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Abstract

The detection of small objects is one of the problems present in deep learning due to

the context of the scene or the low number of pixels of the objects to be detected.

According to these problems, current pre-trained models based on convolutional

neural networks usually give a poor average precision, highlighting some as Cen-

terNet HourGlass104 with a mean average precision of 25.6%, or SSD-512 with 9%.

This work focuses on the detection of small objects. In particular, our proposal aims

to vehicle detection from images captured by video surveillance cameras with pre-

trained models without modifying their structures, so it does not require retraining

the network to improve the detection rate of the elements. For better performance,

a technique has been developed which, starting from certain initial regions, detects a

higher number of objects and improves their class inference without modifying or

retraining the network. The neural network is integrated with processes that are in

charge of increasing the resolution of the images to improve the object detection

performance. This solution has been tested for a set of traffic images containing ele-

ments of different scales to check the efficiency depending on the detections

obtained by the model. Our proposal achieves good results in a wide range of situa-

tions, obtaining, for example, an average score of 45.1% with the EfficientDet-D4

model for the first video sequence, compared to the 24.3% accuracy initially provided

by the pre-trained model.
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1 | INTRODUCTION

Currently, object detection is one of the most popular computer vision applications of deep learning. The proliferation of this type of application

is caused by the increase of video data obtained from different sources, as well as the improvement in the computational power of the hardware,

thereby facilitating the successful accomplishment of this task. The area of road network management can be considered as one of the potential

application domains of this type of technology because there are many objects to detect (vehicles), the scenarios are very heterogeneous due to

the position of the camera, angle, orientation and distance to the road, and there is a huge number of already installed traffic cameras with the

possibility of capturing relevant information.
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The proposed solution has as its primary objective the detection of reduced size elements (objects) using convolutional neural networks. Small

elements are those which occupy a small region within the entire image. At present, some pre-trained models have significant intrinsic problems

that need to be addressed. Object detection models determine the number of features by aggregating information from the raw pixels across the

layers of the convolutional network. Most of them reduce the resolution of the images in intermediate layers. This fact causes the loss of the fea-

tures of small objects, which disappear during the processing carried out by the network, thus avoiding their detection. The low detection rate of

this type of element is also caused by the generic background clutter in the images to be inferred, thus making the task of detecting new elements

more complex due to many potential object locations. The small objects to be detected have simple shapes that cannot decompose into smaller

parts or features. Another point to consider is the quality of the image since there are video surveillance systems with low image quality. Poor

quality images negatively affect the performance of object detection methods, because these types of sequences, especially in the case of traffic

videos, are dense, with small vehicles and partially occluded. On the other hand, some objects are similar in feature, shape, colour or pattern.

Therefore, existing pre-trained high-quality models cannot distinguish among them accurately.

The small object detection problem is relevant in many areas. Direct applications include the following: the enhancement in the classification

and detection of elements through images captured by satellites, the improvement in video surveillance through the treatment of images provided

by security cameras established at high points, and the increase in the detection of pedestrians or traffic. This article focuses on the last of these

direct applications. Thanks to this new solution, it will be possible to detect a larger number of elements and improve the confidence of each

detection without the need to retrain the model so that this solution may be advantageous for automated traffic control systems.

Currently, there are some models aimed at the detection of these elements through two workflows. The first of them follows the usual flow

in which a series of candidate regions are generated to perform the classification of each proposed area subsequently. The second method estab-

lishes the detection of objects as a regression or classification problem to adopt a framework to achieve final results. Among the methods based

on regional proposals, we find mainly R-CNN, Faster R-CNN and Mask R-CNN, while in regression methods, we can mention SSD and YOLO

(Zhao et al., 2019). As an example, we find the model called EfficientDet, which has an average detection rate of 51% for medium-sized elements.

In contrast, smaller elements are detected in only 12% of the cases. It should also be noted that there are no datasets devoted explicitly to the

detection of small objects, which is why most of the attained detections correspond to larger elements. When applying existing models such as

Faster-RCNN it is found that it misses several small objects in part due to the size of the anchor boxes of the elements detected in the image.

The proposal put forward in this article is based on the design, implementation and subsequent testing of a technique based on convolutional

neural networks, capable of detecting small-scale elements and improving the class inference, without the need to retrain the pre-trained model.

To achieve this goal, the hyper-parameters of the network have been modified to reduce false negatives. Subsequently, super-resolution pro-

cesses have been applied to the input image to generate a series of images centred on each of the detected elements to increase its resolution.

