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Abstract
The problem of Label Ranking is receiving increasing attention from several research communi-

ties. The algorithms that have been developed/adapted to treat rankings of a fixed set of labels

as the target object, including several different types of decision trees (DT). One DT‐based algo-

rithm, which has been very successful in other tasks but which has not been adapted for label

ranking is the Random Forests (RF) algorithm. RFs are an ensemble learning method that com-

bines different trees obtained using different randomization techniques. In this work, we propose

an ensemble of decision trees for Label Ranking, based on Random Forests, which we refer to as

Label Ranking Forests (LRF). Two different algorithms that learn DT for label ranking are used to

obtain the trees. We then compare and discuss the results of LRF with standalone decision tree

approaches. The results indicate that the method is highly competitive.
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1 | INTRODUCTION

Label Ranking (LR) is an increasingly popular topic in the machine

learning literature (Ribeiro, Duivesteijn, Soares, & Knobbe, 2012; de

Sá, Soares, Jorge, Azevedo, & da Costa, 2011; Cheng & Hüllermeier,

2011; Cheng, Hüllermeier, Waegeman, & Welker, 2012; Vembu &

Gärtner, 2010). LR studies a problem of learning a mapping from

instances to rankings over a finite number of predefined labels. It can

be considered a natural generalization of the conventional classifica-

tion problem, where the goal is to predict a single label instead of a

ranking of all the labels (Cheng, Huhn, & Hüllermeier, 2009).

Some application of Label Ranking approaches are (Hüllermeier,

Fürnkranz, Cheng, & Brinker, 2008): Meta‐learning (Brazdil & Soares,

1999), where we try to predict a ranking of a set of algorithms

according to the best expected accuracy on a given dataset;

Microarray analysis (Hüllermeier et al., 2008) to find patterns in genes

from Yeast on five different micro‐array experiments (spo, heat, dtt,

cold and diau); Image categorization (Fürnkranz, Hüllermeier, Loza, &

Brinker, 2008) of landscape pictures from several categories (beach,

sunset, field, fall foliage, mountain, urban).

There are two main approaches to the problem of LR: methods

that transform the ranking problem into multiple binary problems and

methods that were developed or adapted to treat the rankings as

target objects, without any transformation. An example of the former

is the ranking by pairwise comparisons (Hüllermeier et al., 2008).

Examples of algorithms that were adapted to deal with rankings as
wileyonlinelibrary.com/j
the target objects include decision trees (Todorovski, Blockeel, &

Džeroski, 2002; Cheng et al., 2009), naive Bayes (Aiguzhinov, Soares,

& Serra, 2010) and k‐Nearest Neighbor (Brazdil, Soares, & da Costa,

2003; Cheng et al., 2009). Some of the latter adaptations are based

on statistical distribution of rankings (e.g., (Cheng, Dembczynski, &

Hüllermeier, 2010)) while others are based on ranking distance

measures (e.g., (Todorovski et al., 2002; de Sá et al., 2011)).

Tree‐based models have been used in classification (Quinlan,

1986), regression (Breiman, Friedman, Olshen, & Stone, 1984), and also

label ranking (Todorovski et al., 2002; Cheng et al., 2009; de Sá, Rebelo,

Soares, & Knobbe, 2015) tasks. These methods are popular for a

number of reasons, including how they can clearly express information

about the problem, because their structure is relatively easy to

interpret even for people without a background in learning algorithms.

In classification, combining the predictive power of an ensemble of

trees often comes with significant accuracy improvements (Breiman,

2001). One of the earliest examples of ensemble methods is bagging

(a contraction of bootstrap‐aggregating) (Breiman, 1996). In bagging,

an ensemble of trees is generated and each one is learned on a random

selection of examples from the training set. A popular ensemble

method is Random Forests (Breiman, 2001) which combines different

randomization techniques.

