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Ever since its appearance on the scene in the 1940s, in the then nascent field of
statistical decision theory, Wald’s maximin paradigm has played a vital role in many
disciplines in the treatment of non-probabilistic uncertainty, both as a tool of thought
and as a practical instrument. In fact, in some fields, such as modern robust opti-
mization, Wald’s paradigm dominates the scene. It is important to note that this
paradigm’s preeminence in many fields continues unabated, despite its obvious limi-
tations and the criticism that had been and continues to be leveled at it. So, in this
tutorial we examine the methodological aspects of this stalwart of decision theory
from the viewpoint of robust decision-making, paying special attention to its obvious
and not so obvious limitations and to its relation to other maximin paradigms.

Keywords: Wald’s Maximin paradigm, worst-case analysis, uncertainty, decision the-
ory, robust optimization.

1 Introduction

To set the stage for our discussion on Wald’s maximin paradigm, let us begin by
considering the simple decision problem that is represented by the table below. The
entries in the table, denoted p(x, s), designate payoffs, the rows designate the alterna-
tives available to the decision maker, and the columns designate possible (uncertain)
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scenarios. Hence, there are three alternatives and five possible scenarios in this case.

p(x, s) s(1) s(2) s(3) s(4) s(5)

x(1) 5 4 4 6 9
x(2) 8 9 7 1 2
x(3) 8 8 4 7 5

(1)

For simplicity, assume that a unit of payoff is 1$ (USA), and that the larger the
payoff the better.

The task set by this decision problem is this: determine the best (optimal) alter-
native.

It is interesting to note that, to date, decision theory has not produced a uniform,
universally accepted recipe, method, or technique to handle decision problems of this
type. Indeed, to this day, experts remain divided on how best to deal with such
problems.

At first glance this might appear surprising because, on the face of it, the decision
problem in question seems to be simplicity itself, so much so that the last thing one
would have expected is a lack of unanimity on how best to deal with it. Indeed,
one would have expected decision theory to furnish a simple recipe to match the
apparent simplicity of this problem. On closer scrutiny, however, it becomes clear
that the main reason that this seemingly simple problem is anything but simple is
due to the uncertainty in the five scenarios. To be precise, the difficulty here is in
our ignorance as to which of the five possible scenarios will be realized.

For, had we possessed this knowledge, the decision problem would in fact be
trivial. And to illustrate, had we known (for sure) that scenario s(4) would be realized,
the best alternative would have been x(3), yielding the payoff p(x(3), s(4))=7. And
had we known for sure that scenario s(2) would be realized, the best alternative
would have been x(2), yielding the payoff p(x(2), s(2))=9. But, in the absence of this
knowledge, determining the best alternative (optimal) in this case is no easy matter.

The question is then: how does one approach problems of this type?

In this tutorial we examine one of the paradigms, indeed the foremost paradigm,
offered by decision theory for this purpose, namelyWald’s maximin paradigm (circa
1940). The discussion is thus organized according to these topics:

• Section 2: The basics

• Section 3: Formal generic maximin models

• Section 4: What makes a maximin model a Wald-type model
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• Section 5: Playing against Nature

• Section 6: Robustness

• Section 7: Rationality and conservatism

• Section 8: Variations on a theme

• Section 9: Robust optimization

• Section 10: Can Wald’s maximin paradigm save the world?

2 The basics

The identifying characteristic of Wald’s maximin paradigm is in its approach to
uncertainty which can be stated informally as follows:

• In the face of uncertainty, assume the worst!

Thus, taking this approach to the above fundamental decision problem, each
alternative available to the decision maker is evaluated on the basis of the worst-
case scenario pertaining to the alternative considered. Then, the best alternative
is judged to be that whose performance under the worst-case scenario is at least as
good as the worst-case performance of all other alternatives. A recipe of this type is
called a maximin decision rule and it can be stated in various ways (e.g. Luce and
Raiffa 1957, Resnik 1987, French 1988, Peterson 2009). For our purposes, Rawls’s
(1971, pp. 152-3) formulation of the rule is particularly instructive:

The maximin rule tells us to rank alternatives by their worst possible
outcomes: we are to adopt the alternative the worst outcome of which is
superior to the worst outcome of the others.

To formulate rules of this type more formally, let X denote the set of alternatives
available to the decision maker, let S denote the set of possible scenarios under
consideration, and let O(x, s) denote the outcome generated by alternative x ∈ X
under scenario s ∈ S. Formally O can be regarded as a function defined on X × S.
This being so, we can give the maximin rule the following abstract mathematical
transliteration:

z∗ : = best
x∈X

{
worst
s∈S

O(x, s)

}
(2)

= best
x∈X

worst
s∈S

O(x, s) (3)
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where the worst
x∈X

operation selects the worst outcome over all the scenarios, and the

best
s∈S

operation selects the best outcome over all the alternatives. These operations

represent the decision maker’s preferences.
For simplicity, we assume that the outcomes are numeric scalars, namely that O

is a real-valued function, and that the larger the outcome the better. In this case
best = max and worst = min, whereupon we have what to many readers no doubt
epitomizes the maximin rule, namely:

z∗ := max
x∈X

min
s∈S

O(x, s). (4)

And in cases where the smaller the outcome the better, we have:

z∗ := min
x∈X

max
s∈S

O(x, s) (5)

which is a minimax, rather than a maximin, model.
We call attention to the concept pessimization (IECRC 1966, Corbett 1988, Bell

1992, Mutapcic and Boyd 2009, Oskooi et al. 2012, Ben-Tal et al. 2015) as an
antonym of optimization. In this case the abbreviated pes would function as an
antonym of opt, whereupon the maximin model and the minimax model would be
represented by the following single abstract model:

z∗ := opt
x∈X

pes
s∈S

O(x, s). (6)

We note though that the discussion in this tutorial focuses almost exclusively on
maximin versions of this abstract model.

It should also be pointed out that although the outcomes O(x, s), x ∈ X, s ∈ S,
are assumed to be numeric scalars, the above simple models can easily accommodate
performance requirements, namely constraints, as well as payoffs. Thus, methodolog-
ically speaking, it is instructive to consider three types of outcomes.

2.1 Outcomes representing payoffs

In this case

O(x, s) = p(x, s) , x ∈ X, s ∈ S (7)

where p is a real-valued function on X × S such that p(x, s) represents the payoff
generated by alternative x under scenario s. Assuming that the larger the payoff the
better, the maximin decision rule translates to the following maximin model:

z∗ := max
x∈X

min
s∈S

p(x, s). (8)

This article is protected by copyright. All rights reserved. 4
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Example

Consider the following payoff table:

p(x, s) s(1) s(2) s(3) s(4) s(5)

x(1) 5 4 4 6 9
x(2) 8 9 7 1 2
x(3) 8 8 3 7 5

(9)

To find the best alternative, we would first append to the table a column whose
entries are the worst payoffs for the respective alternatives:

p(x, s) s(1) s(2) s(3) s(4) s(5) min
s∈S

p(x, s)

x(1) 5 4 4 6 9 4

x(2) 8 9 7 1 2 1

x(3) 8 8 3 7 5 3

(10)

These values are termed in the idiom of decision theory the security levels of the
respective alternatives.

