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Abstract

The prize collecting Euclidean Steiner tree (PCEST) problem is a generalisation of the well-known Euclidean
Steiner tree (EST) problem. All points given in an EST problem instance are connected by a shortest possible
network in a solution. A solution can include additional points called Steiner points. PCEST differs from EST in
that given points each have assigned weights and a PCEST solution connects a subset of the given points in order
to maximise the net value of the network (the sum of the selected point weights, less the length of the network).
We present an algorithmic framework for solving the PCEST problem. Included in the framework are efficient
methods to determine subsets of points that must be in every solution, and subsets of points that cannot be in any
solution. Also included are methods to generate and concatenate full Steiner trees.

Keywords: Prize collecting Steiner tree; Prize collecting Euclidean Steiner tree; Node weighted geometric Steiner tree

1. Introduction

An instance of a Prize collecting Euclidean Steiner Tree (PCEST) problem is a set of points in the plane,
each with an associated weight. The aim is to construct the highest value connected network on some
subset of these points. The value of the network is calculated as the sum of the weights of points included
as vertices in the network minus the sum of the lengths of the edges in the network. The network can
include additional vertices called Steiner points (each with zero weight) if their inclusion yields a shorter
network. There are essentially two parts to the problem: choosing the set of points to be included in
the network, and constructing an interconnection network of minimum length (necessarily a tree) on the
chosen points.

∗Author to whom all correspondence should be addressed (e-mail: david@whittle-dg.com).
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This paper considers two variants of the PCEST problem: the rooted problem, which includes one
mandatory point in the problem instance; and the unrooted problem, in which no points are initially set
as mandatory. Both problems are formally defined in Section 3.

Our interest, in this paper, is in exact solutions to the PCEST problem. Such solutions are absent
from the literature, however approximation schemes have been discussed in Remy and Steger (2009).
The range of problems covered by their methods includes the PCEST problem. Remy and Steger give a
polynomial time approximation scheme for the 2-dimensional version of this problem.

An important motivation for solving the PCEST problem comes from the mining industry. Mining is
a major global industry, and a highly capital intensive one. With respect to new mines, and the expansion
of operating mines, the mine designs should be optimised to maximise the economic value over the life
of the mine. An improvement in a design’s dollar value is an improvement in the value of an underlying
asset of the mining venture. Most minerals are mined by methods falling into the categories of open pit
(an open excavation from the surface) and underground (a network of tunnels and/or shafts giving access
to the minerals underground). The application of optimisation to open pit mine design is well-developed
and provides significant improvements in the value of mineral assets. The application of optimisation to
underground mine design is less mature, representing an opportunity to increase the value of the mine in
the planning stages. A decomposition of the underground mine plan optimisation problem can include a
series of PCEST problems associated with the network of access tunnels on each level of the mine. More
details of such decompositions are given in Whittle (2019).

The solution to the PCEST problem in this paper is built on a rich body of literature on the classic
Euclidean Steiner tree (EST) problem and, to some extent, on a solution to the related prize collecting
Steiner trees in graphs problem. These topics are reviewed in Section 2. Section 3 provides an overview
of the PCEST problem and some of the properties of its solution. A significant contribution in this
paper is in the development of efficient methods for point selection. In particular we define methods to
determine which of the points given in a problem instance are definitely in all solutions (ruled in), or
definitely not in any solutions (ruled out). This work is included in Sections 4 and 5. Section 6 describes
the first known exact algorithm for solving the PCEST problem, an algorithm that promises to be much
more efficient than a naı̈ve exhaustive approach.

2. Mathematical Background

The problems studied in this paper are closely related to the following two classical problems. Here we
are interested in versions of these problems where all lengths are measured using the Euclidean metric.

SPANNING TREE PROBLEM
Given: A finite set of points N in the plane
Find: A connected network T = (V (T ), E(T )) embedded in the plane, such that N = V (T ),

and such that the length of T , LT :=
∑

e∈E(T ) |e|, is minimised.

A solution to the spanning tree problem is necessarily a tree, and is referred to as a minimum spanning
tree (MST). In the Euclidean plane, MSTs can be constructed efficiently in O(n log n) time, where n is
the cardinality of N (Preparata and Shamos (1988)).
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STEINER TREE PROBLEM
Given: A finite set of points N in the plane
Find: A connected network S = (V (S), E(S)) embedded in the plane, such that N ⊆ V (S),

and such that the length of S, LS :=
∑

e∈E(S) |e|, is minimised.

We include below a selection of characteristics of MStTs that are important in this paper. Readers
interested in a comprehensive coverage of MStTs should consult the book Optimal Interconnection Trees
in the Plane (Brazil and Zachariasen (2015)). A solution to the Steiner tree problem is a tree, and is
referred to as a minimum Steiner tree (MStT). An MStT may include vertices not in N . The points, N ,
in the problem instance are referred to as terminals and any additional vertices in S are referred to as
Steiner points. We assume that the minimum number of Steiner points required to minimise the length
of S are included. This implies that the degree of each Steiner point in S is at least 3. In fact, in the
Euclidean plane it is known that all Steiner points are degree 3 and that the angle between each pair of
edges incident to the Steiner point is 2π

3 . The angle between any pair of edges incident to a terminal is
greater than or equal to 2π

3 . An MStT in which all terminals are leaves (that is, are degree 1) is referred
to as a full Steiner tree (FST). If a sub-tree of an MStT S has the property that all Steiner points are
degree 3 and the set of terminals of S in the sub-tree coincides with the set of leaves of the sub-tree, then
the sub-tree is referred to as a full component of S. Any MStT can be uniquely decomposed into full
components intersecting only at terminals.

An MStT is at most as long as an MST, but can be considerably shorter. The question of how much
shorter has been studied, with the Steiner ratio conjecture1 claiming that the length of an MStT can be
no less than

√
3
2 times the length of an MST on the same set of terminals. More formally, we define the

Steiner ratio ρ as

ρ := inf
N

|MStT forN |
|MST forN |

where the infimum is taken over all finite sets of points in the plane. The Steiner ratio conjecture claims
that ρ =

√
3
2 . This has been confirmed for cases with eight or fewer terminals (Kirszenblat (2014), De Wet

(2009), Rubinstein and Thomas (1991)). For cases with more than eight terminals, the best known lower
bound for the Steiner ratio is 0.82416874... (Chung and Graham (1985)).

Garey et al. (1977) have shown that the Euclidean Steiner tree problem is NP-complete. Despite this,
exact algorithms have been implemented that are able to solve large instances of the problem. The most
notable of these is GeoSteiner, a software package that can solve several variations of the Steiner tree
problem, including the Euclidean Steiner tree problem for up to about 10,000 points (see, for example,
Brazil and Zachariasen (2015) and Warme et al. (2000)). Geosteiner decomposes Steiner tree problems
into two sub-problems: Generation, in which FSTs for all possible subsets ofN are efficiently generated
and Concatenation in which a subset of generated FSTs that interconnect N with minimum length is
identified. We will discuss the proposed extension of GeoSteiner to the PCEST problem in Section 6.