Then the model yields an enhanced inference about the object class. Using this method, implemented in conjunction with image pre-processing

through a denoising filter, small object detection and class inference are significantly improved.

Additionally, it has been necessary to create a new dataset to perform the relevant tests to evaluate the qualitative improvement attained by

the newly developed technique. Most existing datasets are not adequate, such as KITTI (Geiger et al., 2013), which is composed of a series of

images collected by cameras located on mobile vehicles. This set of images contains several vehicles. However, the size of these images is large,

and it should be noted that not all images include vehicles, and in other cases, the number of vehicles is small. It should be noted that nowadays,

traffic-oriented video surveillance systems produce sharp and clear images. With this in mind, it can therefore be established that there are no

appropriate public datasets on which to perform tests, so a new dataset of vehicle detection data has been developed from a series of traffic

videos captured by cameras and surveillance systems intended for that purpose. Three test sets filmed in different locations and with a series of

challenges such as image quality, light interference, motion blur and light interference, among others, have been compiled. This dataset consists of

476 images with a total of 14,557 detections. These images contain a set of challenges to be solved, as shown in Figure 1.

Under the premises described above, it can be concluded that there are significant shortcomings in the state of the art methods for the detec-

tion of small-scale elements, given the low detection rate of current models and the few performance-enhancing procedures.

The rest of this article is organized as follows. Section 2 sets out the related work. Throughout Section 3, the improvements developed are

detailed, explaining in depth the implemented workflow. Section 4 includes the performed tests along with their respective results. Finally, in

Section 5, the conclusions and the future works to be developed according to the proposed solution are outlined.

2 | RELATED WORK

Given the context of our proposal, there are pre-trained models such as, for example, YOLO v4 (Bochkovskiy et al., 2020). This network uses as a

feature extractor CSPDArknet53 for the GPU version, spatial pyramid pooling known as SSP, and Path Aggregation Network (PAN) to speed up

the inference process. Head uses the same design for the YOLO v3 network. The model divides the image into a grid to subsequently predict the

class labels for each bounding box. Another frequently used model is CenterNet Duan et al. (2019). This model detects each object as a triplet

instead of a pair to improve the accuracy in detections and the element class, thus presenting an efficient solution that explores the visual

2 GARCÍA-AGUILAR ET AL.



patterns within each cropped region with minimal cost. According to previous studies, it has been established that methods based on regional pro-

posals obtain a higher hit rate when detecting elements in an image. However, in the area of small object detection, the average accuracy rates

are poor, with 24.3% for YOLO v4 and 28.9% for CenterNet model.

In the field of small object detection, there are numerous works focused on pedestrian detection. Works such as the one established by Han

et al. (2020) determine a novel deep small-scale sense network (named as SSN). The proposed architecture generates some proposal regions that

are more effective for detecting small-scale pedestrians. On the other hand, the loss function based on cross-entropy loss increases small-scale

elements that are difficult to detect. The method extracts convolutional features with a VGG network that are transferred to the scale-wise pro-

posal network. Another work to be highlighted is that of Lai et al. (2020), based on a one-stage method that improves the detector performance.

It reconstructs the network with the deconvolutional method, thus combining the up-sampling method and deconvolution parameters into a dec-

onvolutional layer. Moreover, it adjusts the prior anchor parameter by the k-means clustering algorithm. Both presented works improve the detec-

tion of small objects applied to the field of pedestrian detection. In the field of vehicles detection, we can highlight works such as the one

proposed by (Kim et al., 2019) that recognizes the direction of the vehicle in the input image. However, as the distance from the vehicle increases,

the image quality deteriorates, resulting in poorer accuracy in detecting small elements. In this field, there are no significant advances focused

exclusively on improving the detection of small vehicles on urban roads, so we put forward the proposal presented in this paper.

The articles cited above are based on the modification of the internal structure of the network. Our proposal, unlike the previous related stud-

ies, employs the pre-trained models without modifying their structures, so it does not require re-training the network to improve the detection

rate of the elements, thus enabling the improvement of the mean average precision (MAP) of small elements captured by video-surveillance sys-

tems located at high points. We take advantage of the fact that detection models based on convolutional neural networks perform well in the

high-resolution domain. We use super-resolution to transfer the classification task to a pre-trained network in high-resolution images.