Next we would identify that row (alternative) whose security level is the largest:

p(x, s) s(1) s(2) s(3) s(4) s(5) min
s∈S

p(x, s) max
x∈X

min
s∈S

p(x, s)

x(1) 5 4 4 6 9 4 4

x(2) 8 9 7 1 2 1

x(3) 8 8 3 7 5 3

(11)

We would therefore conclude that, according to the maximin rule, alternative x(1)

is the best, seeing that its security level which is equal to 4 is larger than the security
levels of the other two alternatives.

2.2 Outcomes representing performance requirements

Suppose that there are no payoffs, but the (x, s) pairs are subject to certain perfor-
mance constraints. In this case the outcomes would be defined as follows:

O(x, s) =

{
1 , the pair (x, s) satisfies the constraints

0 , the pair (x, s) violates the constraints
, x ∈ X, s ∈ S. (12)

This means that alternative x ∈ X is admissible iff the pair (x, s) satisfies the
constraints for all s ∈ S. If none of the alternatives is admissible, the conclusion
is that the maximin problem has no solution: there is no x ∈ X such that (x, s)
satisfies the constraints for all s ∈ S.

This article is protected by copyright. All rights reserved. 5
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Example

Consider the following outcome table, representing performance requirements im-
posed on (x, s) pairs:

O(x, s) s(1) s(2) s(3) s(4) s(5)

x(1) 1 0 1 0 1
x(2) 1 1 1 1 1
x(3) 1 1 1 1 0

(13)

By inspection, there is only one admissible alternative, namely x(2). Hence, ac-
cording to the maximin rule, this alternative is the best.

2.3 Outcomes representing payoffs and performance require-
ments

Suppose that we have both payoffs and performance requirements (constraints). In
this case, as in optimization theory, constraint satisfaction, namely feasibility, has
priority over payoffs. Hence, outcomes would be defined as follows:

O(x, s) =

{
p(x, s) , the pair (x, s) satisfies the constraints

−∞ , the pair (x, s) violates the constraints
, x ∈ X, s ∈ S.

(14)

This yields the following maximin model:

z∗ : = max
x∈X

min
s∈S

O(x, s) (15)

= max
x∈X

min
s∈S

{p(x, s) : (x, s) satisfies the constraints ∀s ∈ S}. (16)

Example

Consider the situation described by the following table where the entries represent
payoffs and constraint satisfaction. That is, each entry is a pair whose first element
represents a payoff and its second element is a boolean scalar indicating whether the
constraints are satisfied by the respective (x, s) pair.

s(1) s(2) s(3) s(4)

x(1) (9, 1) (9, 0) (8, 1) (9, 0)
x(2) (3, 1) (9, 1) (6, 1) (8, 1)
x(3) (4, 1) (4, 1) (5, 1) (6, 1)

(17)
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For example, the entry (3, 1) for (x(2), s(1)) indicates that the payoff is equal to
3 and the constraints are satisfied. The entry (9, 0) for (x(1), s(4)) indicates that the
payoff is equal to 9 and the constraints are violated.

We thus obtain the following outcome table

O(x, s) s(1) s(2) s(3) s(4) min
s∈S

O(x, s) max
x∈X

min
s∈S

O(x, s)

x(1) 9 −∞ 8 −∞ −∞
x(2) 3 9 6 8 3
x(3) 4 4 5 6 4 4

(18)

The conclusion therefore is that, according to the maximin rule, the best decision
is x(3), whose security level is equal to 4.

3 Formal generic maximin models

From what we have seen so far, it is clear that maximin models give formal mathe-
matical expression to the maximin decision rule. For the purposes of this tutorial it is
instructive to consider three generic maximin models, generic in the sense that they
embody the basic ingredients of Wald’s maximin paradigm. These basic ingredients
are as follows:

• A decision space, X, namely a set consisting of all the decisions (alternatives)
available to the decision maker.

• A state space, S, namely a set consisting of all the possible states (scenarios)
under consideration.

• A real-valued function p defined on X × S specifying the payoffs generated by
the decisions and states under consideration.

• A list of performance requirements, namely a list of constraints, imposed on
the (decision, state) pairs. Let constraints(x, s) denote this list.

The first generic model we consider is characterized by the property that it is
constraints-free, meaning that there are no explicit constraints on (decision, state)
pairs (the list constraints(x, s) is empty). This model thus takes this simple form:

Unconstrained model:

z∗ := max
x∈X

min
s∈S

p(x, s). (19)

This article is protected by copyright. All rights reserved. 7
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The second generic model is characterized by the property that the list of con-
straints is not empty. This model thus takes this form:

Constrained model:

z∗ := max
x∈X

min
s∈S

{p(x, s) : constraints(x, s), ∀s ∈ S}. (20)

The third model is characterized by the property that the payoffs are independent
of the state variable. Note that in this case the iconic min

s∈S
operation is superfluous.

Models of this type therefore take this form:

State-free-payoff model:

z∗ := max
x∈X

{p(x) : constraints(x, s), ∀s ∈ S}. (21)

We call attention to the fact that these three generic models are interchangeable.
Namely, each one of these models can be rewritten so as to assume the form of any
one of the other two models. For example, the Unconstrained model can be written
as follows:

max
x∈X

min
s∈S

p(x, s) = max
x∈X

max
v∈R

{v : v ≤ p(x, s), ∀s ∈ S} (22)

= max
x∈X,v∈R

{v : v ≤ p(x, s), ∀s ∈ S} (23)

where R denotes the real line. The model on the right-hand side is clearly a State-
free-payoff model: its payoff v is independent of the state variable s.

Note that this transformation exploits the fact that a minimization problem, say
min
y∈Y

g(y), can be rewritten as a maximization problem as follows

min
y∈Y

g(y) = max
v∈R

{v : v ≤ g(y), ∀y ∈ Y }. (24)

And to express the Constrained model as an Unconstrained model, we let

f(x, s) =

{
p(x, s) , pair (x, s) satisfies the constraints

−∞ , pair(x, s) satisfies the constraints
, x ∈ X, s ∈ S (25)

so that

max
x∈X

min
s∈S

{p(x, s) : constrains(x, s), ∀s ∈ S} = max
x∈X

min
s∈S

f(x, s). (26)

This article is protected by copyright. All rights reserved. 8
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In practice, the choice between these three generic maximin models is a matter
of style and convenience.

What emerges then is that from a maximin point of view we can distinguish
between two types of decisions, namely admissible and inadmissible decisions, where
a decision is said to be admissible iff it satisfies the performance constraints for all the
states (scenarios) under consideration. More formally, the set of admissible decisions
is defined as follows:

Xa := {x ∈ X : constraints(x, s), ∀s ∈ S}. (27)

Observe that in the context of the Unconstrained model, Xa = X.
For simplicity we assume that Xa is not empty, namely that there is at least one

admissible decision.

