j, given its 

preceding flight leg i, which follows normal distribution 𝒩(𝐸[𝑎𝑟𝑟(𝑖)], 𝑉𝑎𝑟[𝑎𝑟𝑟(𝑖)]), the 

mean and variance of the consecutive flight leg j satisfy the equations as follows: 

𝐸[𝑑𝑒𝑝(𝑗)] = 𝑑𝑒𝑝𝑠(𝑗)Φ (
𝑑𝑒𝑝𝑠(𝑗)−𝐸[𝑎𝑟𝑟(𝑖)]−𝑀𝑖𝑛𝑠𝑖𝑡

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

) +E[arr(i)]Φ (
𝐸[𝑎𝑟𝑟(𝑖)]+𝑀𝑖𝑛𝑠𝑖𝑡−𝑑𝑒𝑝𝑠(𝑗)

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

)  

+√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))𝜙 (
𝑑𝑒𝑝𝑠(𝑗)−𝐸[𝑎𝑟𝑟(𝑖)]−𝑀𝑖𝑛𝑠𝑖𝑡

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

).  

𝑉𝑎𝑟[𝑑𝑒𝑝(𝑗)] = E[max (𝑑𝑒𝑝𝑠(𝑗), arr(i) + Minsit)]2 − 𝐸2[𝑑𝑒𝑝(𝑗)], 

where,  

E[max(𝑑𝑒𝑝𝑠(𝑗), arr(𝑖) + Minsit)]2 = (𝑑𝑒𝑝𝑠(j))
2

Φ (
𝑑𝑒𝑝𝑠(𝑗)−𝐸[𝑎𝑟𝑟(𝑖)]−𝑀𝑖𝑛𝑠𝑖𝑡

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

)  

+(𝑉𝑎𝑟[𝑎𝑟𝑟(𝑖)] + 𝐸2[𝑎𝑟𝑟(𝑖)] + 2𝑀𝑖𝑛𝑠𝑖𝑡𝐸[𝑎𝑟𝑟(𝑖)] + 𝑀𝑖𝑛𝑠𝑖𝑡2)Φ (
𝐸[𝑎𝑟𝑟(𝑖)]+𝑀𝑖𝑛𝑠𝑖𝑡−𝑑𝑒𝑝𝑠(𝑗)

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

)  

+(E[arr(i)] + Minsit + 𝑑𝑒𝑝𝑠(j))√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))𝜙 (
𝑑𝑒𝑝𝑠(𝑗)−𝐸[𝑎𝑟𝑟(𝑖)]−𝑀𝑖𝑛𝑠𝑖𝑡

√𝑉𝑎𝑟(𝑎𝑟𝑟(𝑖))

).  

 

Bi-criteria optimization modeling for robust crew pairing problem (BCM) 

The following summarizes the notation used in this paper and the modeling of the proposed 

bi-criteria optimization model. 

 

Notation: 

Sets: 

D     set of duties; 

𝐷𝑏
𝑠     set of duties stating from crew base (𝐷𝑏

𝑠 ⊂ 𝐷); 

𝐷𝑏
𝑒     set of duties ending at crew base (𝐷𝑏

𝑒 ⊂ 𝐷);           

F     set of flights; 

P     set of pairings. 

 

Parameters: 
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Minsit minimum time needed between two consecutive legs within a 

duty; 

Maxfly maximum amount of flying time for each duty; 

𝑀𝑎𝑥𝑒𝑙𝑎𝑝𝑠𝑒(𝑑)         maximum amount of elapsed time for duty 𝑑; 

𝑑𝑒𝑝𝑠(𝑗) scheduled departure time of leg 𝑗; 

𝑎𝑟𝑟𝑠(𝑗)    scheduled arrival time of leg 𝑗; 

𝑐𝑤        unit cost for connection time; 

𝑐𝑤+
     unit waiting cost during flight connections; 

𝑐𝑤−
     unit cost for short connection time; 

𝑐𝑟       unit rest period cost; 

𝑐𝑔       unit penalty for a short duty period; 

𝑐ℎ       deadhead cost; 

𝑚𝑖𝑗     =1, if the connection of leg i, j is feasible; = 0, otherwise; 

s, e      dummy starting and ending nodes for each duty (pairing); 

𝑇𝑚𝑖𝑛     ideal flying time of each duty; 

r     ideal rest period; 

𝑖 , 𝑗     flight leg 𝑖 , 𝑗;   

d, k, l    duty d, k, l. 

 

Decision variables: 

𝑥𝑖𝑗
𝑑       =1, if flight leg 𝑖 precedes flight leg 𝑗 in duty 𝑑; = 0, otherwise; 

𝑥𝑘𝑙
𝑝

     =1, if duty k precedes duty l in pairing p; = 0, otherwise. 

 

Random variables: 

𝑑𝑒𝑝(𝑗)          actual departure time of leg 𝑗; 

𝑎𝑟𝑟(𝑗)     actual arrival time of leg 𝑗; 

𝐹𝑇𝑗(𝑡)    actual flying time of leg 𝑗 given the departure time at 𝑡. 

 

Objective functions: 

In the proposed bi-criteria optimization model, two objective functions are proposed. The first 

one is to minimize the total basic crew cost shown in Eq. (9). Each pairing which is composed 

of a legal sequence of duties is associated with a basic cost. Refer to Chung et al. (2017), the 

basic cost components include deadhead cost 𝑐𝐻, the waiting cost for flight connections 𝑐𝑊 

and rest periods between consecutive duties 𝑐𝑅 , and cost for pairing minimum duty 

guaranteed (PMDG) 𝑐𝐺. The deadhead cost will only happen if the first flight leg of each 

duty is not started from its duty base, presented in Eq. (10). The connection cost is a 

nonmonotonic function of the waiting time during the flight connections defined in Eq. (11). 

If the connection time is bigger than the required sit time, waiting cost will be induced. While 
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when the scheduled connection time is less than the required sit time, a large cost will be 

caused. So, 𝑐𝑤+
≪  𝑐𝑤−

. The cost of PMDG is to penalize the situation when the planned 

duty period is shorter than the ideal period 𝑇𝑚𝑖𝑛, as shown in Eq. (12), which helps to 

increase crew utility. Eq. (13) states the details of the rest period cost which includes a fixed 

cost 𝑐𝑓
𝑟 for each rest period and the additional cost related to the time period exceeding the 

ideal rest time period 𝑟.  