Image super-resolution processes have shown high potential in the field of image restoration and interpolation. They establish a series of

techniques to increase the resolution of an input image compared to the conventional pixel-wise interpolation algorithms. There are several

advances and developments for super-resolution applied to a single image. For example, (Dong et al., 2014) proposed a network based on super-

resolution known as SR-CNN. This network establishes an end-to-end mapping between images given as input with low resolution and those

processed by the model. This method jointly optimizes all layers, improving restoration quality. The network is composed of the extraction part,

application of a non-linear mapping, and reconstruction. As an improvement of this, the model proposed by (Kim et al., 2015a) is developed and is

known as VDSR. This model uses a deep convolutional network inspired by VGG-net, using 20 weight layers, and contextual information is

exploited efficiently with global skip connection. However, convergence speed becomes a critical issue during training. Other advances such as

the one proposed by, (Kim et al., 2015b) use a deeply recursive convolutional network with a deep recursive layer to improve performance with-

out introducing new parameters for the additional convolutions called DRCN. However, as a negative point, learning this network is very difficult

with a standard gradient descent method due to gradient explosion/fading. To mitigate the training difficulty, the authors propose recursive

supervision and hop connection. One of the models for the application of super-resolution in real-time corresponds to the work presented by

Dong et al. (2016). FSRCNN introduces a deconvolution layer at the end of the network to perform up-sampling. The non-linear mapping step in

SRCNN is replaced by three steps in FSRCNN, namely the shrinking, mapping and expanding. Finally, the smaller filter sizes and a deeper network

F IGURE 1 Main challenges to be solved
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structure provide better performance and are tens of times faster than other models. In particular, FSRCNN-s which can be implemented in real-

time on a generic CPU. The article presented by Cao and Chen (2019) provides a study of some of the super-resolution methods mentioned

above, thus establishing a comparison to identify the one that gives the best results.

These processes remain at a primitive stage and are complex. There are significant advances, mainly focused on the creation of algorithms

that perform these functions effectively. One of the main approaches in this field is presented by Xing et al. (2019), as they proposed a solution

by using a generative adversarial network to recover small objects from low-resolution images to high resolution to get better detection perfor-

mance, achieving a MAP of the 68.38%. Other work proposed by Mostofa et al. (2020) established a network called Joint-SRVDNet that generates

high-resolution images of vehicles from low-resolution aerial images. First, images are up-scaled by a factor of 4� using a multi-scale generative

adversarial network (MsGAN). The network jointly learns discriminative and hierarchical features of targets and produces optimal super-resolution

results.

Although these approaches are related to the one presented in this paper, they fail to propose a scheme based on current convolutional neu-

ral network models. Thanks to the super-resolution processes as well as the pre-processing stage, our proposal finds out new visual elements. In

this paper, we hypothesize an improvement in the detection of small-scale objects using super-resolution (SR) techniques for the enhancement in

the inference provided by models such as CenterNet HourGlass, specifically for sequences obtained by video surveillance cameras set at high

points.

3 | METHODOLOGY

Next, our small object detection system is presented. Figure 2 shows the global workflow of our proposed framework. As can be seen in the fig-

ure, we start from a pre-trained model that will establish a series of initial detections based on the detected vehicles. On each of these detections,

a super-resolution process is applied to generate a new sub-image in which the elements contained in it have a higher number of pixels. With this

implementation, it is possible to detect more elements close to the initial detections that were not located at the beginning, thereby improving

the accuracy for more reliable detections without the need to modify or retrain the initial object detection network. Finally, a transformation pro-

cess will be necessary to translate the coordinates. Next, each of the parts that make up the proposal presented will be explained in more detail.

In what follows, the methodology of our proposal is explained in detail. As set out in point 1 of the workflow, let us consider a deep learning

neural network for object detection which takes an image X as input and returns a set of detections S as output:

S¼ℱ Xð Þ ð1Þ

F IGURE 2 Workflow of the proposed technique
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S¼ ai,bi,ci,di ,qi , rið Þ j i� 1,…,Nf gf g ð2Þ

where N is the number of detections, ai,bið Þ�ℝ2 are the coordinates of the upper left corner of the i-th detection within the image X, ci,dið Þ�ℝ2

are the coordinates of the lower right corner of the i-th detection within X, qi is the class label of the detection, and ri �ℝ is the class score of the

detection. The higher ri, the more confidence that an object of class qi is actually there. It is assumed that the origin of the coordinate system of

all images is at the centre of the image. Next, step 2 is performed based on the selection of each of the initially established detections. Given a

low-resolution input image XLR as shown, for example, in Figure 3, our first step is to process it with the object detection network to yield a set of

tentative detections SLR:

SLR ¼ℱ XLRð Þ ð3Þ

Subsequently, as detailed in the third step of the workflow, a new image is generated by applying super-resolution and denoising processes to the

initial image given as input.

