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We introduce capital flow constraints, loss of good will and loan to the lot sizing problem. Capital flow constraint is different
from traditional capacity constraints: when a manufacturer launches production, its present capital should not be less than
its present total production cost; otherwise, it must decrease production quantity or suspend production. Unsatisfied demand
in one period may cause customer’s demand to shrink in the next period considering loss of goodwill. Fixed loan can be
adopted in the starting period for production. A mixed integer model for a deterministic single-item problem is constructed.
Based on the analysis about the structure of optimal solutions, we approximate it to a traveling salesman problem, and divide
it into sub-linear programming problems without integer variables. A forward recursive algorithm with heuristic adjustments
is proposed to solve it. When unit variable production costs are equal and goodwill loss rate is zero, the algorithm can obtain
optimal solutions. Under other situations, numerical comparisons with CPLEX 12.6.2 show our algorithm can reach optimal
in most cases and has computation time advantage for large-size problems. Numerical tests also demonstrate that initial
capital availability as well as loan interest rate can substantially affect the manufacturer’s optimal lot sizing decisions.
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1. Introduction

The lot sizing problem was first introduced and solved by Wagner and Whitin (1958). They proposed a polynomial al-
gorithm to solve the single-item uncapacitated deterministic lot sizing problem, which has a computational complexity
of O(T 2) and T is the length of planning horizon. Wagelmans et al (1992) developed an O(T lg T ) algorithm for the
Wagner-Whitin cases. There is now abundant literature in this area that extends the basic model, such as the capacitated
lot sizing problem, multi-item lot sizing problem, multi-level lot sizing problem, stochastic lot sizing problem, etc. This
has also resulted in the inflation of the problems complexity. Mathematical programming heuristics, Lagrangian relaxation
heuristics, decomposition and aggregation heuristics, meta heuristics, problem-specific greedy heuristics, piecewise linear
approximation methods are used to solve different lot sizing problems. Some works adopting those methods can be found in
González-Ramı́rez et al (2011), Absi et al (2013), Toledo et al (2015), Rossi et al (2015), Molina et al (2016). Comprehen-
sive reviews on lot sizing problem could be addressed in Maes and Van Wassenhove (1988), Karimi et al (2003), Brahimi
et al (2006), Jans and Degraeve (2007), Buschkühl et al (2010), Brahimi et al (2017).

In addition to large amount of papers setting the objective to minimize total cost in the lot sizing problems, there are
also some works that formulate profit maximization models. Aksen et al (2003) developed a forward recursive dynamic
programming algorithm to solve a single-item lot sizing problem with immediate lost sales for a profit maximization model.
Berk et al (2008) investigated the single-item lot sizing problem for a warm/cold process with immediate lost sales and
established theoretical results on the structure of optimal solutions. Haugen et al (2007) built a multi-product capacitated
lot sizing profit maximization model in which there is a negative relation between product price and customer demands.
González-Ramı́rez et al (2011) also addressed a multi-product capacitated lot sizing problem with pricing, setup time, and
more general holding costs. Sereshti and Bijari (2013) studied the scheduling problem with demand choice flexibility and
evaluated the efficiency of two mathematical models. However, those works didn’t take capital flow constraints in their
profit maximization models.
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Loss of goodwill has been taken into consideration by some researchers in many inventory models. Shi and Su (2004)
employed goodwill loss in a news vendor model. Pentico and Drake (2009), Pentico et al (2009) considered loss of goodwill
in a deterministic EOQ model and EPQ model respectively. Chen et al (2009) assumed supply shortage and time window
violation will cause goodwill loss in a production scheduling and vehicle routing problem. In the lot sizing model, the
concept of goodwill loss was first introduced by Hsu and Lowe (2001). In the above papers, customer goodwill loss was
assumed to result in a penalty cost. Some researchers began to consider that the loss of customer goodwill would manifest
itself in terms of reduced future sales. This was first observed by Graves (1999). Empirical evidence presented by Blazenko
and Vandezande (2003) showed that goodwill loss occurred when there were alternative sources of supply for customers,
and if there were better alternative sources, the prospect of long-term revenue loss was greater. Aksen (2007) developed
a single-item lot sizing model in which the unsatisfied demand in a given period caused the demand in the next period to
shrink due to the loss of customer goodwill. Absi et al (2013) addressed the multi-item capacitated lot sizing problem with
setup times and lost sales, and they used a Lagrangian relaxation of the capacity constraints to decompose it into single-item
uncapacitated sub-problems.

In business transactions, once a manufacturer encounters capital shortage, it needs to borrow money to maintain pro-
duction; otherwise, it has to reduce or even cancel the production and could not provide sufficient products for their clients.
A survey of 531 businesses that went bankrupt during the calendar year 1998 in Bradley (2000) pointed out that inadequate
financial planning was one of main reasons for their business failing. A report by Coughtrie et al (2009) showed shortage of
capital accounted for 17% of company bankruptcies in Australia in 2008. Elston and Audretsch (2011) found that 84% of
high-tech entrepreneurs in the US had experienced a shortage of capital at some time. To deal with capital shortage problem,
loan is a widespread and effective option for many companies. After an agreement between a borrower and a lender is made,
the borrower receives money from the lender, and is obligated to pay back an equal amount of money with the addition of
some interests to the lender at a later time. A survey in Doove et al (2014) about Small and medium enterprises (SMEs) in
the 28 countries of the European Union showed that SMEs preferred to use bank loan, bank overdraft and trade credit. A
report by Ipsos (2017) based on the surveys of over 1000 SMEs from 2014 to 2016 in UK revealed that bank loan, friend
loan and third party loan together accounted for about 40% — and ranked first — of all external finances in the three years.

Relevant works taking capital flow or financing into account in inventory management problems are the following.
Buzacott and Zhang (2004) adopted a news vendor model to analyze the importance of joint consideration of production
and financial decisions. Chao et al (2008) investigated a multi period news vendor problem constrained by cash flow and
proved the optimality of a base stock policy. Gong et al (2014) extended the model by considering short term financing.
Zeballos et al (2013) built a periodic review inventory problem with working capital constraints, payment delay and multiple
sources of financing. The above mentioned works are not for lot sizing problem and there are no fixed ordering costs in
their models. Considering capital flow constraints, Chen and Zhang (2015) built a single-item lot sizing model with trade
credit and apply a dynamic programming algorithm to solve it.