Considering the success of Random Forests in terms of improved

accuracy for classification and regression problems (Biau, 2012), some

approaches have been proposed to d eal with different targets, such as

bipartite rankings (Clémençon, Depecker, & Vayatis, 2013). Label
© 2016 Wiley Publishing Ltdournal/exsy 1 of 8
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Ranking Forests should also be seen as a potential robust approach for

LR. Adapting RF to Label Ranking can be a straightforward process

once you have adapted decision trees.

In this work, we propose an approach of ensemble learners which

we refer to as Label Ranking Forests (LRF). The proposed method is a

natural adaptation of Random Forests for LR, combining the task‐

independent RF algorithm with the traditional algorithm for top‐down

induction of decision trees adapted for label ranking. The available

adaptations of decision tree algorithms for LR include Label Ranking

Trees (LRT) (Cheng et al., 2009), Ranking Trees (Rebelo, Soares, &

Costa, 2008) and Entropy‐based Ranking Trees (de Sá et al., 2015).

Considering that the set of trees, in most cases, predict distinct

rankings, one should also take into account ranking aggregation

methods.

This paper extends previous work (de Sá et al., 2015), in which we

proposed a new version of decision trees for LR, called the

Entropy‐based Ranking Trees and empirically compared them to

existing approaches. The main contribution in this paper is the new

Label Ranking Forests algorithm, which is an adaptation of the RF

ensemble method, using Entropy‐based Ranking Trees as the base

level algorithm. The results indicate that LRF are competitive with

state of the art methods and improve the accuracy of standalone

decision trees. An additional contribution is an extension of the original

experimental study on Entropy‐based Ranking Trees, by analyzing

model complexity.
2 | LABEL RANKING

In this section, we start by formalizing the problem of label ranking

(Section 2.1) and then we discuss the adaptation of the decision trees

algorithm for label ranking (Section 2.2) and one such adaptation,

Entropy Ranking Trees (Section 2.3).
2.1 | Formalization

The LR task is similar to classification. In classification, given an

instance x from the instance space X, the goal is to predict the label

(or class) λ to which x belongs, from a pre‐defined set L ¼ λ1;… ; λkf g
. In LR, the goal is to predict the ranking of the labels in L that is

associated with x (Hüllermeier et al., 2008). A ranking can be repre-

sented as a total order over L defined on the permutation space Ω. A

total order can be seen as a permutation π of the set {1, … , k}, such

that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a determin-

istic X→Ω mapping. Instead, every instance is associated with a

probability distribution over Ω (Cheng et al., 2009). This means that,

for each X, there exists a probability distribution P ⋅jxð Þ such that, for

every π ∈Ω, P πjxð Þ is the probability that π is the ranking associated

with x. The goal in LR is to learn the mapping X→Ω. The training data

is a set of instances D ¼ <xi; πi>f g; i ¼ 1;…; n , where xi is a vector

containing the values xji; j ¼ 1;…;mofm independent variables describ-

ing instance i and πi is the corresponding target ranking.

Given an instance xi with label ranking πi, and the ranking πi
predicted by an LR model, we can evaluate the accuracy of the
prediction with loss functions on Ω. Some of these measures are based

in the number of discordant label pairs:

D π; bπð Þ ¼ # a; bð Þjπ að Þ>π bð Þ∧bπ að Þ<bπ bð Þf g

If normalized to the interval [−1, 1], this function is equivalent to

Kendall's τ coefficient, which is a correlation measure whereD π;πð Þ ¼
1 and D π;π−1

� � ¼ −1, where π−1 denotes the inverse order of π (e.g.,

π = (1, 2, 3, 4) and π−1 = (4, 3, 2, 1)).

The accuracy of a model can be estimated by averaging this coef-

ficient over a set of examples. Other correlation measures, such as

Spearman's rank correlation coefficient (Spearman, 1904), have also

been used (Brazdil et al., 2003). Although we assume total orders, it

may be the case that two labels are tied in the same rank (i.e., πi(a)

= πi(b) , a ≠ b). In this case, a variation of Kendall's τ, the tau‐b (Agresti,

2010) can be used.

2.2 | Ranking Trees

Tree‐based models have been used in classification (Quinlan, 1986),

regression (Breiman et al., 1984), and label ranking (Todorovski et al.,

2002; Cheng et al., 2009; de Sá et al., 2015) tasks.

