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Abstract

In this study, a one-dimensional cellular automata model is used to represent a self-organized queueing sys-
tem with local interaction between captive and boundedly rational customers who repeatedly choose a facility
for service. While previous work has focused on decision rules based on adaptive expectations, the present
work expands this analysis by explicitly incorporating customers’ attitude toward risk to study the impact of
risk aversion on the collective behavior and the average system sojourn time. The customers’ decision process
is modeled using adaptive expectations and incorporating the uncertainty involved in these expectations. Cus-
tomers update their expectations based on their own experience and that of their neighbors. Simulation anal-
ysis is used to compare the aggregated behavior for different degrees of customer risk aversion. Risk-neutral
customers base their decisions only on their expected sojourn time, while risk-averse customers account for
uncertainty by estimating an upper bound of the sojourn times. The results indicate that the more risk-averse
the customers, the longer the transient period, and the more slowly the system converges to an almost stable
average sojourn time. Systems where customers have an intermediate level of risk aversion achieve the worst
average sojourn times.

Keywords: decision-making under uncertainty; simulation; service operations management; adaptive expectations; so-
journ times

1. Introduction

Understanding people’s attitudes to risk, and the resulting impact on their behavior, has been of
interest to researchers from different areas over the last decades. This includes the pioneering work
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in the field of decision science (Kahneman and Tversky, 1979; Tversky and Wakker, 1995), and
more recently in finance (Keller and Siegrist, 2006; Fellner and Maciejovsky, 2007), project man-
agement (Yang et al., 2016), supply chains (Guo and Liu, 2020), and climate change (Leiserowitz,
2006; Whitmarsh, 2008), among others.

Risk attitudes affect the way in which people take decisions when facing choices relating to
queueing; this influences the formation of queues and the resulting sojourn times. A well-known
phenomenon concerns the impact of commuter behavior on the timing of rush hours: risk-averse
commuters leave increasingly early in an attempt to beat the traffic, resulting in rush traffic starting
earlier. Similarly, travelers who fear travel delays, arrive increasingly early at the airport, which leads
to overcrowded facilities. Other examples relate to the choice of facility. For instance, a customer
faces the choice between the local post office, where the waiting time is highly variable (often no
queue at all, occasionally a very long one) and the main post office, where the queue length is more
predictable as service capacity is flexible. A similar dilemma concerns traveling to a supermarket,
where one is sure to find the desired product, versus going to the local corner store, with a higher
probability of not finding what one wants and having to look elsewhere. In a traveling context, one
can opt for the main road, facing a long but fairly predictable travel time, versus opting for smaller
roads, which may be faster on average but may face extremely long delays in case of an incident.

Risk-averse customers are likely to base their choice not on the expected or most likely sojourn
time, but on a worst-case estimation. This results in asymmetric reactions to extreme events: while
a (very) bad experience will significantly increase the worst-case expectation, a (very) good expe-
rience has a much more moderate impact. This issue is the focus of the present paper. The model
considers repeat customers who must routinely choose a facility for service and who interact with
their neighbors sharing information about their experience. They use their previous experience and
that of their best-performing neighbor to update their expectations regarding sojourn times. The
“neighbors” could for instance represent colleagues at work discussing their experience driving in
that day. Customers are aware that these expectations may not be accurate and consider this uncer-
tainty to a certain degree, depending on how risk-averse they are. More specifically, they estimate
an upper bound for their expected sojourn time and choose which facility to join based on this
upper bound. The impact of updating expectations based on information from all neighbors rather
than only the best-performing neighbor is elaborated upon in the discussion.

Hassin (2016, p. 1) classifies queueing systems research into three categories: performance anal-
ysis, optimal design and control, and analysis of rational strategic behavior. Traditional research
has given more attention to the first two topics; more recently, behavioral aspects have received
increasing attention when studying queueing problems. This paper pertains to the last category: it
focusses on investigating how customers’ risk attitude influences their decisions when choosing a
facility, and how this affects the resulting collective behavior and the average sojourn time of the
system.

The remainder of the paper is structured as follows. After a literature review, the system being
studied is described. Section 4 introduces the model and provides a technical description. Next, the
concept of adaptive expectations is introduced, with an explanation of how it is used to estimate
the expected sojourn times and the customers’ uncertainty regarding these expectations. Section 5
characterizes the customer types according to their level of risk aversion and the weights they give to
their expectations. This is followed by an explanation of the simulation results for a typical case and
a sensitivity analysis with respect to the risk-aversion parameter and the expectation coefficients.
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Next, we consider what happens when a customer deviates from the behavioral rules assumed in
the model. The last section addresses the conclusions and future work.

2. Literature review

While waiting is generally considered to negatively affect quality, there are exceptions. Kremer and
Debo (2015) study customer behavior in a queueing situation where long waits are synonymous
with good quality, that is, customers consider facilities with large queues a good place to patronize.
They provide theoretical and experimental evidence that the probability of new customers (unin-
formed customers) joining a facility for service decreases when waiting times are short—“the empty
restaurant syndrome.” Still, in this work the focus is on the more common case where customers
dislike waiting.

Depending on the information decision makers have available when making their choice, behav-
ioral queueing models can be classified as models with unobservable queues, with partially observed
queues, or with observable queues (Hassin, 2016, p. 8). Unobservable queue models consider that
real-time information on the system state is not available for decision makers. Observable queue
models consider that decision makers have full information about the system state (i.e., the queue
length and the state of the server). In between these two extremes, partially observed queue models
assume that decision makers have partial information about the system state (e.g., the queue length
or the state of the server). Altman (2005) presents another classification of behavioral queueing
models according to the questions that arise for customers: to queue or not to queue; when to
queue; and where to queue. The model proposed in this paper is a behavioral queueing model with
unobservable queues and customers deciding where to queue.