From the literature review above we can find that, most previous works on lot sizing problems seldom consider the
influence of capital flow constraints and external financing to production planning. This, together with our discussion on the
importance of capital management and widespread use of loan by manufacturers, motivate our study. The main contributions
of this paper are the following.

• We introduce capital flow constraints to the traditional lot sizing problems and formulate a profit maximization model.

• Optimality structures of the solution to the problem is discussed, and we develop a polynomial forward recursive
algorithm with some heuristic adjustments to solve the problem.

• A common supply chain financing behavior, loan, is also introduced and discussed in the lot sizing problem.

The rest of this paper is organized as follows. Section 2 formulates the mathematical model and discusses its NP-
hardness. Section 3 gives some mathematical properties and approximates this model to a traveling salesman problem.
Section 4 divides the problem into sub-linear problems and proposes an algorithm with some heuristic adjustment tech-
niques. Section 5 implements the numerical analysis: use some numerical cases to show the influence of capital flow
constraints; compare the performance of our algorithm on large random generated test cases with CPLEX; analyze the
main factors affecting the performance of our algorithm. Finally, section 6 concludes the paper and outlines future research
directions.
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2. Problem description

2.1. Notations and assumptions
We adopt the following notations for our model. Some relevant notations will be introduced when needed.

t index of a period, t = 1, 2, . . . ,T .
dt demand in period t.
pt unit selling price in period t.
ct unit production cost (variable cost) in period t.
ht unit inventory holding cost in period t.
st production launching cost (fixed cost) in period t.
Bc quantity of self-owned capital at the beginning of period 1.
BL quantity of loan at the beginning of period 1.
B0 total initial capital at the beginning of period 1 and B0 = Bc + BL.
I0 initial inventory level at the beginning of period 1.
TL length of loan, TL ≤ T .
r interest rate of loan.
β customer goodwill loss rate.
M a large number.

The decision variables used in the models include the following:

Bt end-of-period capital for period t.
It end-of-period inventory level for period t.
xt a binary variable signaling whether the production occurs in period t.
yt production quantity in period t.
wt demand shortage (lost sales) in period t, and we define w0 = 0.
Edt effective demand in period t when considering customer goodwill loss.
vt realized demand in period t and vt = Edt − wt.
δt a binary variable signaling whether Edt is positive.

In our problem, we make the following assumptions:

1. Initial capital of period t should not be less than the total production cost in period t, namely, Bt−1 ≥ st xt + ctyt, in
which initial capital of period t is Bt−1, and the total production cost in period t is production launching cost st xt plus
variable production cost ctyt.

2. End-of-period capital for each period should be not less than 0, namely, Bt ≥ 0.
3. Initial inventory of the planning horizon is 0, namely, I0 = 0.
4. No backorder is allowed.
5. The manufacturer could decide the realized quantity for customer’s demand without paying penalty cost, but lost sales

can cause the shrinking of demand in the next period.
6. The manufacturer uses loan in the first period and pays back the principal and interest after a certain length of periods;

length of loan is shorter than the length of total planning horizon; mortgages are not required for loan.

The biggest difference between our problem and traditional lot sizing problem is Assumption 1 and 2: how much to pro-
duce is constrained by present capital, and end-of-period capital for each period should be above zero to avoid bankruptcy.
Assumption 3 and 4 are also the standard assumptions of the Wagner-Whitin model. Assumption 5 means the manufacturer
can decide how much products they want to provide for customers. Assumption 6 defines the loan type in our paper. Loan
length is smaller than the total planning horizon because lenders tend to have higher risks for longer loan length and they
generally don’t provide loan out of the planning horizon in order to reduce risks.

2.2. Mathematical models for our problem
Considering loss of customer goodwill, effective demand is the remnant demand after the goodwill loss from the original
demand. As in Aksen (2007), the effective demand in period t can be represented as:

Edt = max{0, dt − βwt−1}, ∀t. (1)
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Eq. (1) is a nonlinear equation. For convenience of computation, we bring several linear constraints to replace this
nonlinear equation and construct the mixed integer programming model below.

Model P

max BT − Bc − BL =

T∑
t=1

[
pt(Edt − wt) − (htIt + st xt + ctyt)

]
− BL(1 + r)TL (2)

s.t. for t = 1, 2, . . . ,T
yt ≤ Mxt, (3)
st xt + ctyt ≤ Bt−1, (4)
wt ≤ Edt, (5)
It = It−1 + yt − Edt + wt, (6)
B0 = Bc + BL, (7)

Bt =

Bt−1 + pt(Edt − wt) − htIt − st xt − ctyt, t , TL,

Bt−1 + pt(Edt − wt) − htIt − st xt − ctyt − BL(1 + r)TL , t = TL,
(8)

dt ≤ βwt−1 + Mδt, (9)
dt ≥ βwt−1 − M(1 − δt), (10)
Edt ≤ dt − βwt−1 + M(1 − δt), (11)
Edt ≥ dt − βwt−1 − M(1 − δt), (12)
Edt ≤ dtδt, (13)
I0 = 0, It ≥ 0, (14)
Edt ≥ 0,wt ≥ 0, yt ≥ 0, (15)
xt ∈ {0, 1}, δt ∈ {0, 1}. (16)

The objective defined by Eq. (2) is to maximize the capital increment from the beginning of the planning horizon to the
final period, where the realized sales in period t are given by Edt −wt, revenue in period t is pt(Edt −wt), total cost in period
t is htIt + st xt + ctyt, or htIt + st xt + ctyt + BL(1 + r)TL if period t should pay back the loan.

Constraint (3) enforces setups with positive production in each period. Constraint (4) represents Assumption 1 and 2:
initial capital in period t should be not less than the total production cost in period t. It also ensures the non-negativity of
Bt−1, which avoids bankruptcy. Constraint (5) ensures that any lost demand wt in period t not exceed the effective demand
of that period. Constraint (6) provides the inventory flow balance equation, and Constraints (7) and (8) define the capital
flow balance.

Constraints (9)-(13) are the linear descriptions of Eq. (1). Among them, Constraints (9) and (10) ensure the binarity of
δt: if dt ≤ βwt−1, δt = 0 and effective demand Edt is also 0, else, δt = 1 and effective demand Edt is positive; Constraint
(11), (12) and (13) determine the value of effective demand Edt: if dt ≤ βwt−1, δt = 0 and Edt = 0; else, δt = 1 and
Edt = dt −βwt−1. Constraints (14), (15) and (16) guarantee the non-negativity and binarity of variables. Constraint (14) also
represents Assumption 3 and 4 in our problem.