Another well-studied variant of the Steiner Tree Problem relevant to formulating solutions for the
PCEST problem is the prize collecting Steiner tree in graphs problem.

1Originally given in Gilbert and Pollak (1968). A brief history is given in Brazil and Zachariasen (2015) pp. 23-24
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PRIZE COLLECTING STEINER TREE IN GRAPHS (PCSTG) PROBLEM
Given: An undirected, connected, vertex-weighted and edge-weighted graph G = (V,E) where

c(e) ≥ 0 denotes the weight of edge e ∈ E and w(v) ≥ 0 denotes the weight of vertex
v ∈ V .

Find: A connected subgraph T = (V (T ), E(T )) of G such that
∑

v∈V (T )w(v)−
∑

e∈E(T ) c(e)
is maximised.

The PCSTG problem is sometimes also treated as an equivalent minimisation problem where the
objective function is the sum of the weights of all edges included in T and all vertices not included in
T . The problem has received much more attention in the literature than its geometric counterpart. Early
work focussed on approximation schemes (e.g. Johnson et al. (2000), Goemans and Williamson (1995)).
Fast heuristics have application in some settings and a recent example is given in Sun et al. (2019).
However, for the purposes of solving the concatenation sub-problem for PCEST, an exact solution to
PCSTG is ideal. Ljubic et al. (2005) devised and demonstrated a branch and cut algorithm to solve large
PCSTG problem instances to optimality. Gamrath et al. (2017) published details of a solver “SCIP-Jack”.
The solver is capable of solving a wide variety of Steiner tree problems in graphs, including PCSTG and
the rooted variant thereof. Gamrath’s approach is discussed in more detail in Section 6.2.

3. Prize collecting Euclidean Steiner tree problem: overview and preliminaries

For the remainder of this paper we assume that all geometric networks discussed are embedded in the
Euclidean plane.

PRIZE COLLECTING EUCLIDEAN STEINER TREE (PCEST) PROBLEM
Given: A finite set of points N = {ni} in the plane, each with a corresponding weight wi ∈ R.
Find: A subset N̂ ⊆ N and a connected network P = (V (P ), E(P )) embedded in the plane,

with N̂ ⊆ V (P ), such that val(P ) :=
∑

i:ni∈N̂ wi −
∑

ej∈E(P ) |ej | is maximised, and

where there is no other such P ∗ with N̂∗ ⊂ N̂ and val(P ∗) = val(P ).

The last condition for the PCEST problem ensures a parsimonious network, that is, a maximum value
network without unnecessary elements of N . Here, the points in N are referred to as possible terminals
and the points in N̂ ⊆ N as terminals. Note that the parsimonious condition does not guarantee that
the solution will have the least possible number of terminals. This is because it is possible to have two
maximal solutions with different numbers of terminals, where one set of terminals is not a subset of the
other.

The PCEST problem is also referred to as the un-rooted PCEST problem. A variant that we will
consider, the rooted PCEST problem, has a single mandatory terminal.

ROOTED PCEST PROBLEM
Given: A finite set of points N = {ni} in the plane each with a corresponding weight wi ∈ R;

and a mandatory terminal n0 ∈ N .
Find: A subset N̂ ⊆ N with n0 ∈ N̂ and a connected network P = (V (P ), E(P )) embedded

in the plane, with N̂ ⊆ V (P ), such that val(P ) :=
∑

i:ni∈N̂ wi −
∑

ej∈E(P ) |ej | is max-

imised, and where there is no other such P ∗ with n0 ∈ N̂∗ ⊂ N̂ and val(P ∗) = val(P ).
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Fig. 1. The two trees are maximum PCESTs on N = {n0, n1, n2, n3}, but with different terminal sets.

As for the un-rooted PCEST problem, the last condition in the rooted PCEST problem ensures a
parsimonious solution.

Definition 1. A maximum (rooted) PCEST is a network embedded in the plane that solves the (rooted)
PCEST problem.

We will denote a maximum rooted or un-rooted PCEST by P . Observe that either version of the
PCEST problem can be used to solve the other. A solution to the un-rooted PCEST problem can be found
by solving the rooted PCEST problem card (N) times, where each time a different point is assigned as
the mandatory terminal, and the resultant network with the highest value is chosen (a more efficient
approach is given in Section 6.3). A solution to the rooted PCEST problem for N can be found by
assigning a sufficiently high weight to the mandatory terminal and solving the un-rooted PCEST problem
for N .

In both the un-rooted PCEST problem and the rooted PCEST problem, V (P ) may include a set of
Steiner points St(P ) (vertices not in N ), if their inclusion contributes to the maximisation of val(P ).
Accordingly, V (P ) = N̂ ∪St(P ). It is assumed that Steiner points have no weight associated with them.

The relationship between the PCEST problem and the Steiner tree problem is given by the following
lemma.

Lemma 1. A maximum PCEST P on N is an MStT on N̂ .

Proof. Suppose there exists a maximum PCEST P with terminals N̂ that is not an MStT on N̂ . Then
the length of P must be greater than the length of an MStT on N̂ . Since Steiner points in a maximum
PCEST have no weight, it follows that all edges and Steiner points can be removed from P and replaced
with the edges and Steiner points from an MStT, thereby increasing the value of P and leading to a
contradiction.

The Steiner tree problem can be thought of as a special case of a PCEST problem in which all weights
of possible terminals are set sufficiently high to ensure that N̂ = N . For example: setting all weights to
the diameter of the set N will ensure that N̂ = N . Thus, a PCEST problem is a generalisation of the
Steiner tree problem.

It follows from this observation and Lemma 1 that many of the geometric properties of an MStT also
hold for a maximum PCEST. For example, the fact that for a given set of terminals there may be more
than one distinct MStT, means that for a given set of points N there may be more than one maximum
PCEST. Furthermore, it is possible that two different maximum PCESTs for N have different termi-
nal sets; an example is shown in Figure 1. It is worth noting, however, that for instances with randomly
generated point locations and/or point weights, such non-uniqueness occurs with vanishingly small prob-
ability. For example, perturbing the position or weight of n2 or n3 in Figure 1 by any amount leads to
there being only one solution to the PCEST problem. This suggests that cases of multiple solutions are
likely to be rare for real-world data sets.
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3.1. A naı̈ve algorithm for solving the rooted PCEST problem

Some subset of points in N forms the set of terminals in the solution to the PCEST problem. Let m =
card (N \ {n0}) and let N

′
denote the set of 2m subsets of N \{n0} (that is, the power set of N \{n0}).