This process starts by applying a super-resolution network G to the input low-resolution image XLR to yield a super-resolved version eXHR:

eXHR ¼G XLRð Þ ð4Þ

After that, a denoising procedure D is applied to eXHR to obtain the noise-removed, high-resolution version XHR of the input image XLR:

XHR ¼D eXHR

� �
ð5Þ

Figure 3 shows the process for the generation of the sub-images with which the pre-trained model will perform the inference to detect a

higher number of vehicles. As shown in the image, the first step is to start with a low-resolution image given as input on which the pre-trained

model will establish the initial detections. The input image is processed with super-resolution obtaining a new one with a higher number of pixels.

Finally, the Buades et al. proposal, based on Gaussian noise reduction, will be applied to improve the number of detections as well as their accu-

racy. Once the new super-resolved image is generated and subsequently processed, based on each of the initial detections, a new sub-image will

be generated, starting from the same one, according to the input size required by the model to perform the inference process.

F IGURE 3 Frame processing
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A super-resolution deep network is used to obtain a high-resolution version XHR with zoom factor Z of the low-resolution input image XLR as

shown in point 2 of the Figure 3. To implement this super-resolution process, the OpenCV library has been used. There are some pre-trained

models G for the execution of processes that increase the initial resolution of an image. The considered models are the following:

• SRCNN: Image SR using convolutional neural networks (Dong et al., 2015).

• FSRCNN: Fast super-resolution convolutional neural network (Dong et al., 2016).

• VDSR: Image SR using very deep convolutional networks (Kim et al., 2016).

• DRCN: Image SR using deeply-recursive convolutional networks (Kim, Lee, & Lee 2015c).

To evaluate the accuracy of SR, we used the peak signal-to-noise ratio PSNR (Yang et al., 2014) as shown in Table 1. PSNR has been used as a

fidelity measurement. It is the ratio between the maximum possible power of an original signal and the power of corrupting noise that affects the

fidelity of its representation. Based on the results, we can state that one of the models that provide better results is the one called DRCN followed

by VDSR. However, we must take into account the processing time required by each of them. For this purpose, Table 2 shows the times required

to evaluate the data set named as Set 5, consisting of five images (baby, bird, butterfly, head and woman) commonly used for testing performance

of image super-resolution models. In the context of vehicle detection in road sequences, super-resolution response and object detection must be

performed in real-time. Hence, despite the good results provided by the models DRCN and VDSR it is not possible to apply them to the context

presented in this article. In view of this, the model named FSRCNN has been chosen. The proposal is not excluding for these models. According to

the context in which the proposal is to be applied, it will be convenient to apply SR models independently of time, to obtain a super-resolved

image with the highest possible image quality, thus obtaining a higher detection rate. Figure 4 shows the reconstructed high-resolution HR image

of ‘frame 1’ from sequence 1, when the up-sampled scale is x2 from the various super-resolution models established for their study.

Subsequently, to improve the detections by the network, noise elimination is performed. This process D is performed through the use of the

non-local denoising algorithm1 making use of various computational optimizations (Buades et al., 2011). This method is applied when Gaussian

white noise is expected (point 3 of the Figure 3). After an empirical study, it was concluded that this type of processing improves the number of

detected elements.

Then, for each detection in SLR, a sub-image Xi with the same size as XLR is extracted from XHR. The sub-image Xi is centred at the centre of

the detection:

yi ¼
aiþci
2

,
biþdi
2

� �
ð6Þ

TABLE 1 Average PSNRs for scale factors of x2, x3, and x4 on Sequence 1, Sequence 2 and Sequence 3 (higher is better)

Sequence 1 Sequence 2 Sequence 3

x2 x3 x4 x2 x3 x4 x2 x3 x4

Bicubic 30.42 27.64 26.72 31.27 28.09 26.90 27.65 24.72 23.90

SRCNN (Dong et al., 2015) 32.57 30.12 28.58 34.06 30.86 28.82 30.45 27.42 25.84

FSRCNN (Dong et al., 2016) 33.15 31.05 28.79 34.73 31.88 29.17 31.43 28.33 26.15

VDSR (Kim et al., 2016) 33.25 30.72 28.98 31.89 31.40 29.37 31.47 28.73 26.42

DRCN (Kim et al. 2015c) 34.22 30.61 29.15 35.80 31.10 29.33 32.56 27.72 26.31

Note: The best results are marked in bold.