Note that if β = 0, this model is transformed to a capital flow constrained problem without loss of goodwill.

2.3. Computational complexity of Model P
The single-item capacitated lot sizing problem has been shown by Bitran and Yanasse (1982) to be NP-hard. As for our
problem, the capital flow constraint ctyt + st xt ≤ Bt−1 is a capacity constraint by removing st xt and replacing Bt−1 with Ct,
where Ct is the capacity in period t. Therefore, capital flow constraint is a special type of capacity constraints, and model P
is also a NP-hard problem.

3. Mathematical properties

To describe the mathematical properties of our problem, we first define the concepts of production cycle and production
round.
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Definition 1 In a production plan, if the manufacturer launches production at the beginning of period m, and it does not
launch new production till the end of period t (m ≤ t ≤ T), we call period m to period t a production cycle.

Definition 2 In a production plan, for one or more consecutive production cycles that last from the beginning of m to the
end of period t, if initial inventory for period m and end-of-period inventory for period t are zeros, we call period m to
period t a production round.

3.1. Properties about initial inventory and capital
Lemma 1 If unit variable production costs are equal, namely, ct = c, ∀t, for any production cycle starting at period t + 1
(t + 1 = 1, . . . ,T), the optimal solution satisfies Ityt+1 = 0.

Proof Lemma 1 is apparently true when t + 1 = 1 because I0 = 0. For t + 1 > 1, if there is a solution that does not satisfy
Lemma 2, namely, It > 0 and yt+1 > 0, assume that period t + 1’s former production cycle begins at period m (1 ≤ m ≤ t),
and the production cycle beginning at period t + 1 lasts till period n (n ≤ T ). The production plan is shown in Figure 1.

Figure 1 Sketch of production plan when It > 0 and yt+1 > 0.

According to capital flow balance equation (8), end-of-period capital for period t and period T are given by the following
equations.

Bt =

Bm−1 +
∑t

i=m pi(Edi − wi) − sm − cmym −
∑t

i=m hiIi, t , TL,

Bm−1 +
∑t

i=m pi(Edi − wi) − sm − cmym −
∑t

i=m hiIi − BL(1 + r)TL , t = TL,
(17)

BT =

Bt +
∑T

i=t+1
[
pi(Edi − wi) − (hiIi + siyi + ciyi)

]
, T , TL,

Bt +
∑T

i=t+1
[
pi(Edi − wi) − (hiIi + siyi + ciyi)

]
− BL(1 + r)TL , T = TL.

(18)

If the production quantity in period m reduces It and the production quantity in period t + 1 increases It, then the
effective demands Edi (i = 1, . . . ,T ) would not be influenced and the production plan is still feasible. Bt and BT change to
the following:

B
′

t = Bt + cmIt +
∑t

i=m
hiIt, (19)

B
′

T = BT + cmIt +
∑t

i=m
hiIt − ct+1It. (20)

If unit variable production costs are equal, B
′

T = BT +
∑t

i=m hiIt ≥ BT , The final capital increases. Therefore, It > 0 and
yt+1 > 0 is not the optimal solution; optimal solution always satisfies Ityt+1 = 0. �

Lemma 1 is also known as the zero-inventory-ordering policy, which means initial inventory of a production cycle is
always zero. Define ft(It−1, Bt−1,wt−1) as the maximum capital increment during period t, t+1, . . . ,T , given period t’s initial
inventory It−1, initial capital Bt−1, and previous period’s demand shortage quantity wt−1.

Lemma 2 For any period t (t = 1, . . . ,T), when initial inventory It−1 and last period’s demand shortage wt−1 are fixed,
ft(It−1, Bt−1,wt−1) is nondecreasing with period t’s initial capital Bt−1.

Proof To prove this property, we build a dynamic programming model for our problem. For any at period t (t = 1, . . . ,T ),
its states are: initial inventory It−1, initial capital is Bt−1, and demand shortage quantity of previous period wt−1. Its actions
are production quantity yt and demand realized quantity vt. Lower bounds for yt and vt are both 0; Upper bound for yt is
the maximum production quantity under present capital and upper bound for vt is the quantity of effective demand in this
period, which are shown by Eq. (21) and Eq. (22), respectively.

yt = max
{
0, (Bt−1 − st)/ct

}
, (21)

vt = max{0, β(dt − wt−1)}. (22)
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Define a unit step function K(z): K(z) = 1 if z > 0; K(z) = 0 if z ≤ 0. The state transition equations are:

It =It−1 + yt − vt, (23)

Bt =

Bt−1 + ptvt − htIt − stK(yt > 0) − ctyt, t , TL,

Bt−1 + ptvt − htIt − stK(yt > 0) − ctyt − BL(1 + r)TL , t = TL,
(24)

wt = max{0, β(dt − wt−1)} − vt. (25)

The functional equation for dynamic programming is: ft(It−1, Bt−1,wt−1) = max
0≤yt≤yt ,0≤vt≤vt

{
Bt − Bt−1 + ft+1(It, Bt,wt)

}
,

fT+1(It, Bt,wt) = 0.
(26)

when It−1 and wt−1 are fixed, if increasing Bt−1, from Eq. (21) and Eq. (22), the feasible domain for vt does not change,
but the feasible domain for yt stays constant or expands. There always exists actions y′t and v′t that make f ′t (It−1, B′t−1,wt−1)
not lower than ft(It−1, Bt−1,wt−1). Therefore, ft(It−1, Bt−1,wt−1) is nondecreasing with Bt−1 with fixed It−1 and wt−1. �

Lemma 3 For any period t (t = 1, . . . ,T), if goodwill lost rate is 0, when It−1 are fixed, ft(It−1, Bt−1) is nondecreasing with
Bt−1.

Proof The proof is similar to Lemma 2. If goodwill shortage rate is 0, demand shortage is not the states of the dynamic
programming problem. The actions are still yt and vt and state transition equations are Eq. (23) and Eq. (24). The functional
equation changes to be:  ft(It−1, Bt−1) = max

0≤yt≤yt ,0≤vt≤vt

{
Bt − Bt−1 + ft+1(It, Bt)

}
,

fT+1(It, Bt) = 0.
(27)

When It−1 are fixed and increasing Bt−1, feasible domain for vt keeps unchanged while feasible domain for yt stays
constant or expands. Therefore, ft(It−1, Bt−1) is nondecreasing with Bt−1. �

3.2. Approximated traveling salesman problem

Define BBBm−1
m,n as the maximum capital increment in a production round from period m to period n with initial capital Bm−1.