Let N
′

k denote the kth element of N
′
. The naı̈ve approach to finding a solution to the PCEST problem

is:

1. Generate N
′
.

2. For k = {1, 2, ..., 2m}:
(a) Find an MStT S for N

′

k ∪ {n0}
(b) Calculate val(S).

3. Find all cases of N
′

k ∪{n0} with the highest associated val(S). Choose from these cases one with the
fewest terminals. The MStT S for this terminal set corresponds to a maximum PCEST.

Finding an MStT in step 2(a) is an NP-Hard problem (Brazil et al. (2000)) that must be performed
an exponential number of times. Even if an efficient exact program for solving the Steiner tree problem,
such as GeoSteiner, is used, processing times quickly explode. For example, consider a PCEST problem
with 30 points. The GeoSteiner documentation (Warme et al. (2017)) reports a 0.02 second computing
time for a sample 20 terminal Euclidean Steiner tree. Suppose this is (optimistically) taken to be the
mean time to conduct step 2(a) when m = 30. Then the total processing time for step 2 would be of the
order of 0.02× 230 ' 21 million seconds, or around eight months.

4. Reducing the number of possible terminals

A key strategy for reducing the complexity of the naı̈ve approach outlined above is to find efficient
methods for decreasing the number of initial possible vertices whose membership in V (P ) is uncertain.
Our approach involves partitioning N into three subsets: N = NI ]NO ]NP, defined as follows.

Definition 2 (Ruled in terminals). A point inN is said to be ruled in as a terminal (“ruled in” for short) if
it has been shown to be in every maximum PCEST for the given instance. The set of all ruled in terminals
in N is denoted by NI.

Definition 3 (Ruled out terminal). A point in N is said to be ruled out as a terminal (“ruled out” for
short) if it has been shown that it is not a vertex of any maximum PCEST for the given instance. The set
of all ruled out terminals in N is denoted by NO.

We next refine the definition of a possible terminal.

Definition 4 (Possible terminal). A possible terminal is a point in N that has neither been ruled in nor
ruled out. The set of all possible terminals in N is denoted by NP.

Note that these definitions depend on the state of knowledge of properties of the elements of N at any
point in time, and hence these sets can change during the course of running an algorithm. When a point
is ruled in or out, the number of possible terminals reduces by one, thereby halving the cardinality of
the aforementioned power set and consequently halving the number of computations needed to solve the
PCEST problem using the naı̈ve approach. In this section we develop and test some methods for ruling
points in or out.
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Throughout the remainder of this paper, if p and q are points in the plane, let pq represent the line
segment connecting the two points, and let |pq| be the Euclidean distance between them.

4.1. Ruling in

Our focus here is on the rooted PCEST problem. Some of the lemmas apply to both maximum rooted
PCESTs and maximum un-rooted PCESTs, in which case the term maximum PCEST is used.

First note, by the definition of the rooted PCEST problem, that the mandatory terminal is ruled in. The
following lemma shows that points sufficiently close to ruled in terminals can also be ruled in.

Lemma 2. Let ni be a ruled in terminal and let nj be a possible terminal with weight wj . If wj > |njni|
then nj can be ruled in.

Proof. Suppose to the contrary nj is not a member of some maximum PCEST. Then it can be added to
the network with an edge (nj , ni), increasing the network’s value and giving a contradiction.

Define the diameter of N to be diam(N) := max{|ninj | : ni, nj ∈ N}. Then, we have the following
useful corollary to Lemma 2.

Corollary 3. Let ni be a possible terminal with weight wi. If wi > diam(N) then ni can be ruled in.

For any set of points Ñ , let S(Ñ) denote an MStT with terminal set Ñ . A stronger version of Lemma 2
applies to multiple possible terminals in the vicinity of a ruled in terminal.

Lemma 4. Consider a ruled in terminal ni and possible terminals nj and nk with weights wj and wk
respectively. If min {wj , wk}− |njnk| > 0 and if wj +wk > |S({ni, nj , nk})| then both nj and nk can
be ruled in.

Proof. Suppose to the contrary that the two conditions of the lemma are met, and that nj and nk are
not both in a maximum PCEST, P . The first condition, along with Lemma 2, implies that neither point
belongs to P . Then clearly the points can be appended to P via an MStT on {ni, nj , nk}, such that the
sum of the edge lengths in the MStT is less than the sum of the point weights, contradicting that P was
a maximum PCEST.

Lemma 4 provides a method to rule in pairs of terminals when an attempt to rule them in individually
using Lemma 2 would fail. Consider, for example, a case in which ni is a ruled in terminal and nj and
nk are possible terminals, with the properties |ninj | = |nink| = 13, |njnk| = 10 and wj = wk = 11. It
is an easy exercise to show that the MStT on {ni, nj , nk} has length 12 + 5

√
3 ≈ 20.66, so the points

can be ruled in by Lemma 4.

Remark 1. [Merging possible terminals] A consequence of Lemma 4 is that when ruling in, a merging
step can be effected if two possible terminals nj and nk have distance between them less than the
smaller of the two point weights (min{wj , wk} − |njnk| > 0). The merging assigns to a single point
a combination of the characteristics of the original two points, which are then discarded. Denote the
new point by nj∗ with point weight wj∗ = wj + wk. The distance between nj∗ and any ni (for i : ni ∈
NI∪NP\{nj , nk}) is given by |nj∗ni| = |S({ni, nj , nk})|. This step is not particularly computationally

c© 2020 International Transactions in Operational Research c© 2020 International Federation of Operational Research Societies



8 Running Author / Intl. Trans. in Op. Res. xx (2020) 1–21

Fig. 2. Case illustrating difficulty of ruling out.

burdensome as an MStT can be computed in constant time for a small number of terminals. If point nj∗
is subsequently ruled in by Lemma 2, then it can be interpreted as the original points nj and nk being
both ruled in. This process can be iterated, although it does involve computing MStTs on increasingly
large sets of points; the iteration effectively allows multiple points to be merged into clusters.

It is now straightforward to design a ruling in algorithm to give effect to Lemmas 2 and 4. Such an
algorithm first computes all possible mergings of points in NP, then rules in as many points as possible
through the repeated application of Lemma 2.

4.2. Ruling out

In general, ruling out points as terminals in a maximum PCEST is considerably harder than ruling them
in. Part of the reason for this is illustrated in Figure 2. In the figure there is a mandatory terminal n0
and two possible terminals n1 and n2 with weights 200 and 3 respectively. The distances between points
are as indicated in the figure. Clearly n1 can be ruled in by Lemma 2. Point n2 should also be part of a
maximum PCEST, together with n1, since its inclusion increases the value of the network by 1. This is
despite the fact that the weight of n2 is small compared to its distance from any other possible terminal.
However, the addition of other points in the problem instance could change this. For example, additional
points could provide an alternative and preferable path between n0 and n1 that does not involve n2. This
suggests that it is not easy to use local conditions to determine when a point can be ruled out.