These methods are popular for a number of reasons, including

how they can clearly express information about the problem,

because their structure is relatively easy to interpret even for people

without a background in learning algorithms. It is also possible

to obtain information about the importance of the various

attributes for the prediction depending on how close to the root

they are used.

The Top‐Down Induction of Decision Trees (TDIDT) algorithm is

commonly used for induction of decision trees (Mitchell, 1997). It is

a recursive partitioning algorithm that iteratively splits data into

smaller subsets which are increasingly more homogeneous in terms

of the target variable (Algorithm 1). A split is a test on one of the

attributes that divides the dataset into two disjoint subsets. For

instance, given a numerical attribute x2, a split could be x2 ≥ 5. Given

a splitting criterion that represents the gain in purity obtained with a

split, the algorithm chooses the split that optimizes its value in each

iteration.

In its simplest form, the TDIDT algorithm only stops when the

nodes are pure, that is, when the value of the target attribute is

the same for all examples in the node. This usually causes the algo-

rithm to overfit, that is, to generate models that capture the noise in

the data, as well as the regularities that are of general usefulness.

One approach to address this problem is to introduce a stopping cri-

terion in the algorithm that tests whether the best split is signifi-

cantly improving the quality of the model. If not, the algorithm

stops and returns a leaf node. The algorithm is executed recursively

for the subsets of the data obtained based on the best split until the

stopping criterion is met. A leaf node is represented by a value of

the target attribute generated by a rule that solves potential con-

flicts in the set of training examples that are in the node. That value

is the prediction that will be made for new examples that fall into

that node. In classification, the prediction rule is usually the most

frequent class among the training examples.
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The adaptation of this algorithm for label ranking involves an
appropriate choice of the splitting criterion, stopping criterion and

the prediction rule (Algorithm 1).
2.2.1 | Splitting Criterion

The splitting criterion is a measure that quantifies the quality of a

given partition of the data. It is usually applied to all the possible

splits of the data that can be made with tests on the values of

individual attributes.

In Ranking Trees (RT) the goal is to obtain leaf nodes that contain

examples with target rankings as similar between themselves as possi-

ble. To assess the similarity between the rankings of a set of training

examples, the mean correlation between them is calculated using

Kendall, Spearman or any other ranking correlation coefficient. The

quality of the split is given by the weighted mean correlation of the

values obtained for the subsets, where the weight is given by the

number of examples in each subset.

For simplicity, if we ignore the weights, the splitting criterion of

ranking trees is illustrated both for nominal and numerical attributes in

Table 1. The nominal attribute x1 has three values (a, b, and c). There-

fore, three binary splits are possible. For the numerical attribute x2, a

split can be made in between every pair of consecutive values. In this

case, the best split is x1 = c, with a mean correlation of 0.5, in compar-

ison with a mean correlation of 0.2 for the remaining, i.e., the training

examples for which x1 = {a, b}.
2.2.2 | Stopping Criterion

The stopping criterion is used to determine if it is worthwhile to make

a split or if there is a significant risk of overfitting (Mitchell, 1997). A

split should only be made if the similarity between examples in the

subsets increases substantially.
TABLE 1 Illustration of the splitting criterion

Attribute Condition = true Condition = false

Values Rank corr. Values Rank corr.

x1 a 0.3 {b, c} −0.2

b 0.2 {a, c} 0.1

c 0.5 {a, b} 0.2

x2 <5 −0.1 ≥5 0.1
Let Sparent be the similarity between the examples in the parent

node and Ssplit the weighted mean similarity in the subsets obtained

with the best split. The stopping criterion is defined as follows (Rebelo

et al., 2008):

1þ Sparentð Þ≥γ 1þ Ssplit
� �

(1)

Note that the relevance of the increase in similarity is controlled

by the γ parameter. A γ ≥ 1 does not ensure increased purity of child

nodes. On the other hand, small γ values require splits with very large

increase in purity, which means that the algorithm will stop the recur-

sion early.