Based on Lemma 1, Lemma 2 and Lemma 3, our problem is approximately transformed to a traveling salesman problem
finding the longest route as shown in Figure 2 (in this case, T = 4). Main ideas behind this approximation are that we
apply the zero-inventory-ordering policy to divide production plan into several production rounds, and apply Lemma 2 and
Lemma 3 to always select maximum initial capital for computation of the length of arcs in the traveling salesman problem.

 ! " #

BBB0
1,1

BBB0
1,2

BBB0
1,3

BBB0
1,4

BB
B∗1
2,2

BB
B∗1
2,3

BBB1
2,4

BB
B∗2
3,3

BB
B∗2
3,4 BB

B∗3
4,4

Figure 2 Approximated traveling salesman problem.

A functional equation is constructed for computation of the problem, and we set B∗0 = B0.

B∗n = max
1≤m<n

[
B∗m−1 + BBB∗m−1

m,n

]
, n = 1, 2, . . .T. (28)

Apparently, B∗T = max
1≤m≤T

[
B∗m−1 + BBB∗m−1

m,T

]
. On this functional equation, we have the following properties.
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Lemma 4 If unit variable production costs are equal and goodwill loss rate is 0, for any period t, given end-of-period
inventory of period t is 0, the optimal production plan from period 1 to t is part of the optimal production plan from period
1 to T .

Proof If goodwill loss rate and end inventory level for period t are both 0, based on Eq. (27), given initial capital and
initial inventory, maximum capital increment during period t to period T is:

ft(It−1, Bt−1) = BT − Bt−1 = max
0≤yt≤yt ,0≤vt≤vt

{
Bt − Bt−1 + ft+1(0, Bt)

}
. (29)

From Lemma 3, ft+1(0, Bt) is a non-decreasing function of Bt, and gets the maximum value when Bt is the maximum
end-of-period capital for period t. Given zero end-of-period inventory in period t, this happens when the production plan
from period 1 to t is optimal because optimal production plan satisfies zero-inventory-ordering policy when the variable
production costs are equal. So, what is optimal for period 1 to period t is also optimal for ft+1(0, Bt), which is the maximum
capital increment during period t + 1 to period T . Therefore, the optimal production plan from period 1 to t is part of the
optimal production plan from period 1 to T . �

Lemma 5 If unit variable production costs are equal and goodwill loss rate is 0, for any two period t1, t2 (t1 < t2), given
initial inventory of period t1 is 0, end-of-period inventory of period t2 is 0, the optimal production plan from period t1 to t2
is part of the optimal production plan from period 1 to T .

Proof By lemma 4, the optimal production plan from period 1 to t1−1 is part of the whole production plan, and the optimal
production plan from period 1 to t1 − 1 is also part of the optimal production plan from period 1 to t2. If the production plan
from period t1 to t2 is optimal, together with the optimal plan form period 1 to t1 − 1, it will result in an optimal production
plan from period 1 to t2 under the zero-inventory-ordering policy. Since the optimal production plan from period 1 to t2 is
part of the whole production plan, the optimal production plan from period t1 to t2 is part of the optimal production plan
from period 1 to T . �

Theorem 1 If unit variable production costs are equal and goodwill lost rate is 0, namely, ct = c, ∀t, and β = 0,
B∗T = max

1≤m≤T

[
B∗m−1 + BBm,T

]
provides an optimal solution.

Proof When the variable production costs are equal, Lemma 1 shows the problem satisfies the zero-inventory ordering
policy. Hence, the optimal production plan can be a combination of several production rounds. The functional equation
(28) in fact enumerates all the possible production rounds. Lemma 4 and Lemma 5 indicate that the optimal production
plan in a given production round is part of total optimal production plan. These are the same properties as the Wagner-
Whitin case (Wagner and Whitin, 1958). Therefore, for all the combinations of production rounds in the computation of
B∗T = max

1≤m≤T

[
B∗m−1 + BBm,T

]
, the one that gives maximum final capital is the optimal solution. �

When the variable production costs are not all equal, or goodwill loss rate is not 0, the functional equation in Theorem
1 only gets an approximate solution. However, based on some properties below, we devise some heuristic adjustments to
make it close to the optimal solution.

3.3. Properties for production plan adjustment
Corollary 1 In a feasible solution, assume the solution is xt, yt, wt (t = 1, 2, . . . ,T). For any two consecutive production
cycles, assume the former production cycle begins at period t1, ends at t2 − 1; the latter production cycle begins at period
t2, ends at period t3, with end-of-period inventory at period t3 is 0, end-of-period capital at period t3 is Bt3 and demand
shortage at period t3 is wt3 . We can make a production plan adjustment from t′ (t1 + 1 ≤ t′ ≤ t2 − 1) to t2 − 1 if the capital
B′t3 ≥ Bt3 , shortage quantity w′t3 ≤ wt3 and still with 0 end-of-period inventory in t3 after this adjustment.

Proof The feasible solution is presented by Figure 3. For period t3 + 1, its functional equation is

ft3+1(It3 , Bt3 ,wt3 ) = max
0≤yt3+1≤yt3+1,0≤vt3+1≤vt3+1

{
Bt3+1 − Bt3 + ft3+2(It3+1, Bt3+1,wt3+1)

}
. (30)

From Lemma 2, ft3+1(It3 , Bt3 ,wt3 ) is non decreasing with Bt3 when It3 and wt3 are fixed. In the adjustment, It3 are fixed
to be 0, after increasing Bt3 and decreasing wt3 , the domains for yt3+1 and vt3+1 both expand from Eq. (21) and Eq. (22).
Therefore, the final capital increment is non decreasing with this adjustment. �
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Figure 3 A feasible solution.

Figure 4 Heuristic adjustment based on Corollary 1.

The adjustment in Corollary 1 is shown by Figure 4.

Corollary 2 In a feasible solution, assume that the solution is xt, yt, wt (t = 1, 2, . . . ,T). For any two consecutive
production cycles, assume that the former production cycle begins at period t1, ends at period t2−1, and the latter production
cycle begins at period t2. If Bt1−1 − st1 − ct1 yt1 > 0, ct1 +

∑t2−1
i=t1

hi < ct2 , then it is better to move some production amount ∆yt2
from yt2 to yt1 to obtain more final capital.