TABLE 2 Average time for scale factors of x2, x3, and x4 on Dataset Set 5 (lower is better)

Set 5

x2 x3 x4

Bicubic 0.028 0.041 0.065

SRCNN 2.190 2.230 2.190

FSRCNN 0.068 0.027 0.018

VDSR 0.130 0.130 0.120

DRCN 1.540 1.550 1.540

Note: The best results are marked in bold and italic indicates the second best performance.
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byi ¼Zyi ð7Þ

where yi is the centre of Xi expressed in coordinates of XLR, while byi is the centre of Xi expressed in coordinates of XHR. The object detection net-

work is applied to Xi in order to yield a new list of detections:

Si ¼ℱ Xið Þ ð8Þ

Si ¼ eai,j ,ebi,j,eci,j,edi,j,eqi,j,eri,j� �
j j� 1,…,Nif g

n o
ð9Þ

where Ni is the number of detections for sub-image Xi.

As indicated in step 5 of the workflow, each of the generated sub-images Xi is passed on to the object detection model to improve the infer-

ence or detect elements not initially spotted.

The detections of Si are expressed in coordinates of Xi, so that they must be translated to coordinates of XLR. The equation to translate a

point eh in coordinates of Xi to coordinates h of XLR is:

h¼ yiþ
1
Z
eh ð10Þ

Therefore, the list of detections for sub-image Xi expressed in coordinates of XLR is:

Si ¼ ai,j,bi,j ,ci,j,di,j,qi,j ,ri,j
� � j j� 1,…,Nif g� 	 ð11Þ

ai,j ,bi,j
� �¼ yiþ

1
Z

eai,j,ebi,j� �
ð12Þ

ci,j ,di,j
� �¼ yiþ

1
Z

eci,j ,edi,j� �
ð13Þ

F IGURE 4 Visual evaluation for a scale factor of x2 on the ‘frame 1’ image from Sequence 1. From left to right: Original, Bicubic, SRCNN,
FSRCNN, VDSR and DRCN
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qi,j ¼eqi,j ð14Þ

ri,j ¼eri,j ð15Þ

At this point, the coordinates of the detected elements will correspond to the vehicles composing the initial image. For each initial detection i

established by the pre-trained CNN, a new super-resolved and processed sub-image Xi is generated on which to infer. The sub-image Xi may con-

tain a set of vehicles, resulting in multiple detections being established for the same element, see Figure 5.

After that, all the detections coming from the detection set Si are processed to estimate whether they correspond to new objects, or they

match some detection already present in SLR. To this end, the intersection over union (IOU) measure is computed for each pair of detections Dj

and Dk :

IOU¼Area Dj \ Dk

� �
Area Dj[Dk

� � ð16Þ

The detections Dj and Dk are judged to correspond to the same object whenever IOU> θ, where θ is a tunable parameter. The final set of detec-

tions is comprised of those detections that persist after filtering the matching detections. This point finally corresponds to step 6 of the workflow.

In Figure 6, it can be seen how effectively, after performing the operation known as IOU, the multiple detections established for the same ele-

ment have been filtered, selecting the one with the highest score as the final solution. At the end of this process, an image with a higher number

of detections and score inference of each element will be obtained.

F IGURE 5 Video frame before filtering matching detections

F IGURE 6 Final result after filtering matching detections
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4 | EXPERIMENTAL RESULTS

In order to carry out the tests on the data set designed for the experiments, it is necessary to establish a series of parameters such as the maxi-

mum number of detected objects, the minimum inference to take into account an object as well as the threshold θ for the IOU index to eliminate

simultaneous detections for the same object. These parameters are established in Table 3 and selected according to the best results obtained after

an empirical study.

Regarding the dataset used for the tests, as stated Section 1, three videos from video surveillance systems were manually labelled, all of

which pointed to roads with a large number of vehicles, video 1 is named as sb-camera1-0820am-0835am, video 2 as sb-camera3-0820am-

0835am and video 3 as sb-camera4-0820am-0835am. As can be seen in the name of each of the videos, they are formed by the number of the

camera referred to as well as the time that the images were acquired. This dataset consists of 476 images with a total of 14,557 detections. Four

specific categories related to the detection of vehicles on roads have been selected. Namely, the labels car, truck, motorcycle and bus have been

chosen to analyse the results. The dataset is composed of a series of images with specific interesting characteristics for the study of the obtained

results, mainly highlighting the following aspects:

• The vehicles set in each frame occupy a small area of the image, thus qualifying them as small size elements. In datasets such as KITTI, we have

a large number of vehicles. However, the size of the vehicles is much larger compared to the dataset manually developed for this article.