Despite this, we have been able to develop a number of tests for ruling out points as terminals in a
maximum PCEST. The methods are presented in their intended order of implementation.

Let nq denote some point in NP with weight wq that is to be subject to a ruling out test. Note that if
wq ≤ 0, then nq can immediately be ruled out. Hence, in the following we assume that wq > 0.

Also note that if the merging and ruling in algorithms described above have been applied, a process
that we refer to as pre-screening, then there may be one or more clusters of possible terminals, which
were not ruled in. For non-trivial clusters (clusters with two or more elements), none of the elements
can be successfully ruled out by the ruling out methods described in this paper. This is because each of
the methods rely on wq < d, where d is the distance between the point nq being tested and its nearest
neighbour in NI ∪ NP. Furthermore, the methods cannot be applied to the new merged points, as the
methods are reliant on the Euclidean geometry of the embedding plane, which is not preserved under
the merging process. Accordingly, only possible terminals that are unmerged (that is, do not belong to a
non-trivial cluster) need be the subject of ruling out tests.

Here we establish conditions that allow ruling out certain points that are on the boundary of the convex
hull of NI ∪NP. Recall that in an MStT the angle between any two edges meeting at a vertex is at least
2π
3 . It follows that if the internal angle of the convex hull at a boundary vertex is less than 2π

3 , then that
vertex cannot be degree 2 or 3 in any maximum PCEST.

Let nq ∈ NP denote a boundary vertex of the convex hull of NI ∪NP, such that the internal angle of
the convex hull at nq is less than 2π

3 . This implies that nq has degree 1 if it is in a PCEST. Let Γ denote a
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Fig. 3. Artefacts relevant to Theorem 5.

disk centred on nq with radius wq. As in Gilbert and Pollak (1968), we define a wedge to be a translation
of a convex cone in the coordinate plane. For any point z on the boundary of Γ, let W = W (nq, z)
denote an open wedge with vertex z and angle 2π

3 , such that each boundary ray of W makes an angle of
2π
3 with nqz. This is illustrated in Figure 3.

Theorem 5. If there exists a point z on the boundary of Γ such that W contains NI ∪ NP \ {nq} then
nq can be ruled out as a terminal in a maximum PCEST.

Proof. Suppose that W contains NI ∪ NP \ {nq} and that contrary to the theorem, nq is a member of
a maximum PCEST P . Consider first the case that nq is adjacent to a terminal. Then its incident edge
must have length greater than wq since all terminals other than nq are inside W . The removal of nq
and its incident edge will yield a network with increased value, contradicting the maximality of P . Now
consider the case that nq is adjacent to a Steiner point s. Then |nqs| ≤ wq otherwise P is not maximal,
implying s is inside Γ and adjacent to two other vertices (either Steiner points or terminals). Since all
edges at s meet with angle 2π

3 this implies that at least one of these adjacent vertices, say s′, is further
from the boundary of the convex hull of NI ∪ NP \ {nq} than s. We can repeat this argument with s′,
to conclude that there is a path from s in the network that continually moves away from the boundary of
the convex hull of NI∪NP \ {nq} and hence terminates at some terminal outside the convex hull, which
is a contradiction.

Some details of an efficient ruling out test based on Theorem 5 follow. The vertices of a convex hull
can be determined by several methods including Graham’s scan (Graham (1972)) with time complexity
O(n log n), where n is the cardinality of NI ∪NP. As before, nq is a boundary vertex of the convex hull
of NI ∪ NP, such that the internal angle of the convex hull at nq is less than 2π

3 . Let L1 and L2 denote
lines overlapping the two rays ofW and observe that they intersect at z. We will determine a suitable L1,
which implies a z and an L2. In this context suitable means that if nq can be ruled out for this implied
z, it can be ruled out for every z. Let v denote an element of NI ∪ NP \ {nq}. Observe that given the
coordinates of nq, its corresponding weight wq and the coordinates of a v it is possible to determine the
coordinates of a corresponding z. For some v there exists a line←→vz such that nq is not on the same side
of the line as any elements of NI ∪NP \ {nq}. Such a←→vz is a suitable L1. The range of candidates for
v for a suitable L1 is small and an efficient search order can be established commencing with a convex
hull vertex adjacent to nq. Accordingly, a suitable L1 can be found in low order polynomial time. Given
L1 (and z) it is straightforward to find the corresponding L2. If nq is not on the same side of L2 as any
element of NI ∪NP \ {nq}, then the conditions of Theorem 5 are satisfied and nq can be ruled out.

If any possible terminals are ruled out, the procedure can be iterated until none of the elements of NP

on the boundary of the convex hull satisfy the condition of the theorem.

c© 2020 International Transactions in Operational Research c© 2020 International Federation of Operational Research Societies



10 Running Author / Intl. Trans. in Op. Res. xx (2020) 1–21

5. Further ruling out methods based on local connections

Let nq be an element of NP with weight wq; we want to determine whether nq can be ruled out as a
terminal in a maximum PCEST P = (V (P ), E(P )), based on what is known about nq’s possible local
connections and some easily determinable facts about all the ruled in and possible terminals. In this
section we develop two replacement arguments that allow us to make such a determination.

5.1. Preliminaries and definitions

In the definitions below some networks embedded in the plane are described in a logical sequence.
Each network is either an MStT (denoted with S), a spanning tree (T ) or a forest (F ). The sequence of
dependencies is given by superscripts, so S1 is followed by S2, which is followed by T 3 etc. In order
to decide whether some point nq ∈ NP can be ruled out as a terminal in a maximum PCEST, without
calculating multiple MStTs, we investigate the possible local structure of the network in the vicinity of
nq.

Definition 5 (Steiner tree S1). A tree S1 = (V (S1), E(S1)) is an MStT where V (S1) = N̂
′ ∪ St(S1)

for some N̂
′ ⊆ N .

It follows that for some N̂
′ ⊆ N , S1 is a maximum PCEST on N .

We wish to determine whether nq ∈ N̂
′

is consistent with S1 being a maximum PCEST. For example:
if nq and all parts of edges within a small neighbourhood of nq can be replaced by a new set of edges
which maintain connectivity but increase the value of the tree, then it would follow that nq can be ruled
out as a terminal in a maximum PCEST on N . The next definition gives a suitable neighbourhood.

Definition 6 (Disk D and δ(D)). We denote by D = D(nq, r) a disk centred on nq with a radius r, where
r + µ is equal to the distance between nq and its nearest neighbour in NI ∪NP for some µ << r. δ(D)
denotes the boundary of D.