Remark

The maximin paradigm can be incorporated in sequential decision processes to gener-
ate maximin-type sequential decision models. For example, the following is a dynamic
programming functional equation for a minimax version of the famous counterfeit
coin problem:

f(s) = 1 + min
x∈D(s)

f(max(x, s− 2x)) , s = 2, 3, . . . , n (28)

with f(1) = 0, D(s) := {1, 2, . . . , I(s/2)} and I(s) denotes the integer part of s.
Here s denotes the number of coins left for inspection (state variable), x de-

notes the number of coins placed on each side of the scale (decision variable), and
f(s) denotes the minimum number of weighings required to identify the counterfeit
coin under the worst-case scenario, given that s coins are left for inspection (See
Sniedovich (2003) for details about this model).

4 What makes a maximin model a Wald-type model?

As we pointed out at the outset, our main concern in this tutorial is with Wald-type
maximin models which, as we also noted, were introduced into statistical decision
theory in the 1940s. To this we should now add that this type of model was intro-
duced into this field by the mathematician Abraham Wald (1902-1950). By the early
1950s models of this type became the mainstay of decision theory (Luce and Raiffa
1957, Resnik 1987, French 1988, Peterson 2009) and from there they started entering

This article is protected by copyright. All rights reserved. 9
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many other disciplines, for instance engineering, economics, management, operation
research, and so on.

The question is then this: what is it that distinguishes between a Wald-type
maximin model and other types of maximin models?

As we shall see, this distinction is not due necessarily to the formal mathematical
format of the respective models, but rather to the meaning attaching to the entities
that the mathematical objects of these models represent.

And to illustrate, consider the following simple Unconstrained maximin model:

z∗ := max
v∈R

min
w∈R

{w2 + 2vw − v2}. (29)

Is this a Wald-type model?
To answer this question we need to know what entities do the variables v and

w represent. For this model to be a Wald-type maximin model w must represent a
decision variable whose value is controlled by the decision maker and v must represent
uncertainty, namely it must represent an entity whose “true” value is unknown. What
is more, the uncertainty in w must be non-probabilistic.

The following example features a minimax model that is devoid of any uncertainty.
Hence, this model is clearly not a Wald-type minimax model.

Example: location problem

Deterministic maximin and minimax models are used extensively in applied math-
ematics. To illustrate this point, consider the following “thoroughly deterministic”
generic geometric problem that was proposed by the English mathematician James
Joseph Sylvester (1814–1897) in the article A Question in the Geometry of Situation
(Syslvester 1857):

• Smallest (bounding) sphere problem: Find the smallest n-sphere contain-
ing all the points in a given subset of Rn.

Figure 1 illustrates a solution to a simple smallest circle problem (n = 2). The
given set of points consists of the points represented by the small black squares, c∗

denotes the center point of the optimal (smallest) circle, and ρ∗ denotes the radius
of this optimal (smallest) circle.

Figure 1: Smallest circle problem

Let S denote the given set of points in R
n, let x ∈ R

n denote the center point of
an n-sphere, and let ρ(x, s) denote the distance from point x to point s ∈ S. Then

This article is protected by copyright. All rights reserved. 10
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the smallest n-sphere problem can be stated as follows:

ρ∗ = min
x∈R

max
s∈S

ρ(x, s) (30)

= min
x,r∈R

{r : ρ(x, s) ≤ r, ∀s ∈ S} (31)

observing that, by definition,

r∗(x) := max
s∈S

ρ(x, s) (32)

is the distance from x to the most distant point in S from x, hence it is the radius of
the smallest n-sphere centered at x that contains all the points in S. By definition,
ρ∗ is equal to the radius of the smallest such n-sphere.

In the above minimax model, the optimizing x specifies the center of the smallest
n-sphere and ρ∗ is equal to the radius of this n-sphere. Clearly, in this minimax
problem no uncertainty is associated with the elements of set S. In other words, this
is a “thoroughly deterministic” minimax problem.

Generic problems of this type have many practical applications. For instance,
they are used extensively in location theory, where set S represents the location of a
given collection of demand points and x represents the location of a supply point. In
this framework, the objective is to determine the location of the supply point that
minimizes the distance from this point to the most distant demand point. These
problems are known as minimax location problems (e.g. Elzinga and Hearn 1972). �

Another point of interest brought out by the above example is the distant roots
of maximin models. For as this example indicates, the use of deterministic maximin
models predates not only the use of Wald-type maximin models in statistical decision
theory (Wald 1939, 1945, 1950), but also that of maximin models of the type deployed
in game theory (circa 1920s). In fact, the use of maximin models can be traced back
at least to error analysis, namely, at least to Leonhard Euler (1707-1783). And to
illustrate, consider for instance the article Origin of the theory of errors, by Sheynin
(1966), which argues that Johann Heinrich Lambert (1728-1777) “. . . should be given
precedence over Gauss as the originator of the theory of errors . . . ” because, as
Sheynin (1966, p. 1004) points out:

(f) An enunciation of the “minimax” principle (minimization of the max-
imum residual error in geodetic adjustments—the minimum being sought
among all possible solutions . . . .) But Lambert confessed that he did not
know how to use this principle “in a general manner, without many de-
vious ways” (auf cine allgemeine Art, und ohne mlele Umwege). The use

This article is protected by copyright. All rights reserved. 11
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of this principle in a rudimentary form for solving a redundant system of
linear algebraic equations should be credited to Euler. . . .

And to go back to the features that render a maximin model a Wald-type model,
we call attention to the fact that the non-probabilistic nature of the uncertainty
that characterizes Wald-type models, is manifested in the assumption that all that
is known about the “true” value of the state variable s is that it can be any element
of the state space S. Thus, no assumption whatsoever is made as to whether certain
elements of S are more/less likely to be the true value of s then others. We simply
have no clue.

Example: an uncertain linear programming problem

Consider the following standard linear programming problem

v∗ := max
x

{cTx : Ax ≤ b, x ≥ 0}. (33)

There are situations where some of the parameters of this problem are uncertain.
For example, consider the case where vector b is uncertain: it can take values in
some ball B(ε, b̃) of radius ε in R

m around some given point b̃ ∈ R
m. But, there is

no inkling as to which point in B(ε, b̃) is the true value of b. To repeat, other than
knowing that this true value is an element of B(ε, b̃) nothing else is known.

In this case, the maximin counterpart of the above standard linear programming
problem would require the decision variable x to satisfy the constraint Ax ≤ b for all
b ∈ B(ε, b̃). This model would then be as follows:

z∗ := max
x

{cTx : Ax ≤ b, x ≥ 0, ∀b ∈ B(ε, b̃)}. (34)

This is a State-free-payoff maximin model where b designates the state variable
and B(ε, b̃) the state space. Note that this is not a “run of the mill” linear program-
ming model, but rather a semi-infinite linear programming problem. Namely, it is a
linear programming problem with infinitely many constraints (Ben-Tal et al. 2009).
�

And to sum it all up. From what we have seen thus far, it emerges that Wald-type
maximin/minimax models are distinguished by the following four basic properties:

• The state variable s ∈ S represents uncertainty, namely the true value of s is
unknown.