Most research on behavioral queueing concentrates on studying equilibrium behavior and social
optimality. This stream of literature started when Naor (1969) published his seminal papers in
which he formalizes and quantifies the insights published by Leeman (1964). Naor (1969) studies an
M/M/1 queueing model with an observable queue where homogenous customers decide whether
to join the queue depending on an admission fee (i.e., a toll). Edelson and Hildebrand (1975) extend
Naor’s model to unobservable queues. Hassin and Haviv (2003) provide a review of the literature
building on Naor’s work until 2003, while Hassin (2016) covers the more recent literature.

The marketing literature also contributes to this area by studying the influence of waiting times
on customer satisfaction, customer loyalty, and service quality (Law et al., 2004; Bielen and De-
moulin, 2007). This line of work was highlighted by Koole and Mandelbaum (2002) who emphasize
the need to include human factors in queueing models as a challenge to advance the development
of the area.

In more recent work, Hassin and Snitkovsky (2017) study equilibrium strategies in a queueing
problem with unobservable queues, where customers must choose between waiting in line to receive
a free service or pay to be served immediately. Roet-Green and Hassin (2017) analyze the impact
of information acquisition on the decision of whether to join or balk. Pala and Zhuang (2018)
study equilibrium strategies in a security screening process using an M/M/1/K queueing system
with generalized process sharing, with heterogeneous impatient customers who balk once the wait-
ing time exceeds their patience time. Hassin and Koshman (2017) study Naor’s model: they con-
sider different contexts (e.g., limited information, constraints on price flexibility) and derive easily
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implementable mechanisms enabling achieving close to optimal profits. Wang et al. (2018) focus on
systems characterized by highly seasonal arrival rates, for example, food courts facing a lunch-hour
rush, using a deterministic fluid model. They develop a rule of thumb for capacity decisions and
consider both monopoly and duopoly situations.

The present work differs from this stream of literature in that it analyzes the resulting collective
behavior of customers according to their risk attitudes rather than developing equilibrium strategies
or identifying optimal capacity or pricing strategies. The model assumes captive customers who
routinely must choose a facility for service during rush time and are not allowed to balk or jockey;
queues are unobservable before a decision is made.

Risk attitudes, although highly relevant, have received little attention in this context. Previous
research shows that when customers make decisions involving waiting time, they typically tend to
be rather risk-averse (Leclerc et al., 1995). Consequently, they prefer the service provider with more
predictable service times. From this point of view, service providers must focus on reducing the un-
certainty of their service times in order to make their facilities more attractive. Kumar and Krishna-
murthy (2008) show that when customers account for uncertainty on both supply and demand sides,
the uncertainty about the expected congestion eliminates this risk aversion, unless customers expect
to face congestion everywhere or nowhere. They argue that customers’ decision strategies in queue-
ing situations are complex and that using mean-variance utility models, risk aversion (i.e., choosing
the facility with the lower uncertainty in the service time), or crowd avoidance (i.e., avoiding joining
the facility where one expects the majority to go) is not sufficient to understand the complexity
behind customers’ behavior at service facilities. More recently, Wang and Zhang (2018) perform a
detailed equilibrium analysis of an M/M/1 queueing system, assuming strategic risk-sensitive cus-
tomers, allowing for a continuum from risk-seeking to risk-averse customers, from three points of
view: individual self-interest, profitability of the facility, and social welfare. They consider different
information contexts (e.g., observable vs. unobservable queue) and are able to show that several
standard queueing theoretic results derived under the assumption of risk neutrality no longer hold
with risk-sensitive customers.

Most of the literature reviewed above does not consider feedback, that is, customers’ current
behavior is not affected by information about past periods. One of the reasons is that this leads
to nonlinear models, which mostly do not have closed-form solutions. Agnew (1976) is one of the
first to explicitly incorporate feedback: he provides stationary solutions for a system where service
capacity varies with queue length. Haxholdt et al. (2003) go a step further: they consider a deter-
ministic model where both arrival rate and service rate are endogenous, depending, respectively, on
customers’ perception of past waiting times and on queue length. Modeling the arrival rate as a
function of past waiting times is the first step toward explicitly modeling repeat customers, as done
by Law et al. (2004) and van Ackere et al. (2013).

Behavioral models that enable studying the link between the individuals’ decisions and aggre-
gated performance include van Ackere and Larsen (2004) who analyze how commuters form ex-
pectations about congestion in a three-road system using a one-dimensional cellular automata (CA)
model. Sankaranarayanan et al. (2014) use a similar approach to model a multichannel service fa-
cility where rational customers choose one facility for service based on their expected sojourn time,
which they compute using their own experience and that of their neighbors. Then, Delgado-Alvarez
et al. (2020) elaborate upon Sankaranarayanan et al.’s (2014) model by enabling managers to adjust
the facilities’ service capacity. The present work extends Sankaranarayanan et al. (2014) in several
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directions, with the aim of capturing more realistic individual behavioral patterns, while making the
link to more traditional OR models: (a) the concept of volatility of forecast errors (Taylor, 2004,
2006) is used to incorporate uncertainty into the process of expectation formation and (b) this en-
ables an analysis of how different levels of risk aversion affect the collective behavior of customers.

The simulation results indicate that the more risk-averse customers are, the longer the transient
period exhibited by the system is, and the longer the system takes to converge to an almost stable
average sojourn time. Systems where customers exhibit an intermediate level of risk aversion per-
form worse and are more likely to end up ignoring a facility (i.e., never use it again) than those
whose customers are risk-neutral or strongly risk-averse.

3. A service system

An agent-based simulation model, structured as a one-dimensional CA (Wolfram, 1994, p. 411),
is developed to represent a queueing system with endogenous and deterministic arrival rates. It
is used to explain how customers, who must repeatedly choose a facility for service, interact in a
multichannel system; the focus is on how their collective behavior is influenced by their level of
risk aversion. Examples of such systems include choosing a store for weekly shopping, a garage for
annual car maintenance and commuters.