• There is an imbalance of classes. There are more abundant categories of elements such as cars versus motorcycles which appear in a limited

number of frames.

Next, a series of examples are shown in Figures 7–12 in which the qualitative results obtained with the proposed technique are shown for some

instances of the considered dataset.

To check the results obtained by the proposed technique, in addition to the images coming to the selected videos, the technique has been

tested on a series of previously available ground truth frames from other benchmark videos as can be seen in Figures 10–12. To obtain quantita-

tive performance results, the evaluation process developed by COCO2 has been used. The standard measure for object detection tasks is the

mean average precision (mAP), which takes into account the bounding box prediction and the class inference for each object. Thus, the bounding

box of a prediction is considered a correct detection depending on the overlap with the ground truth bounding box, as measured by the

TABLE 3 Selected values of the hyperparameters

Parameter Value

Maximum number of detections 100

Minimum percentage of inference 0.3

IOU threshold θ 0.1

F IGURE 7 Frame 1 of the first video denoted as sb-camera1-0820am-0835am. The left side shows the results obtained by the unmodified
model while the right side shows the detections after applying our proposal
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F IGURE 9 Frame 136 of the third video denoted as sb-camera4-0820am-0835am. The left side shows the results obtained by the
unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints

F IGURE 10 Frame 5837 of the M-30-HD dataset (Guerrero-Gomez-Olmedo et al., 2013). The left side shows the results obtained by the
unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints

F IGURE 8 Frame 6 of the second video denoted as sb-camera3-0820am-0835am. The left side shows the results obtained by the
unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints
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intersection over the union known as IoU. In addition, the class inference must be correct for that element. As output, several mAPs measures are

obtained, divided by the object size and the quality of the inference class. According to the tests carried out, our technique solves a series of prob-

lems depending on the context of the image. Firstly, it detects many elements that were not detected a priori by the model in the first pass. Sec-

ondly, in the initial inference, we can observe in certain areas that the class of the elements is not correct, and after applying our technique, this

problem is solved.

To test our proposal, three video sequences have been selected from US Highway 101 Dataset [https://www.fhwa.dot.gov/publications/

research/operations/07030/index.cfm]. These videos have been captured by highway video surveillance systems from a high perspective and

F IGURE 11 Frame 2 of the UA-DETRAC MVI_39311 dataset (Lyu et al., 2017, 2018; Wen et al., 2020). The left side shows the results

obtained by the unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints

F IGURE 12 Frame 1 of the UA-DETRAC MVI_40903 dataset (Lyu et al., 2017, 2018; Wen et al., 2020). The left side shows the results
obtained by the unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints

F IGURE 13 Frame 5 of the UA-DETRAC MVI_40852 dataset (Lyu et al., 2017, 2018, Wen et al., 2020). The left side shows the results
obtained by the unmodified model while the right side shows the detections after applying our proposal using CenterNetHourGlass104Keypoints
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belong to the U.S. Department of Transportation, see Figures 7–9. In order to demonstrate the present improvement through the use of this pro-

posal, we have also tested a series of frames from the dataset named as M-30-HD presented by Guerrero-Gomez-Olmedo et al. (2013), see

Figure 10, as well as the dataset UA-DETRAC-MVI submitted by Wen et al. (2020), thus obtaining Figures 11–13. We have made use of the

datasets mentioned above, since they are captured by video surveillance systems, capturing a large number of vehicles on urban roads and state

highways. On the other hand, these video surveillance systems are placed in high points, which capture elements of various sizes, including small-

scale ones, to evaluate the increase in the number of vehicles as well as the score of each of these using the proposal.

However, it should be noted that our solution is not infallible, and its performance depends on the context in which it is applied. For example,

in Figure 13 we can see how the number of elements is increased. However, we also obtain false positives such as the one in the centre of the

image or the incorrect inference of the motorcycle located at the centre-left side. This problem can be alleviated by increasing the minimum per-

centage of inference to take into account a detection.

To carry out the tests, several variants of either the EfficientNet or CenterNet models have been used. For EfficientNet, some variants have

been defined, which range from zero to seven, each representing variants for efficiency and accuracy according to a given scale. Thanks to this

scaling heuristic, it is possible for the base model denoted as D0 to outperform the models at each scale, also avoiding an extensive search in the

hyperparameter space. At first, one may get the impression that EfficientNet constitutes a continuous family of models defined by an arbitrary

choice of scale; however, other aspects such as resolution, width and depth are contemplated. According to resolution, models with low scale

such as D0 or D1 apply zero-padding near the boundaries of specific layers, thereby wasting computational resources. As for depth and width, the

size of the channels must be a multiple of eight. For CenterNet, three variants have been used, each of them with a defined architecture, featuring

as main differences the size of the image given as input as well as the way of processing each of the detections. It has been tested with variants

based on keypoints as well as traditional models. These pre-trained models have been extracted from Tensorflow Model Zoo.3 It is important to

note that no training process using traffic sequences is performed on these pre-trained models.