This article is protected by copyright. All rights reserved. 12
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• The state space S consists of all the possible/plausible values of s under con-
sideration, such that only one of these values is the true value of s.

• The decision x ∈ X is made before the true value of the state variable s ∈ S is
revealed (realized).

• The uncertainty in the true value of the state variable s ∈ S is probability-free,
likelihood-free, plausibility-free, chance-free, belief-free, etc. All that is known
about this true value is that it is an element of S.

It goes without saying that the last characteristic implies that the uncertainty
that Wald-type models are designed to deal with is severe.

5 Playing against Nature

Now, the immediate implication of the fact that in the framework of Wald’s maximin
paradigm the state variable s ∈ S embodies uncertainty is that the realized value of
s is not fully controlled by the decision maker. This situation readily lends itself to
a representation of a Wald-type maximin model as a game involving two players:
the decision maker and Nature, with the latter personifying uncertainty (or rather
the decision maker’s perception of uncertainty).

In this game the decision maker plays first by selecting a decision x ∈ X. In
response, Nature selects the worst s ∈ S associated with this decision. The decision-
maker’s objective is to select an x ∈ X that yields the best payoff, given the antici-
pated antagonistic response by Nature.

5.1 Equilibrium

Unlike the players in classic zero-sum two-person games (von Neumann and Morgen-
stern 1944, Thie 1988), here the two players do not seek an equilibrium. Thus, a
solution to a Wald-type maximin problem is not required to be stable. For example,
consider the maximin associated with this payoff table:

p(x, s) s(1) s(2) min
s∈S

p(x, s) max
x∈X

min
s∈S

p(x, s)

x(1) 2 3 2 2
x(2) 4 1 1

(35)

As a Wald-type maximin model, this game has a unique optimal solution, namely
(x∗, s∗) = (x(1), s(1)). Observe, however, that this solution is not a saddle point.

This article is protected by copyright. All rights reserved. 13
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Hence, as a classic zero-sum two-person game, this game does not have an optimal
pure strategy.

Thus, insofar as optimality conditions are concerned, Wald-type maximin models
are far simpler than models of the classic zero-sum two-person games ilk.

Before we proceed any further, it is important to be thoroughly clear on how
Nature selects the worst s ∈ S pertaining to a decision x ∈ X selected by the
decision maker.

5.2 Nature’s worst-case analysis

Because in Wald-type maximin models the players do not seek an equilibrium, the
worst-case analysis conducted by Nature is straightforward.

Thus, in the framework of the Unconstrained model, the worst-case analysis of
decision x ∈ X amounts to no more than a minimization of the payoff p(x, s) over
s ∈ S. This yields the security level of decision x, namely

SL(x) := min
s∈S

p(x, s) , x ∈ X. (36)

Therefore, if the decision maker selects decision x, the anticipated payoff will not
be below SL(x).

In the case of Constrainedmodels, selecting the worst s ∈ S pertaining to decision
x is much more involved. This is due to the presence of performance constraints on
(x, s) pairs, and to the fact that constraint satisfaction takes precedence over payoffs.
Thus, in response to the selection of a decision x ∈ X by the decision maker, Nature
selects a state s ∈ S as follows:

• If there is a state s ∈ S such that (x, s) violates the performance constraints,
then Nature select such a state.

• If there is no such s ∈ S, namely if for every s ∈ S the pair (x, s) satisfies
the performance constraints, then Nature select a state s ∈ S that minimizes
p(x, s) over s ∈ S.

Hence, in the context of Constrained models, the security level of an admissible
decision x is as follows:

SL(x) := min
s∈S

p(x, s) , x ∈ Xa. (37)

The same procedure is followed by Nature in the case of State-free-payoff models,
except that here there is no need to minimize the payoff with respect to the state
variable, because the payoff is independent of the state variable. So, the procedure
runs as follows:
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• If there is an s ∈ S such that (x, s) violates the performance constraints, then
Nature selects such a state.

• If there is no such s ∈ S, then Nature selects any s ∈ S.

Thus, in the context of State-free-payoffmodels, the security level of an admissible
decision x is as follows:

SL(x) := p(x) , x ∈ Xa. (38)

In all maximin models, the iconic max
x∈X

operation gives expression to the decision

maker’s selection of the best x ∈ X subject to Nature’s antagonist stance. The idea
therefore is that the decision maker would avoid selecting an inadmissible decision.
Hence, if there are no admissible decisions, namely if Xa is empty, then the problem
under consideration is infeasible from a maximin perspective.

5.3 The importance of playing first

Recall that in the framework of Wald’s maximin paradigm, the decision maker
“plays” first and Nature responds to the decision maker’s moves. Therefore, method-
ologically, it is perfectly kosher, indeed beneficial, to generalize somewhat the formu-
lation of the generic maximin models discussed above by assuming that each decision
x ∈ X may have its own state space. In other words, let

S(x) := set of states (scenarios) pertaining to decision x, x ∈ X. (39)

Under this assumption, the Unconstrained model will take the form

z∗ := max
x∈X

min
s∈S(x)

p(x, s). (40)

Similarly, the Constrained model will be as follows

z∗ := max
x∈X

min
s∈S(x)

{p(x, s) : constraints(x, s), ∀s ∈ S(x)} (41)

and the State-free-payoff model will have this format:

z∗ := max
x∈X

{p(x) : constraints(x, s), ∀s ∈ S(x)}. (42)
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Example

Consider the following State-free-payoff maximin model

x∗ := max
x≥0

{x : g(s) ≥ 0, ∀s ∈ S(x)} (43)

where S(x) denotes a neighborhood of size x around some point s̃ ∈ R
n, and g is a real-

valued function on R
n. By definition then, x∗ is the size of the largest neighborhood

around s̃ all whose points satisfy the constraint g(s) ≥ 0.
This is illustrated in Figure 2 where n = 2 and the neighborhoods are circles

around s̃. Note that in this case x∗ is equal to the radius of the largest circle around
s̃ that is contained in the region of R2 where g(s) ≥ 0.

Figure 2: Local stability/robustness at s̃

Models of this type are used extensively in many fields to measure the local
stability/robustness of systems against perturbations in a nominal value (s̃) of a
parameter. We discuss such models, called radius of stability models, in the next
section.

6 Robustness

The fact that Wald’s maximin paradigm seeks to determine decisions that perform
well (relative to other decisions) under the worst-case scenario, has made Wald-
type maximin models ready mediums for the purpose of identifying decisions that
are robust against uncertainty/variability. And to be sure, these models are used
extensively in many fields to this end.

That said, it is important to point out that the phrase “robustness”, as it is
currently used in decision theory and optimization theory, is of a relatively recent
vintage (circa 1970s) which means that it had not been part of the original idiom of
Wald’s paradigm. Still, the idea that is articulated by the modern term “robustness”
has been an essential element of the maximin paradigm from the start, except that
in the framework of this paradigm it is referred to as the security level of decisions.
Thus, in the context of a Wald-type maximin model the robustness of decisions is
measured in by their security levels: the larger the security level the more robust the
decision.