The model represents a self-organizing queueing system with local interaction between captive
rational customers. Consider a fixed population of n homogenous customers. All customers need
service simultaneously and must choose one of m facilities. This system portrays a captive market
in which customers repeatedly need either a service or a good and have several options to obtain
it. The assumption that customers need service simultaneously is a stylized representation of a
rush hour, where queues form at the different facilities as the rate of arriving customers exceeds the
facility’s service capacity. Queues are unobservable at the time of decision-making and decisions are
irreversible: customers do not have any real-time information regarding the queue size or sojourn
time when making their choice and cannot leave or switch a facility after making their choice.

Before deciding, agents are assumed to communicate with their neighbors and share informa-
tion about their previous experience. In each period, customers use their most recent experience
and that of their best-performing neighbor to update their expectations of the sojourn time at the
different facilities. They do so using an adaptive expectations process (Nerlove, 1958) to combine
their memory and their new information (i.e., their most recent experience and that of their quickest
neighbor). Customers who give more weight to their memory than to new information are labeled
“conservative.” In contrast, those giving more weight to new information are called “reactive.” Un-
certainty is incorporated into the agents’ expectation formation process in order to analyze how a
risk-averse attitude may affect collective behavior. The agents’ uncertainty is quantified using the
concept of volatility of forecast errors (Taylor, 2004). Risk-neutral customers choose which facility
to use based on their expected sojourn times (i.e., they ignore uncertainty). Risk-averse customers
base their decision on their estimate of the upper bound of the expected sojourn times, which they
compute using their expected sojourn times and their estimate of the uncertainty, taking into ac-
count their risk-aversion level.

Occasionally, a customer may deviate from the bounded-rationality assumptions outlined
above, whether by mistake or by choice (i.e., using a different decision rule, see, for instance
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Delgado-Alvarez et al., 2017). To the outsider such behavior may appear random. We therefore
consider a variation of the model that incorporates this possibility.

4. The cellular automata model

The system described above is modeled as a queueing system with endogenous arrival rates and
exogenous service rates. While the facilities have identical service rates, their arrival rates depend on
the customers’ previous experiences, their expectations, and their risk aversion. Reneging, balking,
and jockeying are not allowed.

A CA approach is adopted to represent the interaction between customers, model their expec-
tations, and analyze their collective behavior (Wolfram, 1994, p. 412; North and Macal, 2007, pp.
46–49). In the context of the CA methodology, agents portray customers. A one-dimensional ring-
shaped neighborhood is assumed, where each cell is an agent who interacts with exactly one neigh-
bor on each side: agent i communicates with agents i − 1 and i + 1. As the cells are located on a
ring, all cells have a neighbor on each side. Without this ring structure, the two agents located at
the extremes of the CA would each have only one neighbor; this would require defining tailor-made
decision rules for these two agents, referred to as boundary conditions, complicating the model
without yielding additional insights. The neighborhood can depict, for example, a social network
consisting of neighbors, colleagues, members of a sports club, etc.

In each period, agents use a simple decision rule, based on their memory of past experience and
new information, to choose a facility (state). The updating process of agents’ memory is based
on the theory of adaptive expectations (Nerlove, 1958), also known as exponential smoothing:
agents weight their most recent information and their memory when forming expectations (Theil
and Wage, 1964). The information stems from their own experience and that of their neighbor who
achieved the lowest sojourn time in the previous period. Moreover, these expectations involve a
certain degree of uncertainty, which is captured by the variance of the estimates. This variance is
computed using the squared error of the forecasts. Exponential smoothing is used to estimate the
squared residuals (Taylor, 2006), a method known as volatility of forecasting errors (Taylor, 2004).

To formalize the CA model, A denotes the set of n agents (cells) {A1, A2,…, Ai,…, An} and Q
the set of m possible facilities (states) {Q1, Q2,…, Qj,…, Qm}. Each agent Ai must join exactly one
facility Qj each period t. All m facilities have the same service rate μ, but different arrival rates
(λjt), which depend on customers’ decision at time t. The arrival rate is a function of the state of
the agents each period, si(t). The agents’ decisions will determine their state in each period. Let S
denote the set of states si(t) of n agents in period t. This state si(t) is one of the m possible facilities,
that is, S ⊂ {Q1, Q2,…, Qj,…, Qm}. With this in mind, the arrival rate (λjt) for queue j at time t can
be written as a function of S, Q, and t, given by the following equations:

xi j (t) = f (si, Qj, t) =
{

1 if si(t) = Qj

0 otherwise
∀ i = 1, 2, . . . , n j = 1, 2, . . . , m (1)

λ jt =
n∑

i=1

xi j (t) ∀ j = 1, 2, . . . , m. (2)
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The state si(t) evolves over time depending on the agent’s expected sojourn times, his uncertainty
and his risk aversion. The expected sojourn time of agent Ai for facility Qj in period t is denoted by
Mijt, the corresponding uncertainty by σ ijt, and the risk-aversion factor by R, where a larger value
of R denotes a higher degree of risk aversion. Mijt and σ ijt evolve over time, while R is assumed to
be a constant. Additionally, this parameter is the same for all agents, as implied by the aforemen-
tioned assumption of homogenous customers. Then, the state si(t) of agent Ai is determined by the
following function:

si(t) = F (Mi jt, σi jt, R) ∀ i = 1, 2, . . . , n j = 1, 2, . . . , m. (3)

In order to define this function, these variables are incorporated into a single measure that en-
ables agents to decide their state each period, labeled the upper bound of the expected sojourn time
and denoted by Bijt, which represents the maximum sojourn time that agents estimate they might
experience at facility j. This upper bound is estimated using the agents’ expected sojourn time (Mijt)
and uncertainty measure, and their risk-aversion level. Agents choose to patronize the facility with
the lowest upper bound. Before delving into the function that determines the upper bound of the
expected sojourn time (Bijt), a description of how agents form their expectations and estimate their
uncertainty by applying an adaptive expectation model is provided. A table summarizing the nota-
tion of the model is given in the Appendix (see Table A1).