Note that the only terminal inside D is nq. If nq ∈ N̂1, then there must be at least one edge passing
through the boundary of D in S1. There can be Steiner points inside D. An example is shown in Figure
4. In this example, there are four edges passing through the boundary of D including one connecting nq
to its nearest neighbour through a Steiner point.

Fig. 4. Example of an MStT S1 showing the disk D. The terminals are indicated by open blue diamonds, and the Steiner
points by solid black circles. The open blue circles indicate the Rubin points required for the construction of S2.

Definition 7 (Rubin points). Let R∗ := S1 ∩ δ(D) (where S1 is treated as an embedded network in the
plane). Note thatR∗ is a finite set of points. By adjusting the value of µ in the definition of D if necessary,
we may assume that each element of R∗ lies on the interior of an edge of S1. Let R ⊆ R∗ be the set
of all points of R∗ for which each corresponding edge of S1 has an end point inside D. We refer to the
elements of R as Rubin points2.

2These were named by the corresponding author after Professor J H Rubinstein, who suggested this approach.
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Definition 8 (Steiner tree S2). The Steiner tree S2 is obtained from S1 by inserting Rubin points R into
the tree as new terminals. The Rubin points are assumed to have weight 0, so transforming S1 to S2 does
not change the length or value of the tree.

Rubin points and an example of the tree S2 are illustrated in the example in Figure 4. Note that, by
definition, every Rubin point has degree 2 in S2.
Definition 9 (Steiner tree S). The Steiner tree S is defined to be the connected component of S2 ∩ D
containing nq.

It follows from the minimality of S2 that S is an MStT on R ∪ {nq} with Steiner points exactly
corresponding to the Steiner points of S2 in S. By the construction of S, all Rubin points in S have
degree 1 in S, and hence S is a union of FSTs meeting only at nq. It follows that the number of FSTs in
S is equal to the degree of nq.
Definition 10 (Steiner tree U). We define U to be an MStT on all the Rubin points inR that are terminals
of S.

Remark 2. LU ≤ LS.

As a basic property of an MStT, any vertex of such a tree must have degree 1, 2 or 3. We now
develop two replacement methods for ruling out a possible terminal nq based on the degree of nq in S.
If the degree of nq is 1, then Replacement Argument A applies; if nq has degree 2 or 3 then we require
Replacement Argument B. If the degree of nq in S cannot be predetermined for a given nq, it can only
be ruled out if the conditions for both replacement arguments are met.

5.2. Replacement argument A

Suppose the possible terminal nq (with weight wq) has degree 1 in S. Assume that the disk D has radius
r. Then we define the following constant (over all possible sets of Rubin points):

φ1 :=
inf(LS − LU)

r
.

In Whittle (2019) it is proven that φ1 = 2−
√

3. The proof is long and technical, and so is not repeated
here. What is important here for Replacement Argument A is that if nq has degree 1 then φ1 has a known
strictly positive value. This is not true if nq has degree 2 or 3, which is why a separate argument is
required for those cases.

Theorem 6 (Replacement argument A). If nq has degree 1 in S and if wq ≤ φ1r where r is the distance
between nq and its nearest neighbour in NI ∪NP, then nq can be ruled out as a terminal in a maximum
PCEST.

Proof. If wq ≤ φ1r = inf(LS − LU) then wq − LS ≤ −LU. This implies that replacing S with U does
not decrease the value of the tree but clearly maintains connectivity, hence nq can be ruled out.

Suppose it is possible to determine that a given possible terminal must have degree 1 if it is a member
of a maximum PCEST. Then replacement argument A can be used as a ruling out test. One way to make
such a determination is by constructing the convex hull on all ruled in and possible terminals.
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Recall that if the internal angle of the convex hull at a boundary vertex is less than 2π
3 , then that

boundary vertex cannot be degree 2 or 3 in any maximum PCEST. Any such vertex that is also a possible
terminal is a candidate for a ruling out test with replacement argument A. This approach can potentially
be improved by using a tighter, not necessarily convex region, known as a Steiner hull, the construction
of which is described in Winter (2002).

5.3. Replacement argument B

This replacement argument applies when nq has degree 2 or 3 in S, if it is in a maximum PCEST. Before
presenting the main theorem, we require some additional definitions.

Definition 11 (chord). For the purposes of this paper, we restrict the term chord to exclusively denote
any straight line segment between Rubin points that are adjacent on the boundary of D.

Definition 12 (forest F). We define F to be a forest on R with edges corresponding to all chords on R
other than the two longest chords (where ties in length are broken arbitrarily).

Definition 13 (forest F 3). We define F 3 to be the forest that results from replacing S with F in S2.

Observe that the forests F and F 3 each have exactly two distinct connected components, and that F is
a minimum forest (with no Steiner points) on R.

Definition 14 (edge e and edge-length bound Ue). Let e denote a shortest length line segment between
terminals of F 3 that connects the two connected components of a forest F 3. As before, we denote the
length of e as |e|. For a given (N,nq), Ue is an upper bound for |e|.

A method to efficiently calculate Ue for a given (N,nq) is given in Section 5.3.1.

Definition 15 (tree T 4). We define T 4 to be a tree resulting from the addition of e to the edges of F 3.

Observe that T 4 is a tree that spans all the terminals that S2 spans other than nq.

Replacement argument B relies on the observation that LS −LF is strictly positive, and the claim that
a good lower bound for this difference can be usefully exploited. Let

φ2 :=
inf(LS − LF)

r
,

where, as before, we assume that r is the radius of the disk D.
In Whittle (2019) it is conjectured that φ2 =

√
2(
√

3 − 1) ≈ 1.035, and a proof of this is being
prepared for a forthcoming paper Whittle et al. (2020).

Theorem 7 (Replacement argument B). If nq has degree 2 or 3 in S and if wq ≤ φ2r − Ue where r is
the distance between nq and its nearest neighbour in NI ∪NP, then nq can be ruled out as a terminal in
a maximum PCEST.