The other objective function (14) is to minimize the deviations of the actual flight 

schedule from the planned one induced by crew schedule and schedule disruption due to 

safety illegality, i.e., working hour exceeds the maximum as regulated. It is composed of four 

parts, which are the expected departure and arrival delays of each leg as well as the overwork 

time of each duty and each pairing, respectively. 𝛼, 𝛽, 𝛾, and δ are the corresponding 

parameters which reflect their priorities and can be determined by the decision maker. 

𝐙𝟏= Min 𝑐𝐻 + 𝑐𝑊 + 𝑐𝐺 + 𝑐𝑅,                   (9)                             

where,  

𝑐𝐻 = 𝑐ℎ(∑ ∑ 𝑥𝑠𝑗
𝑑

𝑗∈𝐹𝑑∈𝐷 − ∑ ∑ 𝑥𝑠𝑗
𝑑

𝑗∈𝐹𝑑∈𝐷𝑏
𝑠 ),          (10) 

𝑐𝑊 = ∑ [𝑐𝑤+
(∑ ∑ (𝑎𝑟𝑟𝑠(𝑗) − 𝑑𝑒𝑝𝑠(𝑗))𝑥𝑖𝑗

𝑑
𝑗∈𝐹\{𝑖}𝑖∈𝐹 − 𝑀𝑖𝑛𝑠𝑖𝑡)

+
𝑑∈𝐷   

       +𝑐𝑤−
(∑ ∑ (𝑎𝑟𝑟𝑠(𝑗) − 𝑑𝑒𝑝𝑠(𝑗))𝑥𝑖𝑗

𝑑
𝑗∈𝐹\{𝑖}𝑖∈𝐹 − 𝑀𝑖𝑛𝑠𝑖𝑡)−]       

(11) 

𝑐𝐺 = ∑ 𝑐𝑔(𝑇𝑚𝑖𝑛 − ∑ ∑ (𝑎𝑟𝑟𝑠(𝑗) − 𝑑𝑒𝑝𝑠(𝑗))𝑥𝑖𝑗
𝑑

𝑗∈𝐹\{𝑖}𝑖∈𝐹𝑑∈𝐷 )+,       (12) 

𝑐𝑅 = ∑ ∑ ∑ ∑ 𝑐𝑟(𝑦𝑘𝑙
𝑝

𝑥𝑗𝑒
𝑘 𝑎𝑟𝑟(𝑗) − 𝑦𝑘𝑙

𝑝
𝑥𝑠𝑖

𝑙 𝑑𝑒𝑝(𝑖) − 𝑟)+
𝑗∈𝐹\{𝑖}𝑖∈𝐹𝑘,𝑙∈𝐷∪{𝑘≠𝑙}𝑝∈𝑃 +

∑ ∑ ∑ 𝑐𝑓
𝑟(𝑦𝑘𝑙

𝑝
𝑙∈𝐷\{𝑘}𝑘∈𝐷𝑝∈𝑃 − 1).           (13) 

𝐙𝟐= Min 𝛼 ∑ ∑ ∑ 𝑥𝑖𝑗
𝑑 𝐸[𝑑𝑒𝑝(𝑖) − 𝑑𝑒𝑝𝑠(𝑖)]𝑗∈𝐹\{𝑖}𝑖∈𝐹𝑑∈𝐷 +

𝛽 ∑ ∑ ∑ 𝑥𝑖𝑗
𝑑 𝐸[𝑎𝑟𝑟(𝑖) − 𝑎𝑟𝑟𝑠(𝑖)]+

𝑗∈𝐹\{𝑖}𝑖∈𝐹𝑑∈𝐷 + 𝛾 ∑ 𝐸[∑ 𝑥𝑗𝑒
𝑑 𝑎𝑟𝑟(𝑗)𝑗∈𝐹 −𝑑∈𝐷

∑ 𝑥𝑠𝑗
𝑑 𝑑𝑒𝑝𝑠(𝑗)𝑗∈𝐹 − 𝑀𝑎𝑥𝑒𝑙𝑎𝑝𝑠𝑒(𝑑)]

+
 

+δ ∑ 𝐸[∑ ∑ 𝑦𝑑𝑒
𝑝

𝑥𝑗𝑒
𝑑

𝑗∈𝐹 𝑎𝑟𝑟(𝑗)𝑑∈𝐷 − ∑ ∑ 𝑦𝑠𝑑
𝑝

𝑥𝑠𝑗
𝑑

𝑗∈𝐹 𝑑𝑒𝑝𝑠(𝑗)𝑑∈𝐷 − 𝑀𝑎𝑥𝑒𝑙𝑎𝑝𝑠𝑒(𝑝)]+
𝑝∈𝑃 . 

(14) 

The weighted sum method is utilized here to convert the multicriteria problem into a 

single objective problem. To make it compatible between cost (Objective function 𝐙𝟏) and 

robustness measure (Objective function 𝐙𝟐), both are normalized into the same range, i.e. 

(0,1). Therefore, the objective function of the problem is converted into: 

𝐙𝟑= Min (1- 𝛚)
𝒁𝟏−𝒁𝟏

𝐙𝟏−𝒁𝟏
+ 𝛚

𝒁𝟐−𝒁𝟐

𝐙𝟐−𝒁𝟐
            (15) 

where, 𝑍1 is the minimum value without 𝑍2 and Z1 is the maximum value Z1, which 

corresponds to the value that Z2 obtained its minimum value Z2. ω is a robustness factor 

within the range of (0,1). When ω moves to 1, it intends to be an extremely high level of 

robustness, in which case that operations cost is ignored. When ω moves to zero, it refers to 

the case of no consideration of robustness. The objective function is subject to the following 



21 
 

constraints. 

 

Constraints: 

The constraints for this crew pairing problem are divided into four categories according to 

their functions, which are formulated as follows: 

i) Flow balance constraints: 

∑ ∑ 𝑥𝑖𝑗
𝑑

𝑖∈𝐹∪{𝑠}\{𝑗}𝑑∈𝐷 = 𝑚𝑖𝑗,   ∀ 𝑗 ∈ 𝐹.                                   