4.1. The adaptive expectations model

Agents update their expected sojourn time Mijt and their uncertainty σ ijt by applying adaptive ex-
pectations, a forecasting method commonly applied to financial and economic time series (Gardner,
2006). In each period, a new estimate is obtained as the weighted average of the most recent obser-
vation and the previous estimate. Agents update their expected sojourn time and their uncertainty
for the facility they have selected, and for the facility selected by their quickest neighbor. When
these two facilities coincide, agents only update their memory and their uncertainty for this facility,
using their own information. For this updating process, they use Equations (4)–(6), as explained in
the following sections.

4.1.1. Estimating the expected sojourn times
Considering the assumption of captive customers, the latest evidence they have to estimate their
expected sojourn time is given by their most recent experience in the system. This experience is
denoted by Wijt. Thus, agent Ai, who uses facility Qj in period t, updates his expected sojourn time,
Mijt+1, for this facility, using Wijt. Additionally, according to the CA model, each agent interacts
with two neighbors (i − 1 and i + 1) who provide him with information regarding their latest
experience. Then, agent Ai uses this information to update his expectation with regard to the facil-
ity chosen by his quickest neighbor. With this information in mind, agents update their expected
sojourn time for their chosen facility and that of their best-performing neighbor using an exponen-
tially weighted average with weight α, which is assumed to be constant. Given the assumption of
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homogenous agents, α is the same for all agents. So, the updating process of the agents’ memory
(Mijt+1) can be expressed as

Mi jt+1 = αMi jt + (1 − α)Wi jt ∀ i = 1, 2, . . . , n, (4)

where Mijt is the previous value of the memory, and j refers to the last facility used by the agent and
that used by his best-performing neighbor.

4.1.2. Estimating the uncertainty of the expected sojourn times
Using the concept of volatility forecasting (Taylor, 2006), the estimation error eijt, that is, the dif-
ference between the previously estimated value Mijt–1 and the most recently observed value Wijt, is
calculated:

ei jt = Wi jt − Mi jt−1 ∀ i = 1, 2, . . . , n. (5)

Next, exponential smoothing is applied to the squared estimation errors (Taylor, 2004): the
smoothed variance, σ 2

i jt+1, is calculated as the weighted average of the previous estimate, σ 2
i jt, and

the new observation of the squared error e2
i jt. Thus, agents update the variance, σ 2

i jt, as follows:

σ 2
i jt+1 = γ σ 2

i jt + (1 − γ )e2
i jt ∀ i = 1, 2, . . . , n, (6)

where γ denotes the smoothing constant. Taking the square root yields the measure of volatility
σ ijt. Again, this updating process is only applied to the facility (j) used by the agent and that used
by his best-performing neighbor.

4.1.3. Estimating the upper bound of the expected sojourn time
Once the agents have computed their expected sojourn time, and its uncertainty, they consider these
values to assess the upper bound of the expected sojourn time, that is, the estimate of the maximum
sojourn time they think they could experience given their expectations, their uncertainty regarding
these expectations, and their risk aversion. Given the aforementioned “risk-aversion factor,” R,
which is identical for all agents, the upper bound of the expected sojourn time, Bijt, of agent Ai at
facility Qj in period t can be written as follows:

Bi jt = Mi jt + Rσi jt ∀ i = 1, 2, . . . , n j = 1, 2, . . . , m. (7)

The second term of the right-hand side of the equation can be interpreted as a safety mar-
gin: the higher an agent’s uncertainty concerning his estimate of the average sojourn time (σ ijt)
and the higher his risk aversion (R), the larger this time buffer. Agents will patronize the facility
with the lowest value of Bijt, that is, the lowest upper bound of the expected sojourn time. Should
two or three facilities be tied for the lowest expected upper bound, a very rare occurrence, agents
will choose among these, with their current facility as the first choice, and the one of their best-
performing neighbor as second choice.
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4.2. Average sojourn time in a transient period

This study focuses on a system in transient state, where the arrival rates can temporarily exceed the
service rates. Therefore, the expected sojourn time measure proposed by Sankaranarayanan et al.
(2014) is used:

Wjt = λ jt/μ
2 + 1/μ ∀ j = 1, 2, . . . , m, (8)

where μ denotes the service rate and λjt the arrival rate, that is, the number of agents arriving
at facility j in period t. This measure remains well defined for ρ ≥ 1 (transient analysis), while
satisfying Little’s law and the steady-state equations (Gross et al., 2008, pp. 9–10).

5. Characterization of customers

Customers (referred to as agents in this paper according to the terminology of CA models) can be
classified according to the values of their behavioral parameters. The different customer types are
characterized as follows:

• Depending on the coefficients of expectations (α and γ ), customers can be called reactive or
conservative regarding new information. For values of α < 0.5, customers are considered reactive
regarding the expected sojourn times, since they attach more importance to the new information
than to the past. Alternatively, if α > 0.5, customers are considered conservative with regard
to the expected sojourn times, that is, they give little weight to the new information regarding
their or their neighbors’ most recent experience. A similar reasoning applies to γ : Customers are
considered to be either reactive or conservative regarding the use of new information to estimate
the variability of their expectations when, respectively, γ < 0.5 or γ > 0.5.

• Customers are considered risk-neutral when R = 0, that is, they ignore the uncertainty. If R > 0,
they account for uncertainty. They are referred to as having a low, intermediate, or high level of
risk aversion depending on the value of R. In the discussion, the values of 0.4 and 1.2 are used as
cutoff points between these three groups.