Proof This heuristic step is shown in Figure 5. If Bt1−1 − st1 − ct1 yt1 > 0, production cycle t1 has residual production
capacity, which could produce more. After the moving adjustment, the final capital changes to the following:

B
′

T = BT +

(
ct2 − ct1 −

∑t2−1

i=t1
hi

)
∆yt2 . (31)

If ct1 +
∑t2−1

i=t1
hi < ct2 , this adjustment does not affect the feasibility of the solution and B

′

T > BT . Therefore, final capital
increases. �

The moving production amount ∆yt2 can be obtained by Eq. (32).

∆yt2 =
Bt1−1 − st1

ct1
− yt1 . (32)

Eq. (32) is the maximum production quantity increment that cycle t1 can provide.

 !  "
### ######

### $

% "

Figure 5 Heuristic adjustment based on Corollary 2.

4. Sub-problems and algorithm for our problem

For the computation of BBm,n in the recursive equation (28), we remove the integers of Model P and divide it into sub-linear
problems. In the sub-linear variables, only realized demand vt, ∀t, are decision variables. We also devise some heuristic
techniques to adjust the production plan.

4.1. sub-linear problems
By definition, BBm,n is the maximum capital increment in a production round. Therefore, it may include several production
cycles. For a production round with fixed k production cycles, assume the production launching periods are t1, t2, . . . , tk
(for convenience of expression, we set m = t1, n = tk+1 − 1), the production plan is shown in Figure 6.

To compute BBm,n, there are still integer variables δt, which is a 0-1 variable indicating whether previous goodwill loss
is below effective demand. In Model P-sub1 below, we use a heuristic step by assuming δt = 1, m ≤ t ≤ n, namely, all
demand from period m to period n are above previous goodwill loss. With known wt1−1, we convert Model P to a sub linear
problems P-sub1.

8
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Figure 6 Meaning of BBm,n.

Model P-sub1

max BBm,n = max{Bn − Bm−1} (33)
s.t. for t = m,m + 1, . . . , n

cti

t j+1−1∑
j=ti

v j + sti ≤ Bti−1, i = 1, 2, . . . , k, (34)

Bt ≥ 0, (35)

It =

ti+1−1∑
j=t+1

v j, ti < t < ti+1, i = 1, 2, . . . , k, (36)

Bt =

Bt−1 + ptvt − (htIt + st + ct
∑ti+1−1

j=ti
v j), t , TL, t = ti, i = 1, 2, . . . , k,

Bt−1 + ptvt − htIt, t , TL, t , ti, i = 1, 2, . . . , k,
(37)

Bt =

Bt−1 + ptvt − (htIt + st + ct
∑ti+1−1

j=ti
v j) − TL(1 + L)L, t = TL, t = ti, i = 1, 2, . . . , k,

Bt−1 + ptvt − htIt − TL(1 + L)L, t = TL, t , ti, i = 1, 2, . . . , k,
(38)

It1−1 = 0, It2−1 = 0, . . . , Itk−1 = 0, In = 0, (39)
Edt = max{0, dt − βwt−1}, t = t1, (40)
Edt = dt − β(Edt−1 − vt−1), t , t1, (41)
0 ≤ vt ≤ Edt. (42)

The objective function (33) is to maximize capital increment from a production round starting at period m and ending at
period n. Constraints (34) and (35) represents our paper’s assumptions 1 and 2 about capital flow constraints. Constraint (36)
shows the relationship between It and vt. Constraint (37) and Constraint (38) are the capital flow balance. Constraint (39)
means that initial inventory and end-of-period inventory of each production cycle are both zeros, which is a heuristic step if
unit variable production costs are not equal. Constraints (40) and (41) are expressions of effective demands. Constraint (41)
also reflects the heuristic assumption: δt = 1, m ≤ t ≤ n. Constraint (42) provides the lower and upper bounds of variables
vt, which is realized demand in period t.

If Model P-sub1 does not obtain a feasible solution, this may be related with the heuristic assumption of δt. So next step
we relax this assumption without loss of goodwill: removing Constraint (41) in Model P-sub1, amending Constraint (42) to
get another sub linear problem P-sub2 below.

Model P-sub2

max BBm,n = max{Bn − Bm−1} (33)
s.t. for t = m,m + 1, . . . , n

(34)–(40) (43)
0 ≤ vt ≤ dt. (44)

Based on the solution of Model P-sub2, compute δt according to equations (45) and (46) below.

wt = Edt − vt, t = m,m + 1 . . . , n, (45)

δt =

0, if dt − βwt−1 < 0, t = m,m + 1 . . . , n,
1, if dt − βwt−1 ≥ 0, t = m,m + 1 . . . , n.

(46)
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Based on the values of δt, another sub linear problem is formulated.

Model P-sub3

max BBm,n = max{Bn − Bm−1} (33)
s.t. for t = m,m + 1, . . . , n

(34)–(40) (47)

Edt =

dt − β(Edt−1 − vt−1), if δt = 1,
0, if δt = 0,

(48)

dt − β(Edt−1 − vt−1) < 0, if δt = 0. (49)

If Model P-sub1, Model P-sub2 and Model P-sub3 all do not have a feasible solution, we deem BBm,n does not have a
feasible solution and set vt = 0 (t = m,m + 1, . . . , n). The relation of vt with wt is provided by Eq. (45). The relation of vt

with yt is given by Eq. (50).

yt =


∑ti+1−1

j=ti
v j, t = ti, i = 1, 2, . . . , k,

0, t , ti, i = 1, 2, . . . , k.
(50)

4.2. Heuristic techniques in recursion and adjustments
It is time consuming and complex to enumerate all the possible production cycles in a production round. Therefore, when
customer goodwill loss rate is zero, we use one production cycle in a production round; when goodwill loss rate is not zero,
we use at most two production cycles in a production round for computation. For a certain period t + 1 and given production
plan from period 1 to period t, two situations are considered in computation of capital increment during a production round
when goodwill loss rate is not zero: if there exists no production cycle before t + 1, we compute only one production cycle
beginning with period t +1 as a production round; if there exists production cycles before t +1, we view the nearest previous
production cycle and the production cycle beginning with t + 1 together as a production round, and make computations.