 (16) 

∑ ∑ 𝑥𝑠𝑗
𝑑

𝑗∈𝐹𝑑∈𝐷 = 1.                                                 (17) 

∑ ∑ 𝑥𝑖𝑗
𝑑

𝑖∈𝐹∪{𝑠}\{𝑗}𝑑∈𝐷 𝑚𝑖𝑗 − ∑ ∑ 𝑥𝑗𝑛
𝑑

𝑛∈𝐹∪{𝑒}\{𝑗}𝑑∈𝐷 𝑚𝑗𝑛 = 0,   ∀ 𝑗 ∈ 𝐹.    

 (18) 

∑ ∑ 𝑥𝑗𝑒
𝑑

𝑗∈𝐹𝑑∈𝐷 = 1.              (19) 

∑ ∑ 𝑦𝑘𝑙
𝑝

𝑘∈𝐷\{𝐷𝑏
𝑒∪𝑙}𝑝∈𝑃 = 𝑥𝑖𝑗

𝑙 ,   ∀ 𝑙 ∈ 𝐷\𝐷𝑏
𝑠 ; ∀ 𝑖, 𝑗 ∈ 𝐹; 𝑖 ≠ 𝑗 .               

 (20) 

∑ ∑ 𝑦𝑠𝑑
𝑝

𝑑∈𝐷\𝐷𝑏
𝑠𝑝∈𝑃 = 1.                                             (21) 

∑ ∑ 𝑦𝑘𝑑
𝑝

𝑘∈𝐷\𝐷𝑏
𝑒𝑝∈𝑃 − ∑ ∑ 𝑦𝑑𝑙

𝑝
𝑙∈𝐷\𝐷𝑏

𝑠𝑝∈𝑃 ≤ 1 − 𝑥𝑖𝑗
𝑑 ,   ∀ 𝑑 ∈ 𝐷\{𝐷𝑏

𝑠 ∪ 𝐷𝑏
𝑒}; ∀ 𝑖, 𝑗 ∈ 𝐹; 𝑖 ≠ 𝑗. 

                

 (22a) 

∑ ∑ 𝑦𝑘𝑑
𝑝

𝑘∈𝐷\𝐷𝑏
𝑒𝑝∈𝑃 − ∑ ∑ 𝑦𝑑𝑙

𝑝
𝑙∈𝐷\𝐷𝑏

𝑠𝑝∈𝑃 ≥ 𝑥𝑖𝑗
𝑑 − 1,   ∀ 𝑑 ∈ 𝐷\{𝐷𝑏

𝑠 ∪ 𝐷𝑏
𝑒}; ∀ 𝑖, 𝑗 ∈ 𝐹; 𝑖 ≠ 𝑗. 

                

 (22b) 

∑ ∑ 𝑦𝑑𝑒
𝑝

𝑑∈𝐷\𝐷𝑏
𝑠𝑝∈𝑃 = 1.             (23) 

ii) Time restriction constraints: 

∑ ∑ 𝐸[𝑎𝑟𝑟(𝑗) − 𝑑𝑒𝑝(𝑗)]𝑗∈𝐹\{𝑖}𝑖∈𝐹 𝑥𝑖𝑗
𝑑 ≤ 𝑀𝑎𝑥𝑓𝑙𝑦,   ∀ 𝑑 ∈ 𝐷.      (24) 

E[𝑑𝑒𝑝(𝑗) − 𝑎𝑟𝑟(𝑖)]𝑥𝑖𝑗
𝑑 ≥ 𝑀𝑖𝑛𝑠𝑖𝑡,   ∀ 𝑑 ∈ 𝐷; 𝑗 ∈ 𝑑.       

 (25) 

iii) Definitional constraints: 

𝑎𝑟𝑟(𝑗) = 𝑑𝑒𝑝(𝑗) + 𝐹𝑇𝑗(𝑑𝑒𝑝(𝑗)),   ∀ 𝑗 ∈ 𝐹.         (26) 

𝑑𝑒𝑝(𝑗) = ∑ ∑ 𝑥𝑖𝑗
𝑑

𝑖∈𝐹\{𝑗}𝑑∈𝐷 Max(𝑑𝑒𝑝𝑠(𝑗), 𝑎𝑟𝑟(𝑖) + Minsit),   ∀ 𝑗 ∈ 𝐹.    (27) 

iv) Integer constraints: 

𝑥𝑖𝑗
𝑑 , 𝑥𝑘𝑙

𝑝
∈ {0,1}, ∀ 𝑖, 𝑗 ∈ 𝐹; ∀ 𝑘, 𝑙 ∈ 𝐷. 

The first part is for flight and duty flow balance, which is to make sure the feasible 

connections for consecutive flight legs in each duty and consecutive duties in each pairing. 

Constraints (16) state that, given a flight leg, it must belong to one duty in which there is a 

connected preceding flight leg. Constraints (17) and (19) present that, for each duty there 

must be one flight as the first leg and another flight as the last leg in the given duty. 

Constraints (18) ensure that for each flight leg in a duty, it has one preceding flight leg and 

one successive flight leg. Constraints (20)-(22) correspond to the cases of duties, which are 
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similar to the cases for flight legs as shown in (16)-(19). For instance, constraints (20) state 

that the duty works if and only if there are flight legs assigned to the duty. The second part is 

for time restriction. Constraints (24) guarantee the expected flying time of each duty does not 

exceed the regulated maximum amount of flying time 𝑀𝑎𝑥𝑓𝑙𝑦. Constraints (25) restricts the 

connection time between consecutive flight legs to be greater than the regulated minimum 

𝑀𝑖𝑛𝑠𝑖𝑡. Lastly, the third part is the definition of the departure and arrival times of each flight 

leg, which is explored in the former section. The expectation of the arrival and departure 

times of each flight leg in a duty can be calculated according to Proposition 1. 

 

COLUMN GENERATION 

Crew pairing problem is known as a complex combinatorial optimization problem and is 

classified as NP-hard problems. While the model can have tremendous number of variables 

and feasible solutions, column generation is identified as a promising approach which 

considers only a set of promising pairings to deal with the problem (Lavoie et al. 1988, 

Saddoune et al. 2012; 2013, Cacchiani et al. 2016, Chung et al. 2017). In this section, a 

column generation based approach with modified multilabel correction algorithm is 

developed to solve the problem.  