6. Simulation results and discussion

The CA model is configured with 120 agents (i.e., the number of cells n in the one-dimensional
discrete lattice) and 3 facilities (i.e., the number of states m each cell may take) and a neighbor-
hood size equal to 1. The service rate is the same for all facilities and equals five agents per unit of
time. Each agent is provided with an initial memory for the expected sojourn time for each facility.
These memories are distributed randomly around the optimal average sojourn time. The system be-
havior depends on the initial values of memory assigned to the agents, that is, the evolution of the
system is path dependent. Although customers’ initial memory is allocated randomly, behavior gen-
erated by the model is not stochastic: the waiting times are deterministic functions of the number of

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



2714 C.A. Delgado-Alvarez et al. / Intl. Trans. in Op. Res. 29 (2022) 2705–2727

Table 1
Parameter values used for the simulation run

Parameter Value Description

m 3 Number of service facilities
n 120 Population size
μ 5 Service rate
α 0.4 Weight to memory when updating the expected sojourn time
γ 0.6 Weight to memory when updating the estimated variance of the expected sojourn time
R 0, 0.5, 1.5 Risk-aversion parameter: risk-neutral, intermediate risk aversion, high risk aversion,

respectively
100 Simulation time for the illustrative example

Tsim
1500 Simulation time for the in-depth analysis

Seed 1 Random seed used to initialize the model (agents’ initial memory)

Fig. 1. Spatial–temporal behavioral evolution of risk-neutral agents’ choice of service facility (Panel A) and stacked
chart of the number of customers patronizing each facility over time (Panel B) for α = 0.4; γ = 0.6; and R = 0.

customers joining a facility (Equation (8)), and customers’ decisions are deterministic functions of
their information (Equations (4)–(7)). The simulation model is implemented in MATLAB (2009).

6.1. Base case

Table 1 summarizes the parameters used to configure the system for the base case. The chosen time
horizons are 100 periods for the illustrative example given below to provide an intuitive understand-
ing of the model behavior, and 1500 for the in-depth analysis.

Figures 1 and 2 compare the evolution of the agents’ decisions for different risk attitudes: risk-
neutral (R = 0, Fig. 1) and moderately risk-averse (R = 0.5, Fig. 2) over 100 periods (horizontal
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Fig. 2. Spatial–temporal behavioral evolution of risk-averse agents’ choice of service facility (Panel A) and stacked
chart of the number of customers patronizing each facility over time (Panel B) for α = 0.4; γ = 0.6; and R = 0.5.

axis). Panel A shows the spatial–temporal behavior, while the stacked graph in panel B illustrates
the evolution of the total number of customers at each facility over time. To ensure comparability
(same initial values of expected sojourn times), the same random seed (a value of 1) is used. Each
line represents the sequence of choices of an agent (black, gray, and white for, respectively, facilities
1, 2, and 3).

The behavior observed in Figs. 1 and 2 is explained in two phases: the first phase is a period
of exploration where agents gather information, learn about the system, and imitate their best-
performing neighbor; this is referred to as the transition period. During this period, customers’
behavior creates a phenomenon of herding: it is not uncommon for one or two facilities to be very
crowded (e.g., periods 7–10 in Fig. 1, periods 18–22 in Fig. 2). Consequently, customers update
their memory based on these poor experiences, and move away from heavily used facilities. For
instance, in Fig. 1, after being overcrowded at time 7, facility 1 is empty at time 8 and one customer
(customer 94) returns in period 9. Figure 2 exhibits a similar phenomenon over the periods 19–21.

After the transient period the system stabilizes, and a pattern of collective behavior emerges. In
certain cases, agents experiencing a short sojourn time communicate with their neighbors who in
turn join this facility. For instance, in Fig. 1, agents 10 and 11 have a good experience (i.e., low
sojourn time) at facility 2 in period 11, and over time attract back a cluster of about 15 customers
who remain at that facility. In other cases, a group of neighbors simultaneously moves back to a
facility, has a positive experience, and stays there as they are no longer exposed to new information.
An example of this can be seen in Fig. 2, where agents 81–96 move to facility 2 in period 22, and
most stay there until the end of the simulation. Such groups of agents, who stay at a facility, are
referred to as loyal. They are separated by “switchers”: agents who keep moving between two facil-
ities according to a regular pattern. The vast majority of switchers alternate between two facilities.
For instance, in Fig. 1, agent 3 alternates between facilities 2 and 3. Switchers can exhibit more

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



2716 C.A. Delgado-Alvarez et al. / Intl. Trans. in Op. Res. 29 (2022) 2705–2727

Fig. 3. Average, maximum, and minimum sojourn time for a system configured with risk-neutral agents (R = 0) and
coefficients of expectations: α = 0.4; γ = 0.6.

complex patterns, for instance agent 68 from period 84 onward in Fig. 1: 1-2-1-2-2-2-1-2-1-2-2-2-,
etc.

Panel B of Figs. 1 and 2 provides a clearer picture of how the distribution of customers across
the three facilities changes over time: during the exploration period we observe strong fluctuations,
with occasionally one facility not being patronized at all (e.g., facility 2 (gray) at time 3 and facility
3 (white) at times 5 and 10 in Fig. 1) and another one being heavily patronized (e.g., facility 2 at time
10 in Fig. 1 and time 20 in Fig. 2). Once the system stabilizes, the allocation of customers follows a
regular pattern (from time 79 onward in Fig. 1 and time 35 in Fig. 2). Had a Nash equilibrium been
reached, the allocation of agents across the three facilities would have remained constant. When
agents update their expectations based on the information from both neighbors, the qualitative
behavior is similar, but the system takes much longer to stabilize.

Figures 3 and 4 show the evolution of the weighted average sojourn time of the system and the
minimum and maximum sojourn times experienced by customers. The weighted average sojourn
time is computed using the following equation:

W̄t =
3∑

j=1

Wjtλ jt/120, (9)

where λjt is the number of customers patronizing facility j at time t and Wjt is the average sojourn
time these customers experience at this time at this facility.