The two examples below illustrate the use of maximin models to define robustness
of systems/decisions in situations devoid of explicit payoffs, so that robustness is
sought only with respect to performance requirements (constraints).
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Example: “size robustness”

As above, let constraints(x, s) denote the list of constraints imposed on (decision,
state) pairs, and assume that we seek a decision that is robust against uncertainty
with respect to these constraints. Obviously, if a decision x ∈ X such that

constraints(x, s) , ∀s ∈ S(x) (44)

exists, then such a decision would be deemed “super-robust”, hence the best (opti-
mal).

Now, suppose that there is no such decision. Rather, for each x there is some
s ∈ S(x) such that the pair (x, s) violates the constraints.

In this case we might opt to seek a decision x ∈ X that satisfies the constraints
over a large subset of S(x) such that the larger this subset, relative to S(x), the
better. With this in mind, let

A(x) := subset of S(x) whose elements satisfy constraints(x, s) , x ∈ X (45)

and define the robustness of decision x as follows:

robust(x) :=
#A(x)

#S(x)
, x ∈ X (46)

where #B denotes the “size” of set B. For example, if B is a discrete set we can let
#B denote the cardinality of set B. If set B is say a ball in R

3, then we can let #B
be the radius of this ball, or its volume.

In words, the robustness of decision x, denoted robust(x), is equal to the size of
the largest subset of S(x) over which x satisfies the constraints, divided by the size
of S(x). Since #V ≤ #S(x), ∀V ⊆ S(x), it follows that 0 ≤ robust(x) ≤ 1. In any
case, to find the most robust decision, we would solve this problem

r∗ : = max
x∈X

robust(x) (47)

= max
x∈X

#A(x)

#S(x)
. (48)

To see the link of these optimization problems to the maximin paradigm, observe
that it follows from the definition of A(x) that

#A(x) = max
V⊆S(x)

{#V : constraints(x, s), ∀s ∈ V } , x ∈ X. (49)
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Clearly, this is a State-free-payoff maximin model where V plays the role of a
decision variable. Therefore:

robust(x) =
1

#S(x)
max

V⊆S(x)
{#V : constraints(x, s), ∀s ∈ V } (50)

and

r∗ = max
x∈X,V⊆S(x)

{
#V

#S(x)
: constraints(x, s), ∀s ∈ V

}
. (51)

These two are also State-free-payoff maximin models. In the latter (x, V ) plays
the role of a decision variable.

Figure 3 illustrates the implementation of this robustness measure. Here we
let #A(x) denote the area in R

2 taken up by set A(x). Clearly, according to this
measure, decision x′ is, by inspection, more robust than decision x′′. Decision x′

satisfies the constraints over 80% of S(x′), whereas x′′ satisfies the constraints only
over 25% of S(x′′).

Figure 3: Size robustness of two decisions

Models of this type date back to the 1960s (e.g. Starr 1963, 1966, Gupta and
Rosenhead 1968, Rosenhead et al. 1972, Rosenblat 1987, Eiselt and Laporte 1992,
Eiselt et al. 1998, Herman et al. 2014, Whateley et al. 2014).

Example: radius of stability

There are many situations where we seek decisions that are robust against pertur-
bations in a nominal value of the state variable, call it s̃. In this case we would
define the robustness of decision x as the largest perturbation in s̃ that does not
cause x to violate the performance constraints in the neighborhood around s̃ which
is demarcated by this perturbation. Formally then, we would let

ros(x|s̃) := max
α≥0

{α : constraints(x, s), ∀s ∈ N (α, s̃)} , x ∈ X (52)

where N (α, s̃) denotes a neighborhood of radius α around s̃. Note that this is a
State-free-payoff maximin model where α plays the role of the decision variable.

In words, the radius of stability of decision x at s̃, denoted ros(x|s̃), is equal
to the radius α of the largest neighborhood N (α, s̃) around s̃ all whose elements
satisfy the constraints imposed on x and s. This is illustrated in Figure 4 where the
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Figure 4: Radius of stability at s̃

neighborhoods N (α, s̃) are circles around s̃. The radius of stability of the decision
under consideration at s̃ is then equal to the radius of the largest circle contained in
the region of R2 where the constraints are satisfied.

The larger the radius of stability of x at s̃, the more robust x at s̃. Thus, the
most robust decision can be found by solving this State-free-payoff maximin model:

r∗(s̃) : = max
x∈X

ros(x|s̃) (53)

= max
x,∈X,α≥0

{α : constraints(x, s), ∀s ∈ N (α, s̃)} , x ∈ X (54)

where, formally, the decision variable is (x, α) and the state space associated with
(x, α) is equal to N (α, s̃).

Models of this type are used extensively in numerous fields (e.g. von Hoerner
1957, Wilf 1960, Milne and Reynolds 1962, Leont’ev 1975, Hindrichsen and Pritchard
1986, Zlobec 1988, 2009, Charnes et al. 1992, Paice and Wirth 1998, Bingham and
Ting 2013). �

The above illustrations of these two measures of robustness bring out the impor-
tance of being conversant with the fundamental distinction between local and global
robustness. Broadly, global robustness measures the performance of decisions over
their entire respective state spaces, whereas local robustness measures the perfor-
mance of decisions over a neighborhood around a nominal value of the state variable.
Needless to say, this distinction is reminiscent of the distinction between local and
global optimization, and of that between a local and a global anesthetic, local and
global news, local and global weather, and so on.

Thus, one must never lose sight of the fact that a decision that is locally robust is
not necessarily globally robust and vice versa. The implication therefore is that one
must ensure that the type of robustness analysis that one opts for is suitable for the
task at hand. That is, one must ensure that the robustness analysis that one sets out
to conduct is fully compatible with the uncertainty under consideration. And the
further implication is that if one sets out to employ a model of local robustness for
the purpose of determining robustness under a severe non-probabilistic uncertainty,
then the use of such a model must be justified or at least argued for. The issue here
is that the variability of the state variable over a neighborhood of the state space may
not properly represent the variability of the state variable over the state space.

This is illustrated in Figure 5 where the large square represents the state space
S and the small white circle represents a neighborhood of S over which the local
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robustness analysis is conducted. All the elements of S outside this neighborhood
are ignored by the local robustness analysis.

Figure 5: A local robustness analysis over a neighborhood of S around s̃

This illustration makes vivid the imperative to provide a cogent explanation,
indeed a justification, for using a model of local robustness to determine robust-
ness when the uncertainty under consideration is non-probabilistic, likelihood-free,
chance-free, plausibility-free and so on. In other words, one needs to justify on what
grounds are all the states outside the small neighborhood shown in Figure 5 left out
of the analysis. Indeed, on what grounds is the analysis conducted in the neigh-
borhood around s̃ rather than around some other state in S. And, the size of the
neighborhood must also be justified.