2.2.3 | Prediction Rule

The prediction rule is a method to generate a prediction from the (pos-

sibly conflicting) target values of the training examples in a leaf node.

In LR, the aggregation of rankings is not as straightforward as in other

tasks (e.g., classification or regression) and is known as the ranking

aggregation problem (Yasutake, Hatano, Takimoto, & Takeda, 2012). It

is a classical problem in social choice literature (de Borda, 1781) but

also in information retrieval tasks (Dwork, Kumar, Naor, & Sivakumar,

2001). A consensus ranking minimizes the distance to all rankings

(Kemeny & Snell, 1972). A simple approach, which we adopted in this

work, is to compute the average ranking (Brazdil et al., 2003) of the

predictions.

It is calculated by averaging the rank for each label λj, π jð Þ ¼
∑i πi jð Þ=n . The predicted ranking bπ is the ranking π of the labels λj
obtained based on the average ranksπ jð Þ. Table 2 illustrates the predic-

tion rule used in this work.

2.3 | Entropy Ranking Trees

Recently, we proposed an alternative approach to decision trees for

ranking data, the Entropy‐based Ranking Trees (ERT) (de Sá et al.,

2015). ERT uses an adaptation of Information Gain (IG) (de Sá, Soares,

& Knobbe, 2016) to assess the splitting points and the Minimum

Description Length Principle Cut (MDLPC) (Fayyad & Irani, 1993) as

the stopping criterion. To explain this method, we start by presenting

the IG for rankings measure and then the adapted splitting and stop-

ping criteria.

Decision trees for classification, such as ID3 (Quinlan, 1986), use

IG as a splitting criterion to determine the best split points. IG is a sta-

tistical property that measures the gain in entropy, between the prior

and actual state (Mitchell, 1997). In this case, we measure it in terms

of the distribution of the target variable, before and after the split. In

other words, considering a set S of size nS, because entropy, H, is a
TABLE 2 Illustration of the prediction rule

λ1 λ2 λ3 λ4

π1 1 3 2 4

π2 2 1 4 3

π
1.5 2 3 3.5

bπ 1 2 3 4
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measure of disorder, IG is basically how much uncertainty in S is

eliminated after splitting on a numerical attribute xa:

IG xa; T; Sð Þ ¼ H Sð Þ− S1j j
nS

H S1ð Þ− S2j j
nS

H S2ð Þ

where |S1| and |S2| are the number of instances on the left side (S1) and

the number of instances on the right side (S2), respectively, of the cut

point T in attribute xa.

In cases where S is a set of rankings, we can use the entropy for

rankings (de Sá et al., 2016) which is defined as follows:

Hranking Sð Þ ¼ ∑
K

i¼1
P πi; Sð Þ log P πi; Sð Þð Þ log kt Sð Þ� �

(2)

where P(πi, S) is the proportion of rankings equal to πi in S, K is the

number of distinct rankings in S and kt Sð Þ is the average normalized

Kendall τ (Kendall & Gibbons, 1970) distance in the subset S:

kt Sð Þ ¼ ∑K
i¼1∑

n
j¼1

τ πi ;πjð Þþ1

2

K×nS
:

As in Section 2, the leaves of the tree should not be forced to be

pure. Instead, a stopping criterion should be used to avoid overfitting

and be robust to noise in rankings. Given an entropy measure, the

adaptation of the splitting and stopping criteria comes in a natural

way. As shown in (de Sá et al., 2016), the MDLPC Criterion can be used

as a splitting criterion with the adapted version of entropy Hranking. This

entropy measure also works with partial orders; however, in this work,

we only use total orders.
3 | RANDOM FORESTS

Random Forests (RF) (Breiman, 2001) are an ensemble method origi-

nally proposed for classification and regression problems. It essentially

consists of the generation of multiple decision trees obtained using dif-

ferent randomization techniques. The set of predictions made by each

of these trees is then aggregated to obtain the prediction of the

ensemble.