As mentioned above, during the transition agents tend to overpatronize certain facilities in a
given period; this results in extreme values for the minimum, maximum, and average sojourn times.
For instance, in the risk-neutral case (Figs. 1 and 3), most agents choose facility 1 in period 7,
experiencing a very high sojourn time (W1,7 = 3.80), while at the same time the few agents at facility
2 are much better off (W2,7 = 0.24). The risk-averse agents (Figs. 2 and 4) have a similar experience
in period 21: the two agents at facility 2 experience the lowest sojourn time (W2,21 = 0.28), while
the many agents at facility 1 have a bad day ((W1,21 = 3.16).
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Fig. 4. Average, maximum, and minimum sojourn time for a system configured with risk-averse agents (R = 0.5) and
coefficients of expectations: α = 0.4; γ = 0.6.

Fig. 5. Distribution of the steady-state weighted average sojourn time for 1000 simulations with different initial
conditions for α = 0.4; γ = 0.6 for risk-neutral (R = 0), moderately risk-averse (R = 0.5) and highly risk-averse

(R = 1.5) agents.
Note. We use a bin size of 0.01. As the model does not yield observations in the range [2.0800, 2.5999], a “break”

indicator is inserted to shorten the axis and improve legibility of the graphs.

After these illustrative examples, a more in-depth analysis of the steady-state system behavior is
provided for three levels of risk aversion: indifference to risk (R = 0, black bins in Fig. 5), an inter-
mediate degree of risk aversion (R = 0.5, dark gray bins in Fig. 5), and a very high degree of risk
aversion (R = 1.5, light gray bins in Fig. 5). Using the same parameters (see Table 1), the model is

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



2718 C.A. Delgado-Alvarez et al. / Intl. Trans. in Op. Res. 29 (2022) 2705–2727

run 1000 times for each level of risk aversion. Extensive experimenting with different initial condi-
tions has shown that the transition period rarely exceeds 1000 periods: by that time, a stable pattern
of collective behavior has emerged and the variance of the sojourn time is less than 10%. Hence, a
runtime of 1500 periods has been selected and the weighted average sojourn time is calculated over
the last 500 periods of each run. Comparatively, when agents update their expectations based on the
information from both neighbors (as opposed to only the best-performing neighbor), the system
takes up to 10,000 periods to stabilize for small values of R, and even longer for larger values of R.

Figure 5 illustrates how the steady-state sojourn time varies depending on the initial conditions.
The distribution is bimodal, whatever the level of risk aversion. This is a consequence of the possi-
bility that one of the facilities is not patronized in steady state, that is, it was driven out of business
due to a long-term lack of customers. The first peak of each distribution corresponds to the runs
where the three facilities remain in use. This scenario accounts for over 80% of the runs when
the agents are risk-neutral or highly risk-averse, compared to barely more than 50% for an inter-
mediate level of risk aversion (R = 0.5). When all facilities remain in use, the weighted average
sojourn time in steady state ranges between 1.80 and 1.95, with many values close to 1.80. The
second peak represents the cases where one of the facilities has closed down in steady state, with
most values clustered around 2.62. Note the broken line between these two regions, indicating the
truncated horizontal axis, which highlights the gap between the two peaks (no values between 1.95
and 2.60).

Based on this analysis, one can conclude that the more risk-averse the customers, the longer the
transient period the system exhibits. Moreover, Fig. 5 shows that there is a nonmonotonic relation-
ship between the degree of risk aversion and system performance: customers with an intermediate
degree of risk aversion are more likely to cluster in two facilities, thereby driving the third one
out of business. Consequently, very risk averse customers and risk-neutral customers achieve lower
average sojourn times. Both conclusions remain valid when agents update their expectations using
information from both neighbors.

6.2. Sensitivity analysis

A detailed sensitivity analysis is performed with respect to the three main behavioral parameters
(the risk-aversion parameter (R) and the expectation coefficients (α, γ )) using the definitions of
customer types given in Section 4. The other settings are unchanged (see Table 1). Figure 6 illus-
trates how the weighted average sojourn time varies as a function of these parameters. Each panel
in Fig. 6 corresponds to a specific value of the expectation coefficient of the variance (γ ). In each
panel the different curves represent the steady-state weighted average sojourn time as a function of
the risk-aversion parameter R (horizontal axis, steps of 0.1), for different values of the expectation
coefficient of the expected sojourn time (α). For each parameter combination 1000 iterations were
performed, using the same 1000 random seeds. The run length is again set at 1500 periods and the
weighted average sojourn time is computed for the last 500 periods.

As mentioned above, the weighted average sojourn time always exceeds 1.8 and values falling in
the interval [2.6, 2.8] indicate that a facility has closed down. Thus, the higher the weighted average
sojourn times exhibited in Fig. 6, the higher the probability that in steady state only two facilities
remain in operation for the corresponding parameter combination.
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Fig. 6. The weighted average sojourn time of the system as a function of the coefficients of expectations (α, γ ) and the
risk-aversion parameter (R).

A facility j is forced to close down when all customers’ estimated upper bound of the sojourn
time (Bijt) at this facility is well above that of the other two facilities. When this occurs, customers
will not receive new information to update Bijt over the next periods. Consequently, they will either
stay at one of the two remaining facilities or alternate between these.

The first panel of Fig. 6 (γ = 0.1) illustrates the case where customers give significantly less
weight to the past than to new information when updating their expectations of the variance of the
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Table 2
Overview of relationship between risk-aversion and updating parameters

Level of risk aversion, parameter RAttitude toward new
information regarding
expected sojourn time (α) Risk-neutral Low Intermediate High

Reactive (low α) – – +, if γ ≈ α +
Intermediate + –
Conservative (high α) + +, if γ high +, if γ ≈ α –

Note: (–) Combinations yielding high sojourn times, whatever the value of γ ; (+) combinations yielding desirable sojourn times
(for an appropriate choice of γ ).

sojourn times. For a given value of α (i.e., the expectation coefficient to update the expected sojourn
time), the performance is nonmonotonic in the level of risk aversion, with the worst performance
occurring when α and R are of the same magnitude. For low levels of risk aversion, performance
improves in α, while for high levels of risk aversion, the reverse is true. Note that when R exceeds 1
(the maximum value which α can take), the weighted average sojourn time decreases in R for most
cases. Looking at the other panels allows us to conclude that these observations are quite robust to
the value of γ .