Proof. Assume, contrary to the statement of the theorem, that wq ≤ φ2r−Ue holds and nq is a member
of a maximum PCEST. Such a maximum PCEST meets the definition of a tree S1 (Definition 5). Now
consider a set of modifications that changes S1 into a tree T 4 (Definition 15) and the corresponding
changes in tree length:
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1. Insert Rubin points into S1 resulting in a tree S2 (Definition 8). Observe that S2 still interconnects
the same terminals as S1 and:

LS2 = LS1 . (1)

2. Replace S with F in S2 resulting in a forest F 3 (Definition 13). Observe that F 3 has two components
and:

LF 3 = LS2 − (LS − LF). (2)

3. Add an edge e (of shortest possible length) to F 3, connecting its two components, resulting in a tree
T 4. Observe that:

LT 4 ≤ LF 3 + Ue. (3)

Now substitute for LS2 and LF 3 from Equations 1 and 2 into Inequality 3:

LT 4 ≤ LS1 − (LS − LF) + Ue. (4)

Observe that T 4 spans the same terminals as S1, other than nq. If S1 is a maximum PCEST, then:

wq > LS1 − LT 4 . (5)

If Equation 5 did not hold then this would imply that T 4 is a network with greater PCEST value
than S1 contradicting that S1 is a maximum PCEST. Now substituting for LT 4 from Inequality 4 into
Inequality 5 gives:

wq > (LS − LF)− Ue ≥ φ2r − Ue,

contradicting the initial assumption.

5.3.1. A method to calculate an upper bound Ue for a given N and nq
In order to use Theorem 7 as part of a practical algorithm, a method for calculating the upper bound Ue
is required. The difficulty is that for any given N the terminals of F 3 are not initially known. The only
thing known is that the terminal set is of the form NI ∪N

′

P where N
′

P ⊆ NP \ {nq}.
The objective is to find a subset of NP \ {nq} such that the length of the longest edge in an MST on

NI and this subset is maximised. Clearly this length can be taken as Ue.
A naı̈ve approach to computing Ue is to generate MSTs for everyNI∪N

′

P whereN
′

P ⊂ NP\{nq} and
to choose the longest edge among all of these. However, this requires the computation of 2(n−1) MSTs,
where n is the number of possible terminals. Furthermore, the Ue calculated with this approach may
be unnecessarily large (because of improvements that can be made by taking clustering into account)
leading to inefficient ruling out.

Improvements to the naı̈ve approach flow from the following observations:

• Consider an MST T1 with longest edge e1:
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— An MST T2 with longest edge e2 can be obtained by removing a degree 1 vertex and its incident
edge from T1. In this case e2 ≤ e1.

— An MST T2 with longest edge length e2 can be obtained by removing a vertex with degree 2 or
higher from T1, then generating a new MST. In this case, by the greedy properties of minimum
spanning trees, e2 ≥ e1.

Now consider an MST on NI∪NP \ {nq} and suppose some of the possible terminals are degree 1 in
the MST. When considering MSTs on NI∪N

′

P with the objective of finding an upper bound Ue, only
these degree 1 possible terminals need to be considered for inclusion in N

′

P. Furthermore, if there are
no degree 1 possible terminals in the aforementioned MST, then it suffices to consider just an MST
on ruled in terminals for the determination of Ue.
• Recall from Remark 1 in Section 4 that points can be clustered in such a way that if one member of

the cluster is ruled in then all members of the cluster are ruled in. This implies that if any members of
a cluster of possible terminals NP \ {nq} are ruled out, they must all be ruled out. Let CP denote the
set of clusters of possible terminals not including nq. The implication of this observations in terms of
improving the naı̈ve approach to finding an upper bound Ue is: Rather than generating an MST for
every N

′

P ∪NI, it suffices to generate an MST for every C
′

P ∪NI, where C
′

P ⊂ CP. Combining this
with the first observation: it suffices to consider for inclusion in C

′

P only clusters of possible terminals
that include at least one degree 1 vertex in the MST on NI ∪NP \ {nq}.

5.4. Joint application of replacement arguments A and B

If, for a given possible terminal nq, it cannot be predetermined if it would be degree 1, 2 or 3 in a
maximum PCEST, then it can be tested for ruling out by applying both replacement arguments A and B.
Refer to Figure 5 for an example of such a combined application of replacement arguments. Observe nq’s
nearest neighbour is n1 and all distances and the node weight wq are normalised, so that |nqn1| = 1.
This example has been constructed in such a way that the ruling out methods other than replacement
arguments A and B (Section 4.2) are all incapable of ruling out nq.

Fig. 5. Illustration of the application of replacement arguments A and B.

We first apply replacement argument A, with the assumption that φ1 = 2 −
√

3. By Theorem 6 it is
easy to see that nq cannot be degree 1 in a maximum PCEST since wq = 0.26 ≤ 2−

√
3 ≈ 0.268.

For replacement argument B, we assume that φ2 =
√

2(
√

3− 1) ≈ 1.035. Attention turns first to the
calculation of Ue. In Figure 5 the points shown in solid green are ruled in terminals. The points shown
with blue outlines on the right are possible terminals in a cluster C1. The points shown on the left with
blue outlines are possible terminals that are not in a cluster. Consider first an MST on NI ∪NP \ {nq}.
Observe that for the possible terminals on the left, three have degree > 1 and can be ignored. It follows
that Ue is the length of the longest edge in MSTs on the NI in union with each element of the power set
of {C1, {n2}, {n3}, {n4}}. In this case it is easy to see that the longest edge in an MST is obtained for
MSTs on {NI ∪ {n3}} and also on {NI ∪ C1 ∪ {n3}}. It follows that Ue = 0.42.

We now apply Theorem 7. Using the values r := |nqn1| = 1, and Ue = 0.42 we obtain:
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φ2r − Ue > 1.035− 0.42 = 0.615 > wq = 0.26. (6)

Hence, it follows that nq can be ruled out as a degree 2 or 3 terminal in a maximum PCEST.

6. An exact algorithm for solving the PCEST problem

This section describes an algorithmic method to exactly solve the PCEST problem for a given instance.
The method is a modification to an existing framework implemented for the Euclidean Steiner tree
problem in the software package GeoSteiner (Warme et al. (2017)).

In solving the Steiner tree problem, GeoSteiner divides the task into two phases: a Generation phase
and a Concatenation phase. In this section we consider how each of the phases in turn can be adapted to
the PCEST problem.

6.1. The Generation phase for the PCEST problem

In the Steiner tree problem, the Generation phase of GeoSteiner efficiently enumerates a set of FSTs,
such that it is guaranteed that at least one MStT can be constructed from a union of some of the FSTs
in the set. Similarly, for the PCEST problem the Generation phase involves enumerating a set of FSTs
such that it is guaranteed that at least one maximum PCEST can be constructed from a union of some
of the FSTs. In each case, efficient enumeration relies on the use of various pruning rules that can be
used to discard FSTs or classes of FSTs that are not feasible as candidate components of an MStT. The
pruning rules used in GeoSteiner Generation in solving the Steiner tree problem rely on having a fixed
set of terminals. A particular challenge in the PCEST problem is that the set of terminals is not initially
known; instead, after running the ruling in and ruling out tests, there is a set of ruled in terminals (NI)
and a set of possible terminals (NP) that must be considered.