After computation of capital increments during production rounds, we can get an approximated production plan from
period 1 to any period n (1 ≤ n ≤ T ). Based on Corollary 1, we make heuristic adjustments to this production plan.
Three situations are considered for this adjustment, which are shown by Figure 7. In Figure 7, period n’s production cycle
beginning at period t + 1.

#  ''' '''''' ''' ) *! &

(a) Heuristic adjustment 1.

!  ''' ''' ''' ) +! &

(b) Heuristic adjustment 2.

!
 ''' ''' ''' ) *! &

(c) Heuristic adjustment 3.

Figure 7 Heuristic adjustments for a known production plan from period 1 to n.

• Figure 7(a) means we make adjustments to the first production cycle in the production round m to n: dividing the first
production cycle into two cycles by enumerating all new production launching periods between period m to period t;
recomputing BBm,n, and selecting the one which gives maximum capital increment.

• Figure 7(b) means sometimes it’s better to launch a new production cycle before period t + 1 when there exists no
production cycles before it: enumerating all new production launching period between period 1 to period t as m;
recomputing BBm,n and selecting the optimal one.

• Figure 7(c) means sometimes it’s better to launch production later if the first production cycle include period 1:
enumerating all new production launching period between period 1 to period t as m; recomputing BBm,n, and selecting
the optimal one that can give maximum capital increment.
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In computing BBm,n for the three heuristic adjustments, a new linear constraint is added to the sub-linear problems:
w′n ≤ wn, which means demand shortage at period n after the adjustment should be not higher than its original value before
the adjustment.

If goodwill loss rate is zero, Corollary 1 is not necessary and there is no need for the adjustments above. After the
recursion of BBm,n till the final period T , a production plan for the the whole planning horizon is obtained. Backward from
period T to period 1, check if it satisfies the criteria of Corollary 2 and make production adjustments.

4.3. Computation Algorithm

Based on functional equation (28), sub-linear problems and heuristic techniques, we propose a forward recursive algorithm
with heuristic adjustment algorithm (FRH) to solve Model P.

Algorithm FRH for Model P

initialization: t = 1, m = 1, 1 × T zero matrices x, y, B∗, T × T zero matrices BB.

Step 1: For n = t, t+1, . . . ,T , select the production round beginning at m and end at n, compute BBm,n and record its value in BB(t, n).

Step 2: Compute B∗t according to Eq. (28), and obtain the production plan from period 1 to period t: x(1 : t), y(1 : t), w(1 : t).

Step 3: Check if the present production plan from period 1 to t meets the three adjustment situations shown by Figure 7. If meeting
the adjustment criteria, make adjustments and update x(1 : t), y(1 : t), w(1 : t), BB(t, n : T ).

Step 4: t = t + 1, update m and repeat Step 1 ∼ Step 3 until t = T .

Step 5: Check if production plan meets Corollary 2, if meeting the criteria, make plan adjustments. Obtain final production plan:
x(1 : T ), y(1 : T ), w(1 : T ) and final capital B∗T .

Flow char of our algorithm is shown by Figure 8.

 !"#!

$%&'(!)*

++&,-

 !"#"$%"&"!'(

)*(+*(,*(-.*(

--

.-/

!//

!0#

102*#02

34#$"!(

-.5#6*()527#6*(

+527#6*(,527#6

8$#"9:+(

$;<=9#1>!#(2(?@(

A(?@(B

C

D

EF;$#>((1*(

#//

#0G*(9$#"9:+(

H?@?%%$@+(A

I$J>(

F@?;=K#"?!(

$;<=9#1>!#

C

I$J>(

F@?;=K#"?!(

$;<=9#1>!#

EF;$#>

--5#*!7G6

Figure 8 Flow chart of our algorithm.
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4.4. Computation complexity of our algorithm
During recursion and heuristic adjustments, when customer goodwill loss rate is zero, there are T (T + 1)/2 computations of
BBm,n and BBm,n includes one sub-linear problem; when customer goodwill loss rate is not zero, in the best case, it is same
as the situation when goodwill loss rate is zero: there are no heuristic adjustments meeting Corollary 1, and computation
of BBm,n requires only one sub-linear problem. In the worst case, there are 3T (T + 1)/2 computation of BBm,n in total:
T (T + 1)/2 computations of BBm,n at first, at most T (T + 1)/2 computations of BBm,n for the heuristic adjustments, and
T (T + 1)/2 computations of BBm,n to update BB(t, n : T ); each computation of BBm,n includes 3 sub-linear problems.

Therefore, there are T (T + 1)/2 computations of sub-linear problems in the best case and at most 9T (T + 1)/2 compu-
tations of sub-linear problems in the worst case. The computational complexity of our algorithm is O(T 2ψ), where ψ is the
computational complexity of the algorithm for the sub-linear problems.

Without integer variables, the sub-linear problems can be solved by polynomial interior point algorithm. For the com-
mon used polynomial interior point algorithm by Karmarkar (1984), ψ is O(T 3.5L), where L denotes the total length of
the binary coding of the input data. This is the reason why we remove integer variables from original mixed integer model
and divide it into sub-linear problems. Therefore, total computational complexity of our algorithm is O(T 5.5L), which is a
polynomial algorithm.

5. Numerical analysis

In this section, we first employ some numerical examples to show the influence of initial capital and loan, to the optimal
production plan and final capital increment of a manufacturer, and then compare our algorithm with the business software
CPLEX. In our numerical experiments, the linear programming algorithm for sub-linear problems is a function in MATLAB
based on the paper of Zhang (1998), which is an interior point algorithm. The solution accuracy of the interior algorithm in
MATLAB is controlled by the termination tolerance on the function, which we set as 0.0001%. The number of maximum
iterations for interior point algorithm is set to be 50.

Our algorithm is coded in MATLAB 2016a, and run on a desktop computer with an Intel (R) Core (TM) i5-6500 CPU,
at 3.20 GHz, 16GB of RAM, and 64-bit Windows 7 operating system.

5.1. Numerical examples about influence of capital flow to production plan
Assume T = 12, and goodwill loss rate β = 0.5. The values of some other parameters are listed in Table 1.