The RF algorithm is related to another popular ensemble method

by the same author, Bagging (Breiman, 1996), which stands for boot-

strap‐aggregating. This is an ensemble method that takes a predefined

number s of samples (without replacement) from the training data to

construct s models. Given a new example, s predictions are generated,

which are then aggregated, usually with average or mode, to obtain a

combined prediction.

RF can be regarded as an extension of bagging. Given a forest size

s and a training dataset D, a set of bootstrap samples, D′
1…;D

′
s

n o
is

generated by sampling with repetition from D. A decision tree is

learned from each D′
1…;D

′
s

n o
, which is grown in a slightly different

way from the original. At each node, only a random subset of the m

features can be used for splitting. In classification, the number of ran-

dom features used in each split is usually
ffiffiffiffi
m

p
and in regression log2m.

This results in what is usually referred to as random trees.
As in bagging, each of the s random trees makes predictions on the

test data, which are then combined using a suitable aggregation

method.

One of the reasons for the popularity of RF lays in the fact that

they have few parameters to tune and can be applied to various tasks

(Scornet, Biau, & Vert, 2014). They require a simple implementation,

and even with small sample sizes, it usually gives accurate results.

Moreover, considering that it uses s independent learners, it can be

parallelized.

One of the reasons that makes RF a popular approach is that it is

possible to take advantage of the algorithm to assess variable impor-

tance (Genuer, Poggi, & Tuleau‐Malot, 2010).

3.1 | Label Ranking Forests

Considering the success of Random Forests in terms of improved accu-

racy for classification and regression problems, some approaches have

been proposed to deal with different targets, such as bipartite rankings

(Clémençon et al., 2013). Label Ranking Forests should also be seen as

a potential robust approach for LR. Adapting RF to Label Ranking can

be a straightforward process once you have adapted decision trees.

Thus, we propose a new ensemble LR algorithm, the Label Ranking

Forests based on Random Forests. With this approach, we expect to

increase the accuracy of Label Ranking tree methods.

In classification and regression, the aggregation of predictions is

done in a simple way, mode and mean, respectively. However, as

discussed in Section 2.2, the aggregation of rankings is not so straight-

forward. Like in Ranking Trees, we use the average ranking (Brazdil

et al., 2003) to aggregate the predictions.

Given the similarity of the LR task to classification, the number of

random subset features we use in each split is
ffiffiffiffi
m

p
, the same value that

is used in RF for classification.

When the algorithm is not able to find a good split on any of theffiffiffiffi
m

p
selected features for the root node, it looks for a split on all the

m features instead. This prevents the random feature selection mech-

anism from generating empty trees.
4 | EMPIRICAL STUDY

In this section, we describe the empirical study to investigate the per-

formance of LRF and the tree methods used at the base level. We start

by describing the experimental setup (Section 4.1), then the results of

the base‐level algorithms (Section 4.2) and finally the results of the

new algorithm (Section 4.3).

4.1 | Experimental setup

The experiments are carried out on datasets from the KEBI Data

Repository at the Philipps University of Marburg (Cheng et al., 2009)

that are typically used in LR research (Table 3). They are based on clas-

sification and regression datasets, obtained using two different trans-

formation methods: (a) the target ranking is a permutation of the

classes of the original target attribute, derived from the probabilities

generated by a Naive Bayes classifier; (b) the target ranking is derived

for each example from the order of the values of a set of numerical



TABLE 4 Results obtained for Ranking Trees on KEBI datasets (the
mean accuracy is represented in terms of Kendall's tau, τ; the best
mean accuracy values are in bold)

RT ERT LRT
Mean Mean Mean
accuracy depth accuracy depth accuracy

Authorship .883 8.0 .889 4.0 .882

Bodyfat .111 11.9 .182 2.7 .117

Calhousing .182 1.0 .291 11.6 .324

Cpu‐small .458 17.2 .437 6.1 .447

Elevators .746 18.9 .757 7.9 .760

Fried .797 20.2 .774 13.2 .890

Glass .871 8.2 .854 3.0 .883

Housing .794 12.9 .704 3.4 .797

Iris .963 4.3 .853 2.0 .947

Pendigits .871 14.0 .838 5.9 .935

Segment .929 12.0 .901 5.0 .949

Stock .897 10.8 .859 5.0 .895

Vehicle .817 11.0 .787 4.1 .827

Vowel .833 12.5 .598 3.6 .794

Wine .905 4.0 .906 2.0 .882

Wisconsin .334 10.0 .337 2.3 .343

Average .712 11.1 .685 5.1 .730

ERT, Entropy‐based Ranking Trees; LRT, Label Ranking Trees; RT, Ranking
Trees.