 

Restricted master problem for the column generation approach 

The objective of the master problem in the crew pairing problem is to determine a set of crew 

pairings covered all the flights with minimum cost. Let P be the set of all feasible pairings, 

and 𝑐𝑝 be the cost of crew pairing  𝑝 ∈ P. Here, we define a binary variable 𝑎𝑓𝑝 and a 

binary decision variable 𝑥𝑝. 𝑎𝑓𝑝 equals to 1 if the flight  𝑓 ∈ F is covered by the pairing 

𝑝 ∈ P, and equals to 0 otherwise. 𝑥𝑝 equals to 1 if pairing 𝑝 ∈ P is selected in the solution 

and equals to 0 otherwise. The problem is formulated as the following set covering model: 

Z = Min ∑ 𝑐𝑝 𝑝 ∈ 𝑃 𝑥𝑝    (28) 

 

Subject to: 

∑ 𝑎𝑓𝑝 𝑓 ∈ 𝐹 𝑥𝑝  ≥ 1,      ∀ 𝑝 ∈ 𝑃  

 

 

(29) 

𝑥𝑝 ∈ {0, 1},                   ∀ 𝑝 ∈ 𝑃 (30) 

The objective function (28) is to minimize the total cost of the selected pairings, while 

the constraint (29) ensures that each flight is covered by at least one selected pairing.  

The master problem is converted into a restricted master problem (RMP) with a subset 

of feasible crew pairings. The RMP is solved iteratively and the set P is updated in every 

iteration. In the initial set P, one pairing covers only one flight and a deadhead is utilized to 

ensure that the pairing starts and ends at the same base. At each iteration, the dual prices of 
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the RMP are determined and transferred to the pricing subproblem for generating a new 

column (pairing). By solving the subproblem, the pairing with the most negative reduced cost 

is identified and added to set P as a new column. The column generation procedures will stop 

when all the reduced cost are positive.  

 

Pricing problem 

The goal of the pricing subproblem is to determine a column with a minimum reduced cost. A 

column corresponds to a feasible pairing, which is composed of a number of duties. To 

generate a feasible pairing, a duty network is constructed. Let G = (𝒩, 𝒜) be the completed 

duty network where N is the set of nodes and A is the set of arcs for all feasible connections of 

the nodes. Each duty d ∈ D corresponds to a duty node 𝑛 ∈  𝒩. In the network, a resource 

variable 𝑟𝑛
1 corresponding to the values of the duty period in a pairing is associated with 

each duty node, and a resource window [min, max] defining the minimum and maximum 

values of the resource in a pairing is given. To construct a resource-feasible path, the value of 

the resource variable will be accumulated along the path, and to be ensured within the 

corresponding resource window. A problem to determine a resource-feasible path with 

minimum reduced cost is regarded as a shortest path problem with resources constraints 

(SPPRCs). Now, we explain the computation of the reduced cost.  

A feasible pairing p is represented by a resource-feasible path ρ = {o, 𝑛1, 𝑛2,…, e} 

from the start node {o} to the end node {e} in G. An arc (𝑛−, n) ∈ 𝒜 is associated with a 

fixed arc cost 𝑡𝑛−,𝑛
𝑓

, and a variable arc cost 𝑡𝑛−,𝑛
𝑣 . 𝑡𝑛−,𝑛

𝑓
 represents the crew cost in Eq. (31), 

which depends on the duty n and its prior duty 𝑛−. 𝑡𝑛−,𝑛
𝑣  represents the robustness cost, 

which depends not only on the duty nodes 𝑛− and n, but also on the preceding duty nodes of 

𝑛− in the path. Thus, it needs to be determined by constructing the path. A pairing cost 

𝑐𝑝 equals to the sum of the arc costs in path 𝜌 as shown in Eq. (32), where K is a constant to 

denote the basic fixed cost for a pairing. 

  𝑡𝑛−,𝑛
𝑓

=  𝑐𝑛−,𝑛
𝐻 + 𝑐𝑛−,𝑛

𝑤 + 𝑐𝑛−,𝑛
𝐺 + 𝑐𝑛−,𝑛

𝑅 , ∀(𝑛−, 𝑛) ∈ 𝒜        (31) 

, where 𝑐𝑛−,𝑛
𝐻 , 𝑐𝑛−,𝑛

𝑤 , 𝑐𝑛−,𝑛
𝐺 , 𝑐𝑛−,𝑛

𝑅  are referred to Eq.(10-13).  

 𝑐𝑝 = 𝛫 + ∑ (𝑡𝑛−,𝑛
𝑓

𝑛𝜖𝜌 +  𝑡𝑛−,𝑛
𝑣 )            (32) 

, where 𝑛− is the node prior to n in path 𝜌.   

The pairing cost is further modified to a reduced cost by subtracting the dual prices from 

the master problem as shown in Eq. (33). Given the reduced cost 𝑐�̅� of the pairing p in Eq. 

(33), the aim of the sub-problem is to find the path ρ∗ (pairing) with the most negative 

reduced cost as shown in the complete objective function (34). 

 𝑐�̅� = (𝑐𝑝 − ∑ 𝜋𝑓 ∙ 𝑎𝑓𝑝  ) 𝑓∈𝐹             

(33) 

, where 𝜋𝑓 , ∀𝑓 ∈ 𝐹 is the dual price associated with the constraints (29) in the master 

problem. 
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 𝑐�̅�∗ = min 𝐾 + ∑ (𝑡𝑛−,𝑛
𝑍 − ∑ 𝜋𝑓𝑓∈𝐷𝜌

)𝑛∈𝜌                (34) 

, where 𝐷𝜌 is a set of flights covered in the duties of path 𝜌, 𝑡𝑛−,𝑛
𝑍  is the normalized value 

of (𝑡𝑛−,𝑛
𝑓

+  𝑡𝑛−,𝑛
𝑣 ) based on Eq. (15).  

A modified multilabel correction algorithm is developed for searching the shortest path 

ρ∗  with the most negative 𝑐�̅� in the network.  

Let L be a set of nodes to be handled in the algorithm, a set of attributes (labels) {𝑡𝑐𝑛,

𝑡𝑟𝑛
1} represent the accumulated total cost and the accumulated resource variable at each 

nodes  𝑛 ∈ 𝑁 along the path. The values of these labels are propagated forward through the 

network by adding a new node n to the previously computed partial path by using the Eqs. (35) 

and (36) respectively, where  𝜌(𝑛−) is the prior node to node n in path  𝜌. 