Table 1 Parameter values

pt 21 22 20 15 10 8 5 10 18 10 14 18

ct 5 13 10 10 10 10 10 10 10 10 10 10
ht 10 5 5 5 5 5 5 5 5 5 5 5
st 100 100 100 100 100 100 100 100 100 100 100 100
dt 30 45 50 55 45 55 90 80 90 65 80 70

We solve the problem via our algorithm FRH. The solutions are optimal verified by CPLEX. When initial capital is
150 without loan, the optimal production plan is shown by Figure 9(a), in which the manufacturer could only launch two
productions because of capital shortage. When initial capital is 200 without loan, the optimal production plan is shown by
Figure 9(b). When initial capital is 200 with loan quantity 300, loan length 3 periods and loan interest rate 10%, a different
optimal production plan is shown by Figure 9(c). Figures in Figure 9 illustrate that quantity of initial capital and whether or
not loan, does influence the optimal production plan of a manufacturer.

Without loan, for different initial capital, maximum final capital increments are displayed by Figure 10(a). With fixed
quantity of initial capital 200, fixed quantity of loan 300, loan length 3 periods, for different loan interest rates, maximum
final capital increments is displayed by Figure 10(b).

In Figure 10(b), the dashed line represents the maximum capital increment without loan. Figure 10(a) shows if capital
is not sufficient, more initial capital will bring more final capital increment; if capital is sufficient, maximum final capital
increment for a manufacturer is stable. Figure 10(b) shows loan is helpful for a manufacturer if interest is low; but if interest
rate is too high, final capital increment decreases and it is better for the manufacture not to loan. Therefore, the numerical
examples above demonstrate initial capital availability as well as loan interest rate can substantially influence the operational
decisions for a manufacturer.
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(a) Production plan with initial capital 150 without loan.

 ! " # $ % & ' (  )    !

(b) Production plan with initial capital 200 without loan.

 ! " # $ % & ' (  )    !

(c) Production plan with initial capital 200 with loan.

Figure 9 Optimal production plan for different capital situations.
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(a) Capital increment with different initial capital.

0.01 0.05 0.1 0.15 0.2 0.25 0.3

1,700

1,800

1,900

2,000

Loan interest rate
Fi

na
lc

ap
ita

li
nc

re
m

en
t

(b) Capital increment with different loan interest rate.

Figure 10 Changes of final capital increment for different initial capital and loan interest rates.

5.2. Comparison of our algorithm with some other heuristics
To the best of our knowledge, although there are many heuristic algorithms in the literature dealing with capacity constrained
lot sizing problems, those algorithms are not suitable for solving capital flow constrained lot sizing problem like ours.
Solutions obtained by those algorithms are not feasible by the definition of capital flow constrains in this paper. Compared
with traditional capacity constraints, capital flow constraints are stronger constraints which require initial capital of each
period is above this period’s total production cost, end-of-period capital of each period is above zero, and capital flow is
related with many parameters like selling price, interest rate, etc.

In terms of the comparison of our algorithm with meta heuristics, we attempt to solve our capital flow constrained lot
sizing problem with some meta heuristics: genetic algorithm and simulated annealing algorithm. However, because of the
capital flow constraints and other constraints, it is difficult for both genetic algorithm and simulated annealing algorithm to
obtain a feasible solution even for a small numerical case. Therefore, we omit the comparison of our algorithm with other
heuristic algorithms.

5.3. Comparison of our algorithm with CPLEX on randomly generated problems
We test our algorithm on a large set of randomly generated problems with CPLEX 12.6.2. The solution accuracy of CPLEX
is controlled by the number of iterations, CPU seconds and the termination tolerance, which are set as 750,000, 18,000, and
0.0001%, respectively. The randomized scheme of test problem generation is similar to Aksen’s work (Aksen, 2007), and
is presented in Table 2.

Since capital and goodwill loss rate can influence optimal production plan, two initial capital, two initial loan and three
goodwill loss rates are set for our experiments, while these three parameters in Aksen’s 360 test cases (Aksen, 2007) are
fixed or not included. As for the initial capital, Bc = s1 + c1(d1 + d2) guarantees the manufacture has enough capital for the
production of first two periods; and Bc = s1 + c1(d1 + d2 + d3) guarantees the production of first three periods. There are
864 numerical cases for testing in total. Experimental results for different periods are shown by Table 3.

As shown in Table 3, our algorithm performs well in the 844 test cases. There are only 57 cases that our algorithm
doesn’t get optimal solutions. Although there still exist some extreme cases with a maximum deviation 4.56% that our
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Table 2 Randomized generation scheme for the test problems

Parameter No. Values

Planning horizon 6 T = 12, 24, 36, 48, 60, 72

Demand distribution 3
1. Exponential with µ = 150
2. Normal with µ = 150, δ2 = 1600
3. Discrete Uniform [30, 270, 10]

Unit production cost
2

1. Both constant: ct = 13 and ht = 1
Unit holding cost 2. Both seasonally varying

Selling price 2
1. Discrete uniformly distributed
between [15 25] with increments of 5
2. Seasonally varying

Initial capital 2
1. Bc = s1 + c1(d1 + d2)
2. Bc = s1 + c1(d1 + d2 + d3)

Initial loan 2
1. BL = 0
2. BL = 2000, with loan length TL = 6
and loan rate r = 5%

Goodwill loss rate 3
1. β = 0
2. β = 10%
3. β = 50%

Setup cost 1 Constant: st = 1000

Table 3 Performance of our algorithm FRH compared with CPLEX for different periods

T
Num of
cases

Num of
n-opt cases

Average
deviation

Maximum
deviation

Avg.FRH
time (s)

Avg.CPLEX
time (s)

12 144 4 0.07% 4.56% 0.85 0.18
24 144 5 0.02% 4.38% 3.54 0.33
36 144 6 0.03% 1.29% 9.06 1.83
48 144 11 0.08% 3.74% 18.12 136.67
60 144 15 0.02% 0.52% 32.38 267.87
72 144 16 0.05% 1.59% 55.76 1062.80

General 844 57 0.05% 4.56% 19.95 224.19

heuristic adjustment could not reach optimal, it could obtain optimal solutions in most cases and average deviation is
0.05%. Another finding of the experiment not shown by Table 3 but also should be noted is that, when goodwill loss rate is
zero and unit variable production costs are equal, our algorithm all obtain optimal solutions, which validates Theorem 1.