The performance of these initial models and the proposed methodology is quantitatively compared. Since the car class is majority, the perfor-

mance in the detection of cars is considered as the measure to compare. For this purpose, only class number 3 has been considered,

corresponding in COCO to the car element, thus obtaining Tables 4–6. In each of these tables, the mAP is determined for both the initial

TABLE 4 Results obtained for the first video

Video 1—sb-camera1-0820am-0835am

Model
IoU = 0.50:0.95
jarea = all

IoU > 0.50
jarea = all

IoU > 0.75
jarea = all

IoU = 0.50:0.95
jarea = small

IoU > 0.50j
area = medium

CenterNet HourGlass104 Keypoints 0.244/0.361 0.420/0.628 0.263/0.381 0.258/0.375 0.193/0.283

CenterNet MobileNetV2 FPN Keypoints 0.083/0.161 0.191/0.358 0.053/0.121 0.085/0.163 0.081/0.122

CenterNet Resnet101 V1 FPN 0.273/0.350 0.512/0.656 0.248/0.318 0.274/0.355 0.244/0.273

EfficientDet D3 0.159/0.336 0.276/0.585 0.169/0.364 0.159/0.343 0.154/0.247

EfficientDet D4 0.236/0.442 0.424/0.790 0.237/0.459 0.243/0.451 0.168/0.298

EfficientDet D5 0.245/0.378 0.433/0.672 0.252/0.389 0.251/0.395 0.158/0.164

Note: On the left is the mAP obtained by the base model and on the right of each box is the mAP obtained by our proposal (higher is better). The best

results are marked in bold.

TABLE 5 Results obtained for the second video

Video 2—sb-camera3-0820am-0835am

Model
IoU = 0.50:0.95
jarea = all

IoU > 0.50
jarea = all

IoU > 0.75
jarea = all

IoU = 0.50:0.95
jarea = small

IoU > 0.50
jarea = medium

CenterNet HourGlass104 Keypoints 0.090/0.186 0.176/0.363 0.074/0.154 0.092/0.191 0.043/0.112

CenterNet MobileNetV2 FPN Keypoints 0.117/0.158 0.309/0.390 0.047/0.083 0.119/0.159 0.039/0.085

CenterNet Resnet101 V1 FPN 0.111/0.188 0.242/0.403 0.072/0.124 0.111/0.191 0.096/0.093

EfficientDet D3 0.092/0.294 0.177/0.590 0.073/0.224 0.091/0.297 0.105/0.171

EfficientDet D4 0.236/0.345 0.480/0.689 0.171/0.261 0.237/0.350 0.232/0.244

EfficientDet D5 0.178/0.292 0.345/0.588 0.145/0.219 0.178/0.295 0.207/0.221

Note: On the left is the mAP obtained by the base model and on the right of each box is the mAP obtained by our proposal (higher is better). The best

results are marked in bold.
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detections as well as the results obtained after applying our proposal. Columns second to fourth refer to detections of objects of any size. The

second column corresponds to the mAP of the elements detected with an IoU between 50% and 90%. The third column reports detections above

50% of IoU, while the fourth column corresponds to the detections above 75% of this metric. Additionally, results are presented for small-sized

objects with an IoU between 50% and 95% and medium-sized items with an IoU above 50%, in the fifth and sixth columns, respectively.

Metrics obtained for large-sized objects have been omitted since there are no samples in the established dataset. As shown in each of the

tables obtained for the images that make up the defined dataset, there is a clear improvement in the mAP measure.

To better illustrate the increase in the number of detections, the CenterNet HourGlass104 Keypoints model has been selected for this test as it

is one of the best performing models compared to the rest of the models used for this experiment. For each of the sets of images that make up

the videos from which the dataset has been made, the improvement obtained in the number of elements by the described technique compared to

the results initially provided by the model has been graphically represented in Figures 14–16.