𝑡𝑐𝑛 = 𝑡𝑐𝑝(𝑛−) + 𝑡𝜌(𝑛−),𝑛
𝑍 − ∑ 𝜋𝑓𝑓∈𝐷𝑛

𝜌            (35) 

, where 𝐷𝑛
𝜌

 is a set of flights covered in the duty of node 𝑛 in path 𝜌. 

𝑡𝑟𝑛
1 = 𝑡𝑟𝜌(𝑛−)

1 + 𝑟𝑛
1               (36) 

To execute the searching, first, all the attributes in the network are set as +∞ except 

those with the start node {o} are set as zero. Starting from node o, L = {o}. Removing a node 

from L (i.e. node o in this case), for each connection of (o, n) ∈ 𝒜, compute the attributes 

{𝑡𝑐�̃�, 𝑡𝑟𝑛
1̃ } where the tilde variables denote the temporary values of the attributes at node n. 

Hence, to determine  the 𝑡𝜌(𝑛−),𝑛
𝑍 , variable arc cost  𝑡𝜌(𝑛−),𝑛

𝑣  is computed by Eq. (18) 

simultaneously. However, this robustness cost may vary in different paths in which the 

preceding nodes (duties) are different. It is because the deviation of a flight’s departure time 

and arrival time, overtime of a duty, and a pairing depend not only on its preceding flights’ 

deviations but also the connection time and the rest period of these flights.   

Subsequently, 𝑡𝑐�̃� and 𝑡𝑟𝑛
1̃ can be determined by Eqs. (37) and (38) respectively. If the 

value of 𝑡𝑐�̃�  is less than the current 𝑡𝑐𝑛, and the value of 𝑡𝑟𝑛
1̃  is within the resource 

window, 𝑡𝑐𝑛 and 𝑡𝑟𝑛
1 at node n will be updated as 𝑡𝑐�̃� and 𝑡𝑟𝑛

1̃ respectively. The prior 

node of 𝑛 in path ρ, ρ(𝑛−), is set as o. Then, put node n in L, L = {n}. For every node 

𝑛 ∈ L, if arcs (𝑛, 𝑛+) ∉ 𝒜, where 𝑛+ ∈ 𝑁, 𝑛+ ≠ 𝑛, or the value of 𝑡𝑟𝑛+
1̃  is out of the 

resource window, node n will be removed from set L without adding any newly connected 

node 𝑛+ to L. The processes will be executed iteratively by removing a node from L and stop 

until L = {∅}.  Finally, the shortest path ρ̅  = {o,…,  ρ(ρ(e−)̅̅ ̅̅ ̅̅ ̅−)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,  ρ(e−)̅̅ ̅̅ ̅̅ ̅ , e} with the 

minimum reduced cost 𝑐�̅�∗  can be identified.      

𝑡𝑐�̃� =  𝑡𝑐𝜌(𝑛−) + 𝑡𝜌(𝑛−),𝑛
𝑍 − ∑ 𝜋𝑓 𝑓∈𝐷𝑛

𝜌   (37) 

𝑡𝑟𝑛
1̃ =  𝑡𝑟𝜌(𝑛−)

1 + 𝑟𝑛
1  

(38) 

When the shortest path �̅� with negative 𝑐�̅�∗  is determined, the path 𝜌 ̅̅ ̅  is treated as a 

new pairing p and added to the solution pool of the master problem. The iterative process will 

stop when no pairing with negative reduced cost can be identified. Then, the variables 
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determined in the master problem are the optimal set of pairing to cover the flights. 

 

COMPUTATIONAL EXPERIMENTS 

In this section, we conduct experiments which demonstrate (1) the significance of the 

interdependency of the departure and arrival times in improving the robustness of the crew 

planning, and (2) the impact of the robustness factor on the operations cost. The proposed 

approach and other comparison approaches are coded in Java, and implemented on IBM 

ILOG CPLEX 12.5/ Concert Technology in solving the linear programs of the RMP on a 2.4 

GHz PC with 4 GB RAM. 

 

Data Source and Experiment Settings 

Our experiments are conducted based on two-years flight data for one of the major airlines 

headquartered in Hong Kong. The set of data is divided into two parts. One of which from 

one of the week in August is used for the creation of the three instances, which includes 64 to 

122 flights and with the attributes of flight number, origin, destination, scheduled departure 

and arrival time, and its corresponding set of parameters from the regression analysis. The 

optimal solution by the proposed model BCM is obtained by the proposed algorithm. To 

obtain the parameters estimation for both the regression mean and variance functions of the 

flying times of the flights in that week, the rest of the data as mentioned in the previous 

section is used for heteroscedastic regression analysis. It is common practice to divided flights 

into long haul and short haul by regions for crew assignment in the airline industry. Here, we 

focus on the short haul flights. In addition, it is assumed that all the crew bases are the same, 

i.e., Hong Kong. 

 

Results discussion 

To demonstrate the performance of the proposed model BCM, we set the model of the case 

when ω = 0 as the benchmark, whose objective is to minimize the total operations cost 𝑍1 

for crew pairing. In addition, the parameters in the robustness measure objective 𝑍2 are set 

to be equal. To make the results perspicuous and easily compared with the benchmark model, 

we let them equal to 1, i.e., 𝛼 = β = γ = δ = 1.  

Firstly, the optimal solutions under two different settings of the robustness factor ω are 

derived by the proposed model BCM, i.e. ω = 0.5 and 1.  Here, we denote the 

corresponding optimal results as Z(0.5) and Z(1). Their corresponding comparison results 

with the benchmark Z(0) are summarised in Table 3. It is shown that the total time deviated 

from the schedule one is decreased by the proposed bi-criteria model. Besides, the 

corresponding reduction percentage is increased significantly with the number of flights 
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involved in crew pairing. For the situation when the two criteria are equally weighted (i.e., 

ω = 0.5), the reduction percentage regarding the total deviated time from the schedule one is 

12.4%, 14.2% and 19.5% for the cases of 62, 96, 122 involved flights, respectively. On the 

other hand, the increase percentage of the basic crew cost is decreased slightly with the 

number of flights involved in crew pairing. For the case of 122 flights, the increase 

percentage regarding the basic crew cost is 1.5%. The reason behind the lower cost reduction 

is intuitive. For large-scale flights involved, the possible combination for crew pairing is 

exponentially increased. There is a much larger chance to derive more reliable connections 

between flights without extra cost compared to a small-scale problem. In particular, the extra 

cost incurred by deadhead or extra crew can be offset due to the reduction in waiting time and 

unnecessary long rest hours between flight connections. Moreover, it indicates that, once the 

economic savings from the reduction of the actual flight schedule deviation, such as flight 

delays, extra waiting times, over-work time, is no less than 1.5% of the basic crew cost, the 

total profit risk can be decreased by the total operations cost reduction. It is reported by one 

European aviation consultancy inmarsataviation, crew scheduling issues are estimated to 

account for 3% of all global flight delays, equating to an annual loss of US$3.6 billions3. 