As far as maximin models are concerned, the distinction between a local robust-
ness analysis and a global robustness analysis is linked to the nature of the state
spaces S(x), x ∈ X. Thus, if S(x) represents the set of all possible/plausible states
pertaining to decision x, then the analysis would be global. And if S(x) represents a
neighborhood of the set of all possible/plausible states pertaining to decision x, then
the analysis would be local. The size robustness model is an example of a global
maximin robustness model and the radius of stability model is an example of a local
maximin robustness model.

Discussions on local robustness can be found in Sims (2001), Brock and Durlauf
(2005), Hafner et al. (2009), Ben-Tal et al. (2009a), Sniedovich (2012, 2012a, 2014)
and Hayes et al. (2013).

7 Rationality and conservatism

Now that the basic structures of the main types of generic maximin models have been
described, and the main points associated with their functioning and implementation
have been clarified, we are in a position to take up some of these models’ limitations.
As it will progressively become clear, methodologically, the central question that we
are actually concerned with is this:

• What is the rationale behind the maximin philosophy?

To address this question in a meaningful manner we need to distinguish between
two related, yet patently distinct, facts about worst-case analysis which bear on the
character of the maximin paradigm. These are:
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• The fact that it is often informative/useful/required to have a clear picture of
the performance of decisions/systems under worst-case scenarios.

• The fact that decisions that perform well under worst-case scenarios do not
necessarily perform well under “realistic” scenarios.

It goes without saying that the maximin paradigm scores well as regards the first
fact. However, when it comes to the second, things become a bit more complicated
so that special attention is required to deal with it. This is due to the fact that
the maximin paradigm is, by virtue of its definition, concerned only with worst-
case scenarios, meaning that it remains aloof to so called “realistic” scenarios. This
inherent characteristic of the maximin paradigm can be easily (mis)construed as
suggesting that it may lead to “irrational” decisions/behavior. And to illustrate,
consider the following payoff table:

p(x, s) s1 s(2) s(3) s(4) s(5) s(6) s(7) s(8) s(9) s(10) SL(x) Avg(x)

x(1) 0 100 200 400 300 500 600 700 800 900 0 450
x(2) 3 3 3 3 3 3 3 3 3 3 3 3
x(3) 900 200 1 300 400 600 500 800 700 100 1 450.1
x(4) 200 800 700 2 500 400 300 100 900 600 2 450.2

(55)

where the SL(x) column lists the security levels of the decisions and the Avg(x)
column lists the (arithmetic) average payoffs generated by the decisions.

Clearly, the maximin paradigm decrees that the best (optimal) decision is x(2),
yielding a security level of 3. However, it is equally clear that this decision performs
very poorly relative to the other three decisions under all scenarios, except the worst
ones: s(1) for decision x(1), s(3) for decision x(3) and s(4) for decision x(4).

The question is then what conclusions should be drawn from this fact?
For one thing, it seems rather clear that if one seeks decisions that perform

well with respect to worst-case scenarios as well as to “realistic” scenarios, then the
maximin paradigm may not be able to meet this objective.

This takes us directly to the related matter of “conservatism”, in fact to the
well-known criticism that the maximin paradigm may lead to decisions that are too
“conservative”. The following example illustrates this point.

Example

Suppose that a decision maker is presented with four alternative projects designed
to protect a large public facility from natural disasters. The four alternatives differ
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in the protection level that they provide, ranging from “None” to “Very High”. The
alternatives, the associated costs, and the damage caused under five scenarios are as
follows:

Project level of protection cost (M$) s(1) s(2) s(3) s(4) s(5)

x(1) None 0 0 2 5 9 16
x(2) Low 1 0 0 4 7 14
x(3) Medium 3 0 0 0 5 11
x(4) High 6 0 0 0 0 7
x(5) Very High 12 0 0 0 0 0

Damage (M$)

(56)

Note that the “conservative” costly High level protection (x(5)) project provides
full protection (no damage) against all the scenarios.

The Total Costs (cost + damage) table pertaining to this problem, and the as-
sociated (minimax) security levels are as follows :

M$ s(1) s(2) s(3) s(4) s(5) SL(x)

x(1) 0 2 5 9 16 16
x(2) 1 1 5 8 15 15
x(3) 3 3 3 8 14 14
x(4) 6 6 6 6 13 13
x(5) 12 12 12 12 12 12

(57)

The implication is then that the best (optimal) minimax decision in this case
is the “conservative” x(5). Note that this decision performs better than the other
decisions only under scenario s(5). Under all other scenarios the other decisions
performs much better (in terms of total-cost). �

The question is then what are we to make of this minimax verdict?

From what we have seen so far, it seems that one can view the inherent “conser-
vatism” of the maximin paradigm from two radically different perspectives.

• Seen as a medium that enables analysis against worst-case scenarios, as well
as a practical instrument that provides robustness under these conditions, the
maximin paradigm can hardly be labeled “conservative”. Because, in this
capacity, it does precisely what it is designed to do, which is to identify decisions
that perform well under worst-case scenarios. It is hardly surprising, therefore,
that decisions that perform well under worst-case scenarios should prove far
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more costly than decisions that perform well under “realistic” scenarios?! One
can thus view the conservatism of the maximin paradigm as the insurance
premium it provides against the great harm/damage that can be caused by the
worst-case scenario.

• On the other hand, our life experience (as individuals and as professionals)
has taught us that worst-case scenarios are, or ought to be, regarded as rare
events. Therefore, in practice, in our private lives and as professionals (say,
decision/policy makers) our decisions are generally not based solely on grounds
of their performance under worst-case scenarios, as advocated by the maximin
paradigm. Because, pursuing this type of strategy would clearly impede a
“normal” life, economic and social development, and so on.

So, the bottom line is that one must never lose sight of the special character
and function of the maximin paradigm, which in Rawls’ illuminating phrasing, puts
forward the following maximin rule (e.g. Rawls (1971, pp. 152-3):

The maximin rule tells us to rank alternatives by their worst possible
outcomes: we are to adopt the alternative the worst outcome of which is
superior to the worst outcome of the others.

The implication is therefore that using the maximin paradigm would be sensible
and justified in situations where it makes sense to . . . rank decisions according to
their performance under worst-case scenarios. Using it in other situations may well
lead to “irrational” decisions/behavior.

8 Variations on a theme

Shortly after its introduction into decision theory in the early 1950s, a number of
scholars proposed various modifications to the maximin paradigm. For instance,
consider this proposal by Hodges and Lehmann (1952, p. 396):

Instead of minimizing the maximum risk it is proposed to restrict at-
tention to decision procedures whose maximum risk does not exceed the
minimax risk by more than a given amount. Subject to this restriction
one may wish to minimize the average risk with respect to some guessed
a priori distribution suggested by previous experience. It is shown how
Wald’s minimax theory can be modified to yield analogous results con-
cerning such restricted Bayes solutions.
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A particularly interesting modification was proposed by Savage (1951). It involves
the concept “regret” which stipulates the deviation of the actual payoff yielded by a
(decision, state) pair from the best payoff yielded by the given state. In other words,
the regrets associated with the payoffs p(x, s), x ∈ X, s ∈ S are as follows:

r(x, s) :=

{
max
y∈X

p(y, s)

}
− p(x, s) , x ∈ X, s ∈ S (58)

observing that the smaller the regret the better.
Thus, decisions are ranked according to their worst (largest) regrets, meaning

that the best decision is that whose largest regret is the smallest. This corresponds
to the following minimax regret model:

w∗ := min
x∈X

max
s∈S

r(x, s). (59)

See Luce and Raiffa (1957), Resnik (1987), French (1988), Kouvelis and Yu
(1997), Peterson (2009) for other variations on the maximin payoff theme.