TABLE 3 Summary of the KEBI datasets

Datasets Type #Examples #Labels #Attributes Uπ (%)

Autorship A 841 4 70 2

Bodyfat B 252 7 7 94

Calhousing B 20,640 4 4 0.1

Cpu‐small B 8192 5 6 1

Elevators B 16,599 9 9 1

Fried B 40,769 5 9 0.3

Glass A 214 6 9 14

Housing B 506 6 6 22

Iris A 150 3 4 3

Pendigits A 10,992 10 16 19

Segment A 2310 7 18 6

Stock B 950 5 5 5

Vehicle A 846 4 18 2

Vowel A 528 11 10 56

Wine A 178 3 13 3

Wisconsin B 194 16 16 100
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variables, which are then no longer used as independent variables. A

few basic statistics of the datasets used in our experiments are

presented in Table 3. Although these are somewhat artificial datasets,

they are quite useful as benchmarks for LR algorithms.

A simple measure of the diversity of the target rankings is the

Unique Ranking's Proportion, Uπ. Uπ is the proportion of distinct target

rankings for a given dataset (Table 3). As a practical example, the iris

dataset has five distinct rankings for 150 instances, which yields

Uπ ¼ 5
150≈3% . This means that all the 150 rankings are duplicates

of these five.

The code for all the experiments presented in this paper has been

written in R (Development Core Team, 2010).1

The generalization performance of the LR methods was estimated

using a methodology that has been used previously for this purpose

(Hüllermeier et al., 2008). The evaluation measure is Kendall's τ and

the performance of the methods was estimated using ten‐fold cross‐

validation.
4.2 | Results with Label Ranking Trees

We evaluate the two variants of ranking trees described earlier: rank-

ing trees (RT) and entropy ranking trees (ERT) (Sections 2.2 and 2.3).

The RT algorithm has a parameter γ, that can affect the accuracy of

the model. Based on previous results, we use γ = 0.98 for RT (de Sá

et al., 2015).

Table 4 presents the results obtained by the two decision tree

approaches, RT and ERT, in comparison with the results for Label

Ranking Trees (LRT), that are reproduced from the original paper

(Cheng et al., 2009). We note that we have no information about the

depth of the trees obtained with the latter, and thus such information

is omitted in Table 4. Even though LRT performs best in most of the

cases presented, both RT and ERT are also competitive methods.
1The code is available at https://github.com/rebelosa/labelrankingforests.
Figure 1 shows how much smaller ERT trees are, in general. By

generating smaller trees, ERT provides more interpretable models

when compared with RT. An exception is the calhousing dataset, where

ERT generates larger trees. However, in this case, the increase in size is

justified by a reasonable increase of accuracy (Table 4).

To compare different ranking methods, we use a combination of

Friedman's test and Dunn's Multiple Comparison Procedure (Neave

& Worthington, 1992), which has been used before for this purpose

(Brazdil et al., 2003). First we run the Friedman's test to check whether

the results are different or not, with the following hypotheses:

H0: The distributions of Kendall's τ are equal

H1: The distributions of Kendall's τ are not equal

Using the Friedman test (implemented in the stats package (Devel-

opment Core Team, 2010)), we obtained a p‐value <1%, which shows

strong evidence against H0. This means that there is a high probability

that the three methods have different performance.