Accordingly, there is a high possibility to achieve annual savings for the airlines by the 

proposed robust model, especially for the large-scale crew pairing.  

 

Table 3: The performance of the proposed robust model for different problem scales. 

No. of 

flights 

𝛚 = 𝟎. 𝟓 𝛚 = 𝟏 

Basic crew 

cost increase 

(%) 

Reduction of 

deviation from the 

planned schedule (%) 

Basic crew cost 

increase 

(%) 

Reduction of 

deviation from the 

planned schedule (%) 

62 2.7 12.4 28.0 23.4 

96 1.5 14.2 35.6 30.4 

122 1.5 19.5 21.5 32.7 

 

For the extreme case when the robustness of the crew pairing get the highest priority 

while the basic cost is ignored, we obtained the solutions with least total time deviation and 

over-work hours. For the case of 122 flights involved, the deviated time can be reduced by 

more than 32%, compared with the benchmark model. However, the corresponding basic 

crew cost for operations are dramatically increased by 20%. While, for the case with fewer 

flights involved, there is a high chance to lose money for the airlines with pure robustness 

consideration. In other words, it is not wise for the airline company to consider a high level of 

robustness during their operational planning for the crew unless the economic loss incurred 

                                                      
3 For the more details, please refer to the website 

https://www.inmarsataviation.com/en/benefits/operational-efficiencies/the-sky_s-the-limit-2--the-future-of-airline-

operational-cost-savings-revealed.html. 

https://www.inmarsataviation.com/en/benefits/operational-efficiencies/the-sky_s-the-limit-2--the-future-of-airline-operational-cost-savings-revealed.html
https://www.inmarsataviation.com/en/benefits/operational-efficiencies/the-sky_s-the-limit-2--the-future-of-airline-operational-cost-savings-revealed.html
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due to the flight schedule deviation is extremely high and is comparable with the basic crew 

cost.  

Next, to explore how the robustness factor influence the optimal crew pairing in terms 

of both robustness and total basic crew cost, the Pareto analysis is carried out and shown in 

Fig. 6. Firstly, the reduction amount of total deviated time is increased rapidly first and 

smoothly then with the robustness factor ω, which is ranged from 0 to 1. The largest 

reduction of total time deviation is achieved when ω = 1. Simultaneously the expenses for 

the basic crew operations as defined in the objective Z1 reaches its worst case. Table 4 

presents the corresponding details regarding different problem scales. It is demonstrated that, 

regardless of the number of flights involved, the additional consideration of robustness can 

also improve the schedule reliability with a slight increase in the basic operations cost. It also 

indicates that the operational cost efficiency is greatly achieved by the analysis of the flying 

time characteristics as well as its accurate estimation based on the historical data. However, 

when the robustness factor ω is determined to be relatively large (e.g., ω = 0.9), the 

amount of reduction regarding the deviated time becomes relatively small compared to the 

amount of increase in the basic crew operations cost. 

In fact, it is always difficult for the decision maker to determine the value of  ω  to 

make a trade-off between the basic crew cost and the schedule robustness. Table 5 shows the 

ratio of the reduction of the deviation from the schedules to increase of the basic crew cost 

along with different robustness factor (ω). In these cases, we can see the ratio decrease 

dramatically when ω > 0.2, especially in the large scale problem with 122 flights. It means, 

with an appropriate value of ω , a higher deviated time reduction can be achieved with a 

unit increase in basic crew cost. This analysis provides a good reference to the decision maker 

to determine the value of  𝜔  for the achievement of cost-effective solutions.  

Moreover, the operations manager may also select an appropriate robustness level 

according to the budget level of the company. The extreme high robustness level may do more 

harm than good to the airline, especially for the situation when the compensation fees for 

flight delay and overtime work for the passengers and crew are relatively low. In addition, the 

influence of the factor ω on the optimal results not only depends on the risk-averse level of 

the decision maker but relates to the cost ratio between the basic crew cost and the 

compensation expenses for passengers and crew. For instance, a relatively high ω (i. e. , ω >

0.5) may be preferred to obtain a cost-effective decision when the cost incurred due to risk is 

low. In our experimental example, we set the cost parameters of the deviated time as 1 which 

is much lower than that of the basic crew operations. Thus, a high increase of time deviation 

reduction still can be attained when ω ≥ 0.8. When the cost parameters for robustness 

becomes large, it becomes much more sensitive to the increase of ω. Consequently, the same 

cost efficiency may be achieved with a smaller ω. 

To further show the significance of the analysis of the flying time characteristics and the 
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analytical modeling of the expected departure and arrival time in the robust optimization, we 

compared the optimal result of the BCM with a classical buffer model, which is widely used 

in the robust crew pairing literature (Ehrgott and Ryan 2002, Lu and Gzara 2015). It gives a 

fixed time buffer, i.e., 3 times standard deviations of the expected delay, to each flight leg to 

avoid the missing connection between flights. To make it reasonable, we exclude the extreme 

case (i.e., ω = 1), and compare the results of the buffer model with the proposed BCM under 

the setting of ω = 0.9. Table 6 shows the details of the comparison results in terms of basic 

crew cost and total time deviation. It is verified that the proposed BCM is superior in both 

aspects. A higher reliability of the flight schedule with a lower basic crew cost is achieved by 

BCM. The reason behind it is because the overestimate of the flight delay can be avoided by 

the proposed robustness model which is embedded with the explicit formulations of the 

interdependent departure and arrival times. It is good to observe the significance of the new 

consideration of the departure time based flying time and the development of the explicit 

modeling of the departure/arrival times for the consecutive flight legs. However, the way to 

model the characteristics of the flying time and its estimation can be further improved. 