9 Robust optimization

No discussion on the use of the maximin paradigm in Operations Research (OR) can
possibly be considered complete without calling attention to the extensive use of
this paradigm in the field of robust optimization (e.g. Ben-Tal and Nemirovski 1997,
Bertsimas and Sim 2004, Iyengar 2005, Lim et al. 2006, Ben-Tal et al. 2006, Beyer
2007, Ben-Tal et al. 2009, Bertimas et al. 2011, Goerigk and Schöbel 2013, Goerigk
2014, Gabrel et al. 2014).

Recall that robust optimization is concerned with methods, techniques, and algo-
rithms designed to find solutions to optimizations problems that are robust against
an uncertainty in the problems’ parameters.

To do this, the ruling practice in robust optimization is to transform a con-
ventional optimization problem into a maximin problem. To see how this is done,
consider the following generic constrained optimization problem:

Problem P: v∗ := max
x∈X

f(x) s.t. constraints on x. (60)

where f is a real-valued function on some set X. Let X∗ denote the set of optimal
solutions to this problem.
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Assume further that the objective function and the constraints of this problem
depend on some parameter s ∈ S. This being so, Problem P can be linked to the
following parametric optimization problem:

Problem PP: v∗(s) := max
x∈X

f(x, s) s.t. constraints on (x, s) pairs , s ∈ S. (61)

Let X∗(s) denote the set of optimal solutions to this problem for the specified value
of s ∈ S.

Ideally, there would be a decision x ∈ X that is optimal with respect to Problem
PP for all s ∈ S. Should such a decision, exists, it would be deemed super-robust.
However, as we do not operate in an ideal world, we must lower our sights and seek
instead a decision that performs well with respect to both the objective function f
and the constraints imposed on (x, s) pairs, over a large subset of the state space S.

Assuming that constraint satisfaction takes precedence over payoff, an application
of the maximin decision rule to Problem PP yields the following maximin problem:

Problem RC: v◦ := max
x∈X

min
s∈S

{f(x, s) : constraints(x, s), ∀s ∈ S} (62)

where constraints(x, s) denotes the list of constraints imposed on (x, s) pairs. In the
robust optimization literature this maximin problem is called the robust counterpart
(RC) problem (e.g. Ronchetti and Staudte 1994, Ben-Tal et al. 2009, Bertsimas et
al. 2011). From a maximin perspective, this is the maximin counterpart of Problem
PP.

The idea of incorporating Wald’s maximin rule in optimization problems with
the view to obtain solutions that are robust against variations in the optimization
problem’s parameters dates back to at least the 1960s (e.g. Dorato and Drenick
1966). However, only in the mid 1990s did this idea begin to gain momentum so as
to develop into a thriving area of expertise in the field of optimization theory (e.g.
Kouvelis and Yu 1997, Ben-Tal and Nemirovski 1997).

Given the history of the maximin paradigm and its extensive use in many diverse
fields, the question naturally arises: what is the difference between maximin models
used in the field of robust optimization and maximin models used in other fields
(statistics, machine learning, control theory, economics, engineering, and so on)?

Broadly speaking, the answer is that maximin robustness models used in robust
optimization focus on classic mathematical programming problems, such as linear
programming, quadratic programming, integer programming, and dynamic program-
ming problems. Unsurprisingly therefore, progress in the field of robust optimization
over the last twenty years has been primarily in the development of new algorithms
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for the solution of robust counterpart (maximin) problems of classic mathematical
programming problems.

The issue here is that a robust (maximin) counterpart of a standard mathematical
programming problem, say a linear programming problem, may not necessarily turn
out to be a standard mathematical programming problem. Hence the extensive
effort exerted in the field of robust optimization to develop algorithms for robustness
seeking optimization problems.

Remark

That said, it is important to note that not all robust optimization models are based
on worst-case analysis (e.g. Zenios 1992, Malcolm and Zenios 1994, Mulvey et al.
1995, Vladimirou and Zenios 1997) which means of course that not all robust opti-
mization models are maximin models. The fact remains though that Wald’s maximin
paradigm currently holds sway in this area of expertise. So much so that according to
some scholars (e.g. Bertsimas et al. 2011, Ben-Tal et al. 2015) robust optimization
problems are maximin problems. And to illustrate consider the following in Ben-Tal
et al. (2015, p. 628):

Robust optimization is a common framework in optimization under un-
certainty when the problem parameters are not known, but it is rather
known that the parameters belong to some given uncertainty set. In the
robust optimization framework the problem solved is a min-max prob-
lem where a solution is judged according to its performance on the worst
possible realization of the parameters.

Similar statements are made in Bertsimas et al. (2011, pp. 465-6).
To be fair though, in this respect, the field of robust optimization is not all that

different from other fields dealing with robustness. And to illustrate, consider for
instance the following statement from the book Robust Statistics by Huber (1981,
pp. 16-17):

But as we defined robustness to mean insensitivity with regard to small
deviations from assumptions, any quantitative measure of robustness
must somehow be concerned with the maximum degradation of perfor-
mance possible for an e-deviation from the assumptions. The optimally
robust procedure minimizes this degradation and hence will be a minimax
procedure of some kind.
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So, to sum it all up, a quick scan of the literatures of robust optimization and
of other fields concerned with robustness suggests that Wald’s maximin paradigm
seems to be the dominant approach in this endeavor.

10 Can Wald’s maximin paradigm save the world?

As we pointed out at the outset, the idea behind the maximin approach to decision
under uncertainty can be summed up in the dictum: in the face of uncertainty
assume the worst. We might now add that this in fact was Wald’s (1939, 1945, 1950)
only stated rationale for taking this approach in the face of complete ignorance. To
be precise, Wald (1939) proposed that given the severe uncertainty surrounding the
problem examined in this article, it is reasonable to minimize the maximum risk.

This patently simple approach to severe uncertainty was both received enthusi-
astically and severely criticized by some of the prominent scholars of the time.

Thus in the article The Theory of Statistical Decision (Savage 1951, p. 59), which
inter alia put forward an alternative to Wald’s maximin rule, namely the minimax
regret rule (see Section 8), we read the following:

The following general rule, called the minimax principle, is central to the
theory of statistical decision functions, at least today. In fact, it is the
only rule of comparable generality proposed since Bayes’ was published
in 1763 . . .

The criticism leveled at wald’s paradigm focused mainly on the underlying as-
sumption that Nature is a malevolent player. Thus, perhaps not entirely fairly (con-
sidering that no reference whatsoever was made in Wald (1939) to game theory),
Arrow (1951, p. 429) conflated Wald’s maximin where the decision maker plays
against Nature, with the classic zero-sum two-person game of game theory, to con-
clude that in the framework of Wald’s maximin paradigm this assumption does not
seem reasonable.