A naı̈ve approach to generating a sufficient set of FSTs for the PCEST problem is to run the original
GeoSteiner Generation for NI ∪ Ñ for all Ñ ⊆ NP and then to eliminate duplicate FSTs. However, this
would be computationally burdensome since there are 2n possibilities for Ñ where n is the cardinality
of NP.

A more efficient approach, is to construct all feasible FSTs with terminals in NI ∪ NP in a bottom-
up manner while applying modified pruning rules which take into account the fact that some possible
terminals may not be required in the final solution. The bottom-up construction means that a single
pruning test may be able to eliminate a whole family of candidate FSTs at once.

There are three types of pruning tests that have been shown to be particularly effective for the Eu-
clidean Steiner tree problem: projection tests; tests based on the bottleneck Steiner distance bound; and
lune tests (see Brazil and Zachariasen (2015), Section 1.4.3). The role of the projection tests is to ensure
that each generated tree is full - in other words, to avoid degeneracy. Because of this, the projection tests
can be applied, without any changes, to the PCEST problem. The two other types of tests, however, need
to be considered in more detail.
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6.1.1. PCEST bottleneck Steiner distance bound
With respect to the MStTs, the Bottleneck Steiner Distance (BSD) bound provides a useful way to elim-
inate some FSTs from consideration. The BSD as defined for MStTs cannot be used directly for the
maximum PCEST, but modified forms are presented here.

Let ZT (ni, nj) denote the unique path between ni and nj in some MST T for N .

Definition 16 (MStT Bottleneck Steiner Distance (MStT BSD)). The bottleneck Steiner distance
BSD(ni, nj) for two terminals ni and nj in T , is equal to the length of the longest edge in ZT (ni, nj).

Lemma 8. (Brazil and Zachariasen (2015)) Given two terminals ni, nj ∈ N , let ZS(ti, tj) be the path
between two terminals in some MStT S for N . For any edge e ∈ ZS(ni, nj), |e| ≤ BSD(ni, nj).

We now consider the use of the BSD for solving the PCEST problem. During the Generation phase
of GeoSteiner, when it would be useful to make use of the BSD, some of the terminals in the solutions
are known (NI), but it is not known which of the points in NP are in the solution. Accordingly, an MST
on the terminals in the solution for the purposes of calculating BSDs cannot be constructed beforehand.
However, the following lemma shows that useful bottleneck distances can still be computed without
needing to know the terminal set for the maximum PCEST.

Consider the set of terminals N̂ for a maximum PCEST, its corresponding MST T̂ and the bottleneck
Steiner distance BSD(ni, nj) for ni, nj ∈ N̂ .

Lemma 9. For ni, nj ∈ N̂ , the addition of a point to N̂ does not increase BSD(ni, nj).

Proof. Let N̂
′

:= N̂ ∪{nk}. Denote the corresponding MST and bottleneck Steiner distances as T̂
′

and
BSD

′
(ni, nj) respectively. We will show that BSD(ni, nj) ≥ BSD

′
(ni, nj). Suppose to the contrary

that BSD(ni, nj) < BSD
′
(ni, nj). Then the longest edge e

′
in the path Z

T̂ ′ (ni, nj) must be longer
than the longest edge e in the path ZT̂ (ni, nj). If e

′
is removed from T̂

′
, then two component networks

remain, one of which contains ni and the other containing nj . Denote these two components A and B.
Observe that ZT̂ (ni, nj) must include an edge f that connects a member of A to a member of B, with
|f | < |e′ |. It follows that if e

′
is replaced with f then a spanning tree on N

′
will have a shorter length,

contradicting the minimality of T̂
′
.

Definition 17 (PCEST Bottleneck Steiner Distance (PBSD)). The PCEST bottleneck Steiner distance
PBSD(ni, nj) for points ni, nj ∈ NI ∪NP, is equal to the length of the longest edge in ZT̂ (ni, nj) for
some MST of NI ∪ {ni, nj}.

The following lemma is a direct corollary of Lemma 9.

Lemma 10 (PBSD bound). Given two points ni, nj ∈ NI ∪ NP, let ZP(ni, nj) be a path in some
maximum PCEST P for N . For any edge e ∈ ZP(ni, nj), |e| ≤ PBSD(ni, nj).

All PCEST bottleneck Steiner distances can be rapidly computed in a preprocessing phase (immedi-
ately following the running of tests for ruling points in or out). These bottleneck distances can then be
used during the Generation phase to limit the lengths of edges during the construction of FSTs, with the
effect of substantially reducing the number of FSTs that are constructed. This same strategy has been
used very successfully for the Euclidean Steiner tree problem.

c© 2020 International Transactions in Operational Research c© 2020 International Federation of Operational Research Societies



Running Author / Intl. Trans. in Op. Res.xx (2020) 1–21 17

6.1.2. PCEST lune and disk properties
The lune property was established by Gilbert and Pollak (1968) as a condition that must be satisfied by
MStTs for a given terminal set.

Definition 18 (Lune). Given a line segment bc, the lune L(b, c) is the intersection of open disks Γ(b) and
Γ(c) centred at the points b and c respectively, each with radius |bc|.

Lemma 11. (Gilbert and Pollak (1968)) If bc is an edge or a part of an edge of an MStT S, then the lune
L(b, c) does not contain any points of S.

In GeoSteiner for the Euclidean Steiner tree problem, the lune property (Lemma 11) is used to prevent
the construction of any edge that contains a terminal in its lune. Similarly, for the PCEST problem it is
an easy exercise to see that Lemma 11 can be combined with the argument used in the proof of Lemma 2
to give the following result.

Lemma 12. Let bc be an edge or a part of an edge of a maximum PCEST P , and let a be an element of
NI ∪NP. Let Γ(a) denote a disk with its centre on a and with radius equal to the weight wa of a.

1. If a ∈ NI, then the lune L(b, c) does not contain a.
2. If any part of bc lies in Γ(a), then L(b, c) does not contain a.

It is straightforward to ensure that both conditions in this lemma are maintained during the generation
phase of GeoSteiner; this process has the effect of removing from consideration individual candidate
FSTs, or indeed whole families of FSTs.

We also have the following related result.

Lemma 13. Let bc be an edge or a part of an edge of a maximum PCEST P , and let a be an element of
NP. If the lune L(b, c) contains a, then a can be ruled out as a terminal of P .

Lemma 13 does not reduce the set of candidate FSTs generated during the generation phase of
GeoSteiner, but it could be used to add extra constraints to the concatenation phase, which has the
potential to help speed up the concatenation phase (which is discussed further in the next subsection).

6.2. The Concatenation phase for the PCEST problem

Here, we first describe the standard integer programming formulation for the GeoSteiner Concatenation
phases (for MStTs) and then present a method of revising the formulation in order to solve the Concate-
nation problem for the PCEST problem. We also outline an alternative method based on a prize collecting
Steiner tree in graphs (PCSTG) problem, and note that there exist efficient implemented solutions to this
latter problem.