Figure 6 provides the following insights into the performance of customers depending of the
weight they give to their memory: for α ≤ 0.3 (i.e., reactive customers according to the customer
types of Section 5), very risk averse customers (R > 1.2) perform better than risk-neutral customers
(R = 0); while for 0.5 ≤ α ≤ 0.7 (i.e., rather conservative customers), risk-neutral customers do
better than risk-averse customers (R > 0).

Whatever is the value of γ , the value of R for which it is most likely that a facility closes down
(i.e., very high weighted average sojourn times), increases in α. However, this does not imply that
when α is very high, very risk averse customers perform the worst. On the contrary, when customers
are very conservative (α = 0.9) with regard to their expected sojourn time and very reactive with
regard to the variance (γ = 0.1), the average sojourn time starts decreasing in R once this parameter
exceeds a certain threshold.

The lowest sojourn time the system can achieve is the Nash equilibrium (1.8 periods), when
agents remain distributed evenly across the three facilities. Values close to this performance occur
most frequently when customers with a low level of risk aversion (0.1 ≤ R ≤ 0.3) have a very
conservative attitude toward updating sojourn time expectations (α = 0.9) and are comparatively
less conservative when updating expectations of variance (γ < 0.9).

Next, consider the impact of γ , the coefficient of expectations to update the estimate of the
variance. The higher γ , the less sensitive the system behavior is to small changes in the level of risk
aversion (R). Indeed, looking at the different panels, the curves become less spiky as γ increases.
The performance of truly conservative customers (high γ and α) deteriorates as their risk aversion
increases. Very risk averse customers perform better when they consider all the new information as
very important (low γ and α).

Table 2 provides a summary of the discussion of Fig. 6. Recall that the parameter γ plays no
role for risk-neutral customers, as they base their decision only on the expected sojourn time. These
customers perform well as long as they are not overly reactive to new information regarding the

© 2020 The Authors.
International Transactions in Operational Research © 2020 International Federation of Operational Research Societies



C.A. Delgado-Alvarez et al. / Intl. Trans. in Op. Res. 29 (2022) 2705–2727 2721

Fig. 7. Spatial–temporal behavioral evolution of risk-averse agents’ choice of service facility (Panel A) and stacked
chart of the number of customers patronizing each facility over time (Panel B) for the modified model where one

randomly chosen customer chooses a facility at random for α = 0.4; γ = 0.6; and R = 0.0.

sojourn time. Somewhat risk-averse customers perform best if they are conservative toward new
information (high α and γ ), while highly risk-averse customers should be reactive when updating
their expectation of the average sojourn time. Customers with an intermediate level of risk aversion
should have the same attitude when updating their sojourn time and variability expectations: either
high values for α and γ , or low values for both.

One would expect highly risk-averse customers to exhibit a conservative attitude toward new
information (high α and γ ). The results indicate that this is the worst possible choice for them.
Similarly, one might expect customers who are risk-neutral or have a low risk aversion, to be reactive
toward new information. Again, this would lead them to incur the longest average sojourn times.

7. Impact of nonrationality on facility closure

In this section, we consider a modified model where a customer can deviate from the boundedly
rational decision rule assumed so far. More specifically, we model a situation where, in each period,
one randomly chosen customer chooses a facility at random. This behavior might represent a situ-
ation where a customer makes a mistake, has a biased perception of past experience, or deliberately
chooses to make a nonrational decision.

To illustrate the impact of this change, we first provide the spatial–temporal behavior and cus-
tomer distribution for the two illustrative examples discussed in Section 6.1. Figures 7 and 8, respec-
tively, correspond to the examples of Figs. 1 and 2. The top panels illustrate that the microlevel be-
havior, that is, the spatial–temporal behavior, may or may not be significantly affected by customers
occasionally choosing at random. The length of the transition period changes, and this period can
be characterized by more or less variability of sojourn time. The magnitude of these differences is
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Fig. 8. Spatial–temporal behavioral evolution of risk-averse agents’ choice of service facility (Panel A) and stacked
chart of the number of customers patronizing each facility over time (Panel B) for the modified model where one

randomly chosen customer chooses a facility at random for α = 0.4; γ = 0.6; and R = 0.5.

not materially different from that observed between runs of the same model with different random
seeds. In other words, both models exhibit similar behavior after the transition period. Panel B of
Figs. 7 and 8 illustrates the evolution of how customers allocate themselves between the facilities.
The equilibrium behavior is very similar to that observed in Figs. 1 and 2.

The behavior resulting from the two models is quite different if we consider an example where,
with boundedly rational agents, one facility closes. Figure 9 illustrates such a case; the left panels
show the behavior in the original model (i.e., boundedly rational agents) and the right panels in the
modified model (i.e., in each period one randomly chosen customer chooses a facility at random).
As expected, the presence of this random element eliminates the closure of a facility. Specifically, if
according to the boundedly rational rule a facility should not be patronized again, in the modified
model there is, in any given period, one chance in three that the random customer will choose that
facility; consequently the probability of no one returning to that facility for the next 10 periods is
less than 2%, and well below 1 in a 1000 for the next 20 periods.

Figure 10 illustrates the impact of the initial conditions on the steady-state sojourn time for
this modified model. First, as expected, we no longer observe values in the 2.6–2.7 range, which
corresponds to the case with only two facilities operating. Next, note that the presence of a random
customer implies that in the long run the Nash value of 1.80 will never be achieved, that is, we do
not observe situations where in the long run customers remain equally allocated among the three
facilities. More generally, the resulting long-term allocation is on average further away from the
Nash equilibrium, with the mode of the average sojourn times being around 1.88 (compared to
1.82). This larger spread is particularly striking for R = 1.5 (highly risk-averse customers), where
over half the values exceed 1.87 (the largest value observed in the base case when the three facilities
remain operational, recall Fig. 5).
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Fig. 9. Spatial–temporal behavioral evolution of risk-averse agents’ choice of service facility (Panel A) and stacked
chart of the number of customers patronizing each facility over time (Panel B), comparing the behavior in the original

model (left) and the modified model (right), for example, where one facility closes in the original model for α = 0.4;
γ = 0.6; and R = 0.5, seed 3.