F IGURE 14 Comparison of the number of detections for the first sequence

TABLE 6 Results obtained for the third video

Video 3—sb-camera4-0820am-0835am

Model
IoU = 0.50:0.95
jarea = all

IoU > 0.50
jarea = all

IoU > 0.75
jarea = all

IoU = 0.50:0.95
jarea = small

IoU > 0.50
jarea = medium

CenterNet HourGlass104 Keypoints 0.074/0.219 0.137/0.394 0.072/0.217 0.075/0.227 0.054/0.060

CenterNet MobileNetV2 FPN Keypoints 0.060/0.102 0.159/0.237 0.026/0.064 0.066/0.108 0.009/0.014

CenterNet Resnet101 V1 FPN 0.039/0.082 0.075/0.160 0.028/0.065 0.040/0.084 0.016/0.015

EfficientDet D3 0.029/0.163 0.050/0.292 0.022/0.164 0.029/0.168 0.012/0.040

EfficientDet D4 0.129/0.280 0.236/0.518 0.118/0.264 0.130/0.287 0.068/0.151

EfficientDet D5 0.056/0.204 0.099/0.384 0.051/0.184 0.058/0.207 0.006/0.082

Note: On the left is the mAP obtained by the base model and on the right of each box is the mAP obtained by performing our proposal (higher is better).

The best results are marked in bold.
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F IGURE 15 Comparison of the number of detections for the second sequence

F IGURE 16 Comparison of the number of detections for the third sequence
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According to Tables 4–6, the application of the technique described in this work not only improves the accuracy of the elements ini-

tially detected by the model but also detects objects that were not identified a priori. As can be seen in Figures 14–16, the proposed tech-

nique results in an increase in the number of detected elements. In blue, the Ground Truth of the vehicles that make up the selected

sequences from the dataset called U.S. Highway 101 Dataset, shown in blue, are annotated. In these figures, we can see how the number of

vehicles detected by the pre-trained model initially, represented in grey colour, is low because the model does not detect vehicles due to

the small size they present and the conditions of the scene. However, from the results obtained by our proposal, represented in orange col-

our, we can say that indeed, by applying super-resolution in conjunction with the processing of the initial image given as input and generate

the various sub-images on which the model will subsequently infer the result improves, thereby detecting a greater number of vehicles. This

fact, as previously mentioned, is due to the increase in the number of pixels that make up the vehicles located in the scene, leading to bet-

ter results.

5 | CONCLUSIONS

Throughout this paper, a new technique has been developed which employs deep convolutional neural networks for super-resolution to detect

small-scale visual elements and improve the reliability of the estimation of their classes. The method makes a first pass of the object detection

deep neural network. Then it super-resolves the video frame. After that, a window is defined for each detected object, which has the detected

object at its centre, and an object detection is carried out for that window. This object detection results in more accurate estimations of the char-

acteristics of the previously detected objects, as well as the detection of additional objects that were missed by the object detection network in

the first pass.

A quantitative comparison of our approach has been carried out. The results obtained show that the application of super-resolution processes

does improve the detections made on an image since, based on the metrics obtained using the COCO evaluator. According to the diverse object

detection models used, we can highlight the increase in the MAP obtained after applying the proposal presented. Establishing for example the

model EfficientDet D3 whose MAP is increased by 17.6% on average, going from the accuracy of 9.1%–29.7%. This improvement also applies to

medium and large elements, obtaining an overall improvement of 17.1% for this model, thus increasing the number of elements detected in the

image given as input, improving also the class score inferred by the model. Other models such as CenterNet HourGlass104 Keypoints obtain an

increase of 12.3% for small objects and 12% for elements independent of their size. The main advantage of our proposal is that it is not necessary

to modify the object detection network, thus avoiding the modification of the intermediate layers that make up the model or the need for

retraining.

The quantitative object detection results are enhanced. Qualitative results further confirm the advantages of our proposal since the improve-

ment of the reliability of the object detections and the discovery of additional objects can be observed.

Let us remember that, in all cases, the images that make up the model on which the results have been validated correspond to video

surveillance systems placed in high points. Regarding future lines to extend the research reported in this article, it should be noted that a

novel approach is envisaged on which work is already underway. It consists of reducing the number of windows that need to be processed

during the object detection. This enhancement might result in a reduction of the computational load associated with the execution of our

method.

Another approach that is being pursued is based on a proposed methodology to automatically adapt an object detection method to a specific

scene with small objects with no human intervention. The super-resolution strategy presented in this paper is first applied to find detection exam-

ples from the scene even if the object detection method is not able to detect them from the original image. The new examples are then used as

training data in order to perform a fine-tuning process from a general-purpose pre-trained object detection method to improve its performance

on that specific scene.
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