In terms of computation time, CPLEX runs faster than our algorithm for small-size problems. However, when problem
size grows large, average computation time for CPLEX increase rapidly and is much larger than our algorithm. This is
because when T reaches 48, there are some cases that take maximum running time for CPLEX to stop iteration, which
boost the average computation time. For the 864 numerical cases, average computation time of FRH algorithm is 19.95s
while average computation time for CPLEX is 224.19s. Therefore, our algorithm is suitable for solving large-size problems.

5.4. Factors affecting the performance of our algorithm

In the next stage of experiment, we redesign the generation scheme of the test problems to investigate the influence of
parameter values to the performance of our algorithm. In order to save computation time for comparison, we set production
horizon length T fixed to be 12, initial loan BL fixed to be 2000, and loaning length L fixed to be 6 in this stage of testing,
setup cost s is also set fixed to be 1000. For other parameters, each has 2 generation modes: high fluctuations and low
fluctuations with normal distribution, or high values and low values. Details of the generation scheme is displayed by Table
4.
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Table 4 Randomized generation scheme in the second stage of testing

Low value (fluc.) High value(fluc.)

Demand D µ = 150, δ = 10 µ = 150, δ = 50

Unit production cost c µ = 13, δ = 1 µ = 13, δ = 5

Unit holding cost h µ = 5, δ = 0.5 µ = 5, δ = 2.5

Selling price p µ = 20, δ = 1 µ = 20, δ = 5

Initial capital Bc s1 + c1(d1 + d2) s1 + c1
∑5

i=1 di

Interest rate r 2% 5%

Goodwill loss rate β 10% 50%

For each combination of those parameters, we generate 10 numerical cases. Therefore, there are 27 × 10 = 1280 cases
for testing. Experimental results in this stage are presented by Table 5.

Table 5 Pivot table of the results in the second stage of testing

Num of
cases

Num of
deviation

Average
deviation

Maximum
deviation

Demand
low fluc. 640 38 0.14% 5.91%
high fluc. 640 57 0.09% 5.68%

Unit prod. cost
low fluc. 640 52 0.17% 5.91%
high fluc. 640 44 0.06% 4.48%

Unit hold. cost
low fluc. 640 53 0.13% 5.91%
high fluc. 640 43 0.09% 5.68%

Selling price
low fluc. 640 57 0.14% 5.91%
high fluc. 640 39 0.09% 4.48%

Initial capital
low 640 57 0.18% 5.91%
high 640 39 0.05% 2.48%

Interest rate
low 640 46 0.12% 5.68%
high 640 50 0.09% 5.91%

Goodw. loss rate
low 640 46 0.03% 2.78%
high 640 50 0.19% 5.91%

General 1280 96 0.11% 5.91%

From table 5, of all the 1280 numerical cases, there are 96 numerical cases that our algorithm can’t reach optimal with
maximum deviation error 5.91% and average deviation 0.11%. we also find that for goodwill loss rate and initial capital,
maximum deviation and average deviation between high and low values differ substantially. It seems goodwill loss rate
and initial capital play a main role in affecting the performance of our algorithm. To consolidate this conclusion, we apply
stepwise linear regression analysis by SPSS to all the 96 numerical cases that our algorithm has deviations. We set deviation
as dependent variable, all the seven parameters as independent variables, confidence interval is 95%. Analysis of variance
(anova) is presented by Figure 11 and excluded variables by stepwise linear regression is given by Figure 12.
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ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression

Residual

Total

2 Regression

Residual

Total

.002 1 .002 11.808 .001b

.015 94 .000

.017 95

.003 2 .002 11.427 .000c

.014 93 .000

.017 95

Dependent Variable: Deviationa.

Predictors: (Constant), GoodwillLossRateb.

Predictors: (Constant), GoodwillLossRate, InitialCapitalc.

Page 1

Figure 11 Anova of parameters in stepwise linear regression.

Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics

Tolerance

1 SellingPrice

UnitVariableProductCost

UnitHoldingCost

DemandFluctuation

InitialCapital

2 SellingPrice

UnitVariableProductCost

UnitHoldingCost

DemandFluctuation

-.116b -1.173 .244 -.121 .959

-.051b -.527 .600 -.055 .999

-.018b -.184 .855 -.019 .962

.028b .285 .776 .030 1.000

-.295b -3.150 .002 -.311 .984

-.163c -1.713 .090 -.176 .939

.004c .045 .964 .005 .963

-.022c -.231 .818 -.024 .962

.047c .501 .618 .052 .996

Dependent Variable: Deviationa.

Predictors in the Model: (Constant), GoodwillLossRateb.

Predictors in the Model: (Constant), GoodwillLossRate, InitialCapitalc.

Page 1

Figure 12 Excluded parameters in stepwise linear regression.

Figure 11 shows goodwill loss rate affects deviation the most (significance value 0.001 < 0.05); initial capital and
goodwill loss rate together have significant influence to the deviation error (significance value 0.000 < 0.05), while other
parameters are excluded from regression as shown by Figure 12. This coincides with the finding in Table 5. The reason
could be: if initial capital is low and goodwill loss rate is high, it is more difficult for the heuristic techniques to adjust
original solution to optimal. However, experiments in the two stages demonstrate our algorithm can reach optimal in over
90% cases and average deviation of our algorithm is rather low; moreover, when goodwill loss rate is zero and unit variable
production are equal, our algorithm can definitely obtain optimal solutions.

6. Conclusions

Capital shortage is a key factor affecting the growth of many small and medium enterprises. However, capital flow con-
straints have not been taken into consideration by many lot sizing works. Previous methods such as Wagner-Whitin algo-
rithm (Wagner and Whitin, 1958) and Aksen algorithm (Aksen, 2007, Aksen et al, 2003) for lot sizing problems can not
obtain feasible solutions when considering capital flow constraints under the assumptions in our paper.

We formulate a mathematical model for the lot sizing problem with capital flow constraints. Loss of goodwill and loan
are also introduced in our problem. Based on the mathematical properties of the problem, we develop a forward recursion
algorithm with heuristic adjustments. When unit variable productions costs are equal and goodwill loss rate is zero, our
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algorithm can obtain optimal solutions. Under other situations, its average deviation error is rather low. It is suitable to
solve large-size problems for its computational efficiency. We also find initial capital availability and loan interest rate can
affect a manufacturer’s optimal lot sizing decisions

Future research could extend in several directions: first is considering the multi-item model or the stochastic lot sizing
problems with capital flow constraints; second, other financial behaviors, such as trade credit, inventory financing and
factoring business could also be taken into account in the lot sizing problem.
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