8. Conclusions and future work

This paper presents a model of a service system with interacting customers who must decide in each
period which facility to join for service. It provides an analysis of the impact of customers’ level of
risk aversion on the collective behavior of customers and on the weighted average sojourn time of
the system. A one-dimensional CA model has been used to describe how customers interact with
their neighbors and share information regarding their experiences. They incorporate their informa-
tion using adaptive expectations. Risk-neutral customers ignore uncertainty; they choose a facility
based on their expected sojourn times. Risk-averse customers explicitly incorporate uncertainty in
their decision process; they decide based on an estimated upper bound of the sojourn times. This
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Fig. 10. Distribution of the steady-state weighted average sojourn times for 1000 simulations of the modified model
(i.e., one randomly chosen customer chooses a facility at random) with different initial conditions for α = 0.4; γ = 0.6

for risk-neutral (R = 0), moderately risk-averse (R = 0.5) and highly risk-averse (R = 1.5) agents.
Note. We use a bin size of 0.01. Although there are no observed values beyond 2.08, the horizontal axis is identical to

that of Fig. 5 for the reason of comparability.

upper bound is estimated based on their expected sojourn times, their estimated level of uncertainty
and their degree of risk aversion. We have furthermore considered a stochastic variation of this de-
terministic model, to analyze the impact of a customer occasionally deviating from the assumed
boundedly rational behavior. This eliminates the closure of a facility due to it being deserted by the
customers.

Considering the academic implications of this work, the first thing to note is that systems where
customers have an intermediate level of risk aversion yield the worst performance. This corroborates
the findings of other studies that have shown that in many situations where a decision needs to be
made, the worst case is to be caught in the middle (De Toni et al., 2012). In this instance, people
should either choose to ignore risk (i.e., base their decision on expected values), or explicitly take it
into account in a significant way. A second observation is that highly risk-averse customers perform
well if they update their memory of expected sojourn time fast when receiving new information
(low α). On the contrary, customers with little or no risk aversion are better off when updating their
expected sojourn times cautiously (α large). This implies that people who base their decisions only
on expected values (risk-neutral) should treat new information cautiously, while individuals who
explicitly incorporate uncertainty in their decision-making should be reactive to new information
and incorporate it fast into their decision-making.
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Another observation is that, when customers are risk-averse or risk-neutral, it is less likely that
one of the facilities is driven out of business than when customers have an intermediate degree of
risk aversion. This further emphasizes the previous point, that one should avoid being caught in
the middle, as this increases the likelihood of a suboptimal outcome. Finally, customers with an
intermediate risk-aversion level should update their expectations regarding average sojourn time
and uncertainty in a coordinated way, that is, they should use either two low weights or two high
weights.

Turning to the more practical implications of this study, a caveat is in order: one should be
cautious about drawing general implications from a stylized model. For instance, in the real world,
permanently ignoring a facility is unrealistic; facilities that fail to attract sufficient customers end up
closing down: coffee shops, retailers, gas stations, etc., regularly do go out of business. If a facility
remains in operation, sooner or later a customer will return, whether by accident or by curiosity (he
has not been there for a long time) and experience a very low sojourn time, thereby inducing others
to return. To illustrate this behavior, we incorporated an element of random choice in the model,
which prevents a facility being overlooked for a long time. As expected, in instances where the three
facilities remained operational in the deterministic model, adding this element did not affect the
long-term macrolevel behavior.

The implications discussed above allow outlining some heuristics based on the observed behavior.
Looking at the combination of risk attitude and the speed at which new information is incorporated
into the decision, one observes a form of compensation mechanism. The risk attitude is balanced
using new information, that is, risk aversion needs to be offset by a more proactive use of new
information, otherwise decisions may end up trailing the current situation, and vice versa. However,
risk-averse decision makers often tend to be more cautious about incorporating new information,
waiting for it to be confirmed over time. Similarly, aggressive decision makers, who are willing to
take risks, are likely to use the most recent information, when it would be in their interest to be
somewhat more cautions.

The results discussed above point to a link between the customers’ risk attitude and the optimal
value of the updating parameters, indicating a need for further research on the impact of these
behavioral parameters (α, γ , R). This should include allowing for different levels of customer reac-
tivity depending on the source of the information, that is, giving different weights to own experience
and information received from neighbors in the memory updating processes. The next step will be
to consider heterogeneous customers, in particular, customers with different degrees of risk aver-
sion (R) and/or different levels of reactivity (α, γ ). Another interesting aspect would be to focus on
the service capacity. For example, assessing the collective behavior when the facilities have different
service capacity or, more interestingly, assuming that managers are able to adjust the service capac-
ity to the number of customers (i.e., endogenous service rates). It would furthermore be interesting
to test some of these results in laboratory experiments, as has been done with other models; see, for
instance, Delgado-Alvarez et al. (2017).
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Appendix

Table A1
Notation

Parameter Description

μ Service rate
m Number of service facilities
n Population size
R Risk-aversion factor
α Weight to memory when updating the expected sojourn time
γ Weight to memory when updating the estimated variance of the expected sojourn time

Variable Description

λjt Arrival rate for queue j at time t
Mijt Expected sojourn time of agent i for facility j at time t
Wijt Sojourn time experienced by agent i at facility j at time t
Wjt Sojourn time at facility j at time t
W̄t Weighted average sojourn time at time t
σ 2

i jt Estimated variance of the expected sojourn time of agent i for facility j at time t
Bijt Upper bound of the expected sojourn time of agent i at facility j at time t
eijt Estimation error of the expected sojourn time of agent i for the facility j at time t
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