To illustrate this point, Arrow (1951, p. 429) considered the following payoff table
representing two actions (decisions), A1 and A2, and two hypothesis (scenarios), H1

and H2:

H1 H2

A1 100 0
A2 1 1

(63)

Viewed as a zero-sum two-person game, and assuming that the larger the payoff
the better, the solution to this game is the pure strategy specified by the saddle point
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is (A2, H2). In short, this illustration views Wald’s maximin game as a zero-sum 2-
person game, where the column player selects column H2.

Arrow (1951, p. 429) therefore argued that:

Wald’s theory is intuitively highly appealing in that it reflects fully the
idea of complete ignorance about the hypotheses. However, the theory
of the zero-sum two-person game is based on the idea of an opponent
with a definite interest in reducing one’s gains (see von Neumann and
Morgenstern [1, pp. 98-100, 220]). No such motive can be ascribed to
Nature.

and

Wald’s criterion would call for choosing A2 ; yet, since it can hardly be
said that Nature would choose H2 deliberately to prevent the individual
from realizing the gains he would receive with A1 under H1, it does not
seem reasonable that the hope of a small gain under H2 should outweigh
the possibility of a large gain under H1, especially since it can be shown
that the choice would not be altered by any accumulation of observations.

Harsher criticism yet was voiced in the article Foundation of statistics reconsidered
(Savage 1961, pp. 578-9):

The minimax theory, too, can be viewed as an attempt to rid analysis
almost completely of subjective opinions, though not of subjective value
judgments. From this point of view, the minimax theory of statistics
is, however, an acknowledged failure. The minimax rule has never been
taken seriously as a philosophic principle for inductive behavior, and even
as a rule of thumb little if any good has been found in it; the strongest
apology for the rule is perhaps to be found in the latter half of my book
[24], especially chapters 10, 11, and 13. Studies of the minimax rule have
been stimulating for statistics, and modifications and outgrowths of the
rule may prove of great value, but those of us who, twelve or thirteen
years ago, hoped to find in this rule an almost universal answer to the
dilemma posed by abstinence from Bayes’ theorem have had to accept
disappointment.
[24] = Savage (1954).

And yet, more than five decades on, Wald’s maximin paradigm appears to not
only have weathered this criticism but, to be going from strength to strength in many
fields.
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Looking at the various literatures on its applications, it seems that Wald’s paradigm
has been used in two capacities:

• As a decision-making paradigm.
In line with its portrayal in decision theory textbooks (e.g. Luce and Raiffa
1957, Resnik 1987, French 1988, Peterson 2009), Wald’s paradigm has been
used primarily for the technique it provides for ranking decisions/alternatives
and selecting the best (optimal) out of the latter, in situations that are subject
to a non-probabilistic uncertainty. And this is precisely how it is used in robust
optimization, where the solution of the robust-counterpart (maximin) problem
identifies those decisions that are the most robust against uncertainty.

• As a decision-support tool.
In this capacity the paradigm is not used for its prescription for selecting the
best out of a set of ranked decisions. Rather, the results generated by the
paradigm, together with the results generated by other tools, are treated as
mere aids that the decision maker consults to select his/her choice of the “best”
decision.

Needless to say, it is difficult to assess the maximin paradigm as a decision-
support tool without knowing how the results generated by it are incorporated in
the decision-making process and what impact do they have, if any, on the choice of
the best decision by the decision maker. That said, the following quotes from the
famous book Robustness by Hansen and Sargent (2007) give an idea of the role that
the maximin paradigm can play as a decision-aid:

That is, we use a max-min decision rule. Positing a malevolent nature
is just a device that the decision maker uses to perform a systematic
analysis of the fragility of alternative decision rules and to construct a
lower bound on the performance that can be attained by using them.
A decision maker who is concerned about robustness naturally seeks to
construct bounds on the performance of potential decision rules, and the
malevolent agent helps the decision maker do that.

Hansen and Sargent (2007, p. 12)

1.9. Why max-min?

We answer this question by posing three other questions.
1. What does it mean for a decision rule to be robust? A robust decision
rule performs well under the variety of probability models depicted in
figure 1.7.1. How might one go about investigating the implications of
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alternative models for payoffs under a given decision rule? A good way
to do this is to compute a lower bound on value functions by assessing
the worst performance of a given decision rule over a range of alternative
models. This makes max-min a useful tool for searching for a robust
decision rule.

Hansen and Sargent (2007, p. 14)

All one can say to that is that, much as computing lower bounds on the perfor-
mance of decision rules could be a useful thing to do, the main question remains:
given these lower bounds and other details about the decision rules under consider-
ation, how do we determine which decision is “best”?

As for the manner in which Wald’s maximin paradigm has been used in OR/MS,
consider the following Summary and Conclusions section from the INFORMS tutorial
entitled Model Uncertainty, Robust Optimization and Learning (Lim et al. 2006,
p. 90):

The interest in model uncertainty, robust optimization and learning in the
OR/MS areas is growing rapidly. The type of model uncertainties consid-
ered in the literature can be broadly categorized into three classes: models
with uncertainty sets for (1) variables, (2) parameters and (3) measures.
The robust optimization approaches used to find (robust or lack thereof)
solutions falls into (a) min-max and (b) min-max with bench-marking.
Two common ways to bench-marking are through (1) regret and (2) com-
petitive ratio. The main focus in OR/MS has been in the development of
models with uncertainty sets for variables (deterministic models of model
uncertainty) and deterministic min-max and min-max-regret robust op-
timization. Within this framework, the focus has been on developing
efficient solution procedures for robust optimization. Only a very limited
amount of work has been done on looking at stochastic models of model
uncertainty and robust optimization with bench-marking. Very little is
done in learning. We believe that a substantial amount of work needs to
be done in the latter three topics.

To sum it all up then, what conclusions can be drawn from our discussion on
Wald’s maximin paradigm?

From what we have seen here it seems fair to say that, methodologically speaking,
Wald’s maximin paradigm is essentially an ad hoc recipe, which means that its use
must be justified. This can be done either on a case by case basis, or by axiomatizing
it, namely by grounding it on a set of formal axioms which guarantee its validity—
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subject of course to the restrictions imposed by the axioms in question. An example
of the latter case can be found in Gilboa and Schmeidler (1989).

And as a final word, let us go back to the question posed by the heading of
this section, which was inspired by the title of the discussion on this topic on Prof.
Larry Wasserman’s website (see Wasserman 2012). Clearly, the answer to this ques-
tion must be in the negative: Wald’s paradigm cannot save the world! However,
considering its unabated widespread use, it seems safe to say that this paradigm
will continue to play a vital role in decision-making under severe uncertainty. It is
important therefore that users of this paradigm make sure that they implement it
properly.

As for teaching the topic “Wald’s maximin paradigm” is concerned, I submit that
there is room to rethink how this topic is taught in OR/MS courses and how it is
presented in introductory OR/MS textbooks.
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