Possibilities for future study are further discussed in the conclusion. 

Due to the simplicity, many airlines still consider a fixed time buffer to improve the 

reliability of their operational planning. However, with the increasing demand and complexity 

of the flight schedule, a more reliable schedule is needed. The results demonstrated that the 

proposed approach can significantly reduce the schedule disruption because of the more 

accurate estimation of the flight arrival times. This implies that the proposed departure time 

based flying time and the explicit modeling of the departure/arrival times for the consecutive 

flight legs would be a promising way for an airline to estimate flight arrival time. In airlines’ 

point of view, the flight arrival time estimation is not only important to crew scheduling, but 

also to many other robust operational planning, such fuel consumption estimation, aircraft 

routing, aircraft maintenance scheduling, etc. 

 

Figure 6: Pareto front in terms of the percentages of operations cost increase and risk cost 

reduction. 
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Table 4: Cost percentage pairs regarding different robustness factor ω. 

No. of 

flights 

 𝛚 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

62 

 

Basic crew cost 

increase (%) 
0.1 1.1 2.1 2.7 2.7 5.0 6.0 6.0 8.9 28.0 

Deviated time 

reduction4 (%) 
2.5 6.7 10.5 12.4 12.4 16.2 17.6 17.6 19.9 23.7 

96 

Basic crew cost 

increase (%) 
0.1 0.6 1.1 1.5 1.5 2.7 3.3 3.3 4.9 35.6 

Deviated time 

reduction (%) 
3.3 10.6 13.0 14.2 14.2 17.8 19.5 19.5 22.6 30.4 

122 

Basic crew cost 

increase (%) 
0.1 0.2 1.0 1.5 1.5 2.2 2.2 2.2 3.1 21.5 

Deviated time 

reduction (%) 
5.7 8.1 15.4 19.5 19.5 22.3 22.3 22.3 23.5 32.7 

 

Table 5: Ratio of deviated time reduction (%) to basic crew cost increase (%).  

No. of flights  

                                                      
4 Note that, here deviation time reduction is short for the reduction percentage regarding the total 

deviated time from the schedule one. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

62 25.0 6.1 5.0 4.6 4.6 3.2 2.9 2.9 2.2 0.8 

96 33.0 17.7 11.8 9.5 9.5 6.6 5.9 5.9 4.6 0.9 

122 57.0 40.5 15.4 13.0 13.0 10.1 10.1 10.1 7.6 1.5 

 

Table 6: Performance of the proposed BCM vs a standard deviation based buffer model. 

No. of flights 
 

BCM 
Classical 

buffer model 

Difference 

(%) 

122 
Basic crew cost increase (%) 3.1 4.0 -0.9 

Deviated time reduction (%) 23.5 21.0 2.5 

 

CONCLUSION  

The profit risk incurred due to flight delays can be largely reduced through the efficient crew 

operations by the airlines. In particular, the development of information technology facilitates 

the operations efficiency. The big data analytics can help the airlines to further improve the 

robustness and cost efficiency of their limited resources planning. By data analytics on 

hundreds of short-haul flights in the past two years, the characteristics of the flying time are 

first explored and predicted by both parametric and nonparametric predicted models. The 

recursive formulations for the interdependent departure and arrival times of each flight and its 

connective flight legs are then explicitly modeled. Based on the data analytics of the flying 

time and its corresponding explicit formulations of the departure and arrival times, a new 

data-driven bi-criteria robustness optimization model is proposed. The computational 

experiments show how the consideration of interdependency of the departure-arrival times 

results in high cost efficiency, with the increase of the reduction amount of flight schedules 

deviation. The realistic consideration of the departure-arrival times interdependency can help 

reduce the actual schedule time deviation with a slight increase in basic crew cost, because it 

helps avoid underestimate on the cascading risks and overestimate on the flight delays due to 

unnecessarily long buffer times.    

 

Managerial implications for robust crew pairing 

From a managerial perspective, the discovered characteristics improve the flying time 

prediction so as to avoid the operational risk of flight cancellation due to underestimate on the 

cascading delays, and the risk of high basic crew cost due to unnecessarily planned buffer 

times. In fact, flying time duration is a critical component to determine a valid crew pairing. 

Unexpected extension of the flying time may induce the risk of exceeding the maximum duty 

hour limits of the crew members. It may cause flight disruption or cancellation of the 
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successive flights by shortage of available crew members or aircrafts. By exploring the 

characteristic of flying time which is significantly influenced by the actual flight departure 

time, we can first improve the accuracy of flying time prediction in order to obtain a more 

reliable crew pairing at the planning stage. Moreover, at the operational stage, airlines can 

take a better reaction to any flight departured with a large deviation from its mean value, for 

example, to resechdule or to position reserved crew to the destination for replacement. 

On the other hand, the robustness factor plays an important role in the optimal decision 

as well. It is encouraging that a significant reduction on the amount of expected departure and 

arrival delays, as well as overtime, can be achieved while only a slight increase of the basic 

crew cost is required. The results suggest that an appropriate level of the robustness factor 

may help the airlines attain the best cost-effective operations decisions. However, extreme 

risk-aversion for the flight delays may do more harm than good to the airlines. Moreover, the 

cost ratio of the basic crew cost and compensation expenses due to flight delays for both 

passengers and crew may affect the impact of the robustness level on the optimal decisions. 

When the cost ratio is low, a much higher value of the robustness factor can be set for the 

achievement of the robustness level expected by the decision maker. 

 

Contributions and limitations 

The implications of this research should be viewed in light of its limitations. Although our 

computational experiments conducted in this study are based on the real data from the airline 

industry, it could not cover the whole range of the settings of crew pairing, e.g., long-haul 

flights schedule. The flying time, which plays a critical role in the modeling of the proposed 

robust optimization is assumed to behave according to the heteroscedastic linear regression 

model. The formulations of the recursive departure and arrival times for each flight leg 

requires probability distribution assumptions to make the problem tractable. Consequently, 

the implications of the results must be viewed in light of those assumptions. 