Thus, we tested which of the three methods are different from

one another with the Dunns Multiple Comparison Procedure (Neave

& Worthington, 1992). Using the R package dunn.test (Dinno, 2015),

we tested the following hypotheses for each pair of methods a and b:

H0: The distributions of Kendall's τ for a and b are equal

H1: The distributions of Kendall's τ for a and b are not equal

Table 5 indicates that there is no statistical evidence that the

methods are different.

https://github.com/rebelosa/labelrankingforests


FIGURE 1 Comparison of the average depth
of the trees obtained with Ranking Trees
(blue) and Entropy‐based Ranking Trees (red)
on KEBI datasets

TABLE 5 Dunn's test results (p‐values)

RT ERT LRT

RT 0.22 0.37

ERT 0.22 0.13

LRT 0.37 0.13

ERT, Entropy‐based Ranking Trees; LRT, Label Ranking Trees; RT, Ranking
Trees.
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The statistical tests confirm our observation that, although LRT

generally obtains better results than RT and ERT, the latter approaches

are competitive.
TABLE 6 Results obtained for Label Ranking Forests on KEBI
datasets, using two different label ranking trees, RT and ERT (the mean
accuracy is represented in terms of Kendall's tau, τ; the best mean
accuracy values are in bold)

LRF‐RT LRF‐ERT
mean mean
accuracy depth accuracy depth

authorship .912 8.3 .906 7.7

bodyfat .212 10.6 .211 5.3

calhousing .185 1.0 .294 8.3

cpu‐small .469 13.9 .471 7.8

elevators .605 10.0 .721 9.5

fried .887 15.5 .841 14.5

glass .874 6.0 .849 2.7

housing .780 10.9 .699 3.7

iris .973 4.9 .933 2.3

segment .930 10.8 .917 5.2

stock .892 9.9 .869 5.5

vehicle .850 10.0 .849 9.4

vowel .844 11.5 .701 4.9

wine .932 4.3 .925 2.8

wisconsin .460 8.8 .429 3.7

average .720 9.1 .708 6.2

ERT, Entropy‐based Ranking Trees; LRF‐RT, Label Ranking Forests‐Ranking
Trees; LRF‐ERT, Label Ranking Forests‐ Entropy‐based Ranking Trees; RT,
Ranking Trees.
4.3 | Results with Label Ranking Forests

We generated forests with 100 trees and aggregated the predicted

rankings with the average ranking method (Brazdil et al., 2003).

Table 6 presents the results obtained by the Label Ranking Forests

using RT and ERT, referred to as LRF‐RT and LRF‐ERT, respectively.

The average depth of the trees for LRF‐RT is, for most cases,

smaller than that of the tree obtained with the RT algorithm, while

the accuracy is better. On average, for each 0.019 increase in accuracy

there was a decrease of 1.8 in the average depth of the trees. One

exception is the elevators dataset, which suffered a significant decrease

in accuracy by using the LRF method.

The comparison between ERT and LRF‐ERT leads to different

observations. The average depth of the trees increases when using

LRF. This can be explained by the fact that the measure of entropy

for rankings used in ERT is very robust to noise in rankings (de Sá

et al., 2016). Hence, it requires a larger amount of dissimilarity in a

set of rankings to find a partition. As noted in Section 4.3 (Figure 1)

the depth of the trees is much smaller with ERT than with RT. An addi-

tional observation is that the result obtained using LRF with ERT

yielded a significant reduction in accuracy.

In Figure 2, we can observe how much the accuracy increases/

decreases with LRF when compared with the corresponding base‐level

trees alone. In the vast majority of datasets, there are some improve-

ments in accuracy. The only exception is the elevators dataset, as men-

tioned earlier.

Using the same statistical tests as before (Section 4.2), we com-

pare LRF‐RT and LRF‐ERT with the RT, ERT, and LRT methods. With

the Friedman's test we got a p‐value <1%, which shows strong evi-

dence against H0. Then, now that we know that there are some differ-

ences between the two methods, we will test which are different from
one another with the Dunns Multiple Comparison Procedure (Table 7).

Because we got a p‐value around 25%, between LRF‐RT and the LRF‐

ERT, we cannot conclude that there is no statistical evidence that the

methods are different.