Despite its limitations, this study has made a contribution by developing a new 

optimization model for crew pairing with flying time forecasts and analytical expression of 

crew-induced flight delays. The computational studies evaluate the benefits of proactive 

planning considering the flying time characteristics. The results are discussed with a focus on 

managerial implications related to the trade-off between the robustness of the crew operations 

and the basic crew cost. Based on the data analytics on the flying time characteristics, the 

modeling of the consecutive departure-arrival times that affects each other is a key feature 

included in this study that has not been seen before in prior research. According to its realistic 

nature, the modeling framework developed in this study could motivate the development of 

the robust resource planning that includes this dimension for airlines, which may not be 

limited to crew planning. Besides, the research’s results suggest that the data collection 

regarding the actual departure and arrival times could be critical for the airlines to determine 
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the use of the predicted methods. 

 

Future research direction for robust crew planning 

A possibility for future research is to explore alternative models with further forecast updating 

to see how sensitive results are to changes in data as well as the model assumptions regarding 

flying time (Campbell 2017). The investigtaiton for ultra‐high‐dimensional regression 

relationships between the flying time and other factors will be an interesting but challenging 

direction for future resarch (Sun et al. 2019). Regarding the optimization algorithm, crew 

pairing problem is considered as an NP-hard problem. The problem associates with many 

operational constraints which are usually formulated as set covering problem or set 

partitioning problem. Column generation approach is widely adopted for solving such large 

scale linear programming problem. We suggest that in future, more works can be done to 

develop meta-heuristic approaches to deal with even larger scale problems. Besides, future 

research could also include the development of the back-up strategy embedded with the 

proposed proactive planning to tackle with the real-time severe disruptions which have been 

applied in supply chain management（Chen et al. 2015）. In addition, the capital constrained 

airlines (Shen et al. 2019) and risk-averse passengers (Ma et al. 2015) can be further 

considered in the robust optimization modeling to explore its impacts on the optimal robust 

decision. 
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APPENDIX 

Proof of Lemma 1 

E[Max(𝑋1, c)]  
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√2𝜋𝜎

+∞

𝑐

𝑒
−

(𝑥1−𝜇)2

2𝜎2 𝑑𝑥1 + 𝜇𝐸[𝑋1|𝑋1 > 𝑐] 

= cσϕ (
𝑐 − 𝜇

𝜎
) + 𝜎2 [1 − Φ (

𝑐 − 𝜇

𝜎
)] + 𝜇 {𝜇Φ (

𝜇 − 𝑐

𝜎
) + 𝜎𝜙 (

𝑐 − 𝜇

𝜎
)} 

= (𝜎2 + 𝜇2)Φ (
𝜇−𝑐

𝜎
) + (c + μ)σϕ(

𝑐−𝜇

𝜎
). 

Therefore, Var[Max(𝑋1, c)] = 𝑐2Φ (
𝑐−𝜇

𝜎
) + (𝜎2 + 𝜇2)Φ (

𝜇−𝑐

𝜎
) + (c + μ)σϕ (

𝑐−𝜇

𝜎
) −

E2[Max(𝑋1, c)].                  ∎ 

Proof of Proposition 1 

It is similar to the proof of Lemma 1. 

∎ 
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Lemma 2. The mean and variance of 𝑋 = max {𝑋1, 𝑐}, where 𝑋1 follows gamma distribution 

Γ(α, β) and c is a constant, can be formulated into the following equations, respectively. 

𝐸(𝑋) = 𝑐𝐹(𝑐; α, β) +
1

𝛽

Γ(𝛼+1)

Γ(𝛼)
[1 − F(c; 𝛼 + 1, 𝛽)],         

𝑉𝑎𝑟(𝑋) = 𝑐2𝐹(𝑐; α, β) +
1

𝛽2

Γ(𝛼+2)

Γ(𝛼)
[1 − F(c; 𝛼 + 2, 𝛽)] − [𝐸(𝑋)]2,      

where Γ(𝛼) is the gamma function, and F(x; 𝛼, 𝛽) is the cumulative distribution function of 

gamma distribution Γ(𝛼, 𝛽) at point x. 

Proof:  

E[Max(𝑋1, c)]  

= E[c|𝑋1 ≤ c] + E[𝑋1|𝑋1 > c] 

= cPr(𝑋1 ≤ c) + ∫ 𝑥1
𝛽𝛼𝑥1

𝛼−1𝑒−𝛽𝑥1

Γ(𝛼)
𝑑𝑥1

+∞

𝑐
  

= 𝑐𝐹(𝑐; 𝛼, 𝛽) + ∫
𝛽𝛼+1𝑥1

𝛼𝑒−𝛽𝑥1

Γ(𝛼+1)

Γ(𝛼+1)

Γ(𝛼)

1

𝛽
𝑑𝑥1

+∞

𝑐
  

= 𝑐𝐹(𝑐; 𝛼, 𝛽) +
1

𝛽

Γ(𝛼+1)

Γ(𝛼)
[1 − F(c; 𝛼 + 1, 𝛽)].  

Var[Max(𝑋1, c)] = E[Max(𝑋1, c)2] − E2[Max(𝑋1, c)] 

= E[𝑐2|𝑋1 ≤ c] + E[𝑋1
2|𝑋1 > c] − E2[Max(𝑋1, c)] 

E[𝑐2|𝑋1 ≤ c] = 𝑐2𝐹(𝑐; 𝛼, 𝛽). 

E[𝑋1
2|𝑋1 > c] = ∫

𝛽𝛼+2𝑥1
𝛼+1𝑒−𝛽𝑥1

Γ(𝛼+2)

Γ(𝛼+2)

Γ(𝛼)

1

𝛽2 𝑑𝑥1
+∞

𝑐
=

1

𝛽2

Γ(𝛼+2)

Γ(𝛼)
[1 − 𝐹(𝑐; 𝛼 + 2, 𝛽)]. 

Therefore,  Var[Max(𝑋1, c)] = 𝑐2𝐹(𝑐; 𝛼, 𝛽) +
1

𝛽2

Γ(𝛼+2)

Γ(𝛼)
[1 − 𝐹(𝑐; 𝛼 + 2, 𝛽)] −

E2[Max(𝑋1, c)].              

∎ 

 

Figure 1A: Illustration of the relationship between the statistical parameters (𝛼, 𝛽) and 

(𝐸(𝑥), 𝑉𝑎𝑟(𝑥)). 
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