On the pairwise comparisons of the methods Table 8, we measure

how many times each method wins, in terms of accuracy. In this anal-

ysis, we conclude that Label Ranking Forests using RT give the best

results, proving the effectiveness of the approach.

On the other hand, even though LRF‐ERT shows some improve-

ment in terms of accuracy relatively to ERT, it did not behave much

better than RT or LRT (Table 8).

Again, this might be caused by the fact that the measure of

entropy for rankings used in ERT is very robust to noise. For this rea-

son, the depth of trees in LRF‐ERT is, on average, 70% the depth of

trees in LRF‐RT. While this can be an advantage in terms of Label

Ranking Trees, in Label Ranking Forests, it is less relevant because it

is hard to interpret 100 trees per dataset.



FIGURE 2 Accuracy gained/lost per dataset
for using the ensemble method Label Ranking
Forests (LRF), instead of standalone decision
trees Ranking Trees (blue) and Entropy‐based
Ranking Trees (red) on KEBI datasets

TABLE 7 Dunn's test for all the methods (p‐values)

RT ERT LRT LRF‐RT LRF‐ERT

RT 0.23 0.34 0.31 0.44

ERT 0.23 0.13 0.11 0.28

LRT 0.34 0.13 0.46 0.29

LRF‐RT 0.31 0.11 0.46 0.25

LRF‐ERT 0.44 0.28 0.29 0.25

ERT, Entropy‐based Ranking Trees; LRF‐RT, Label Ranking Forests‐Ranking
Trees; LRF‐ERT, Label Ranking Forests‐ Entropy‐based Ranking Trees; LRT,
Label Ranking Trees; RT, Ranking Trees.

TABLE 8 Pairwise comparisons of the methods in terms of win
statistics

RT ERT LRT LRF‐RT LRF‐ERT Total (Rank)

RT 9 6 3 7 25 (4)

ERT 6 3 2 4 15 (5)

LRT 9 12 7 9 37 (2)

LRF‐RT 12 13 8 13 46 (1)

LRF‐ERT 8 11 6 2 27 (3)

ERT, Entropy‐based Ranking Trees; LRF‐RT, Label Ranking Forests‐Ranking
Trees; LRF‐ERT, Label Ranking Forests‐ Entropy‐based Ranking Trees; LRT,
Label Ranking Trees; RT, Ranking Trees.
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5 | CONCLUSIONS

In this work, we propose an ensemble of decision tree methods for LR,

called LRF. The method is tested with two different base‐level

methods RT and ERT. We present an empirical evaluation using well‐

known datasets in this field. We also extend the analysis from previous

work for tree‐based methods, RT and ERT, and compare with the state

of the art LRT approach.

The analysis on the decision trees shows that both RT and ERT are

valid and competitive approaches. While RT usually gives better accu-

racy, on the other hand, ERT generates trees with much smaller depth

(around 50% less, in comparison with RT). Our results were also com-

pared with the published results for LRT (Cheng et al., 2009). LRT has

in general better accuracy than RT and ERT, however, statistical tests

showed that none of the methods is significantly different. This means

that both RT and ERT are competitive approaches, and because they

are distance‐based methods, we can also say that this kind of

approaches is worth pursuing.
The two ensemble approaches, LRF‐RT and LRF‐ERT, used the

base ranking tree models RT and ERT, respectively. Similarly to the

application of Random Forests to other tasks, there was a general

increase in accuracy when compared with the corresponding base‐

level methods. The results confirm that both LRF‐RT and LRF‐ERT

are highly competitive LR methods. LRF‐RT, in particular, stands out

as a clear winner in terms of accuracy.

As future work, we might improve the comparison with LRT

method (Cheng et al., 2009), by implementing it and testing it both as

learning algorithm and as the base‐level method for Label Ranking

Forests. Also, LRF can potentially produce similar benefits as the

Random Forest method, in terms of feature selection or input variable

importance measurement, when applied to LR datasets. Finally, the

experiments in this paper were carried out on a set of standard

benchmark datasets, which represent artificial LR problems. We plan

to apply these approaches on real world datasets, for example, related

with user preferences (Kamishima, 2003).
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