6.2.1. Standard GeoSteiner concatenation formulation for MStT
Recall that for the Euclidean Steiner tree problem the aim of the concatenation phase of GeoSteiner is
to find a subset of candidate FSTs (from the generation phase) that span the terminals such that the sum
of lengths of these FSTs is minimum. The approach is to treat each candidate FST as a hyperedge on a
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set of terminals in a hypergraph, where the cost of the hyperedge is the length of the FST, and to find the
MST of the hypergraph.

Consider a hypergraph G = (V,E), with vertices vi ∈ V and hyperedges ej ∈ E with each ej ⊆ V .
Here V = N , the given set of terminals, and each element of E corresponds to the terminal set of
a candidate FST. Let cj denote the weight of hyperedge ej , which we define to be the length of the
candidate FST represented by ej . A minimum Steiner tree on N now corresponds to a minimum weight
spanning tree on V , with hyperedges ET . The decision variable xj = 1 if ej ∈ ET , otherwise xj = 0.
Let |ej | and |V | denote the cardinality of ej and V respectively. The spanning tree formulation is as
follows:

minimise
∑
j:ej∈E

cjxj (7)

subject to
∑
j:ej∈E

(|ej | − 1)xj = |V | − 1 (8)

∑
ej∈E,ej∩Wk 6=∅

(|ej ∩Wk| − 1)xj ≤ |Wk| − 1, ∅ 6= Wk ⊂ V (9)

xj ∈ {0, 1}, j : ej ∈ ET . (10)

Constraint 8 ensures that T has the correct number of hyperedges of appropriate cardinality for a
spanning tree on V . Constraint 9 ensures that T does not contain any cycles, and hence, by the previous
constraint, is connected. For more details on this formulation, see Chapter 5 of Brazil and Zachariasen
(2015).

It has been shown that this formulation can be solved efficiently using branch-and-cut methods, based
in the work of Warme (1998) – this has been implemented as part of GeoSteiner for the Euclidean Steiner
tree problem.

6.2.2. Concatenation formulations for the PCEST problem
In revising the previous formulation for the PCEST problem, the full components are again treated as
hyperedges in a hypergraph. The revision involves adding decision variables for the inclusion of the
terminals and weights for the terminals. The notation is the same as before, but with the following
additions: let wi denote the weight of vertex vi; let VT be the set of terminals in a minimum PCEST tree;
and let the decision variables yi = 1 if vi ∈ VT , otherwise yi = 0. The formulation is as follows:
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maximise
∑
i:vi∈V

wiyi −
∑
j:ej∈E

cjxj (11)

subject to
∑
j:ej∈E

(|ej | − 1)xj −
∑
i:vi∈V

yi = −1 (12)

∑
ej∈E,ej∩Wk 6=∅

(|ej ∩Wk| − 1)xj ≤ |Wk| − 1, ∅ 6= Wk ⊂ V (13)

∑
i:vi∈ej

yi − xj ≥ 0, j : ej ∈ E (14)

yi ∈ {0, 1}, i : vi ∈ V (15)
xj ∈ {0, 1}, j : ej ∈ E. (16)

Constraints 12 and 13 have the same functions as 8 and 9 respectively, modified to ensure the correct
number and cardinality of hyperedges for the resulting set of terminals VT . Constraint 14 guarantees that
every terminal belongs to at least one hyperedge of the final tree. That is, if yi = 1, then there must exist
a hyperedge ej with xj = 1 such that vi ∈ ej .

An alternative approach is to transform the concatenation phase of GeoSteiner for the PCEST problem
into a prize-collecting Steiner tree problem on graphs (PCSTG) problem. The transformation process,
following the generation phase of GeoSteiner, involves constructing a weighted graph G = (V,E) as
follows:

• Each possible terminal ni ∈ NP is represented as a vertex v ∈ V with weight pv = wi.
• Each ruled in terminal (including the mandatory terminal) is represented as a vertex v ∈ V with

weight pv set sufficiently high to ensure its inclusion in the solution. Alternatively, the decision vari-
able for the inclusion of each such vertex is pre-set to 1.
• Each Steiner point si of each candidate FST is represented as a vertex v ∈ V with weight pv = 0.
• Each edge (vi, vj) of a candidate FST is represented by an edge e ∈ E between the corresponding

vertices in V with cost ce = |vivj |.

It is clear that a solution to the PCSTG problem for G corresponds to a maximum PCEST on N . The
disadvantage of this approach is if the set of candidate FSTs is large, then the graph G becomes large
and dense, meaning that this method may not scale well with the cardinality of N . On the other hand,
a potential advantage of this approach is that there exists an efficient software solution to the PCSTG
problem. An example is the solver “SCIP-Jack” (Gamrath et al. (2017)). The solver is capable of solving
a wide variety of Steiner tree problems in graphs, including PCSTG and the rooted variant thereof. The
general approach used by Gamrath et. al. is to transform a PCSTG problem into an equivalent Steiner
arborescence problem and to solve that problem by using a sophisticated MIP framework that can be
employed in massively parallel environments.
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6.3. Solving the un-rooted PCEST problem

Note that the various ruling out techniques, FST generation and concatenation described in Sections 4.2
to 6.2 apply to both the rooted and un-rooted PCEST problems. On the other hand, the two main ruling in
lemmas in Section 4.1 require the existence of a known ruled in point. Hence, the full suite of techniques
can be applied to any case where there is at least one mandatory or ruled in terminal. We now briefly
discuss the case of the un-rooted PCEST problem where there are no given ruled in points.

Let N denote the set of points from an instance of the PCEST problem, where none of the points is
identified as mandatory or ruled in. Let ci denote the ith cluster resulting from the application of the
merging algorithm to N . Let C denote the set of clusters. Now the ruling in algorithm is utilised in a
new way.

For each cluster ci ∈ C:

1. Select any one point in cluster ci. For the purposes only of the next step, change the selected point’s
identification to n0 (i.e. the mandatory terminal).

2. Run the ruling in algorithm. Denote the set of clusters ruled in as Ui (including the cluster containing
n0. Observe that Ui ⊆ C. Note that each Ui corresponds to points ruled in to a maximum rooted
PCEST, with the selected point in ci treated as the mandatory terminal.

Let U denote the set of all Uis.
Now the results of the aforementioned ruling in runs are analysed, first to check if a ruled in terminal

for a maximum un-rooted PCEST can be identified by finding a point common to all the Uis, or else to
find the smallest possible set of points, one or more of which must be a member of a maximum un-rooted
PCEST.

Let Qk denote a largest possible subset of U such that there is at least one cluster that is common to
all Ui elements of Qk. Let |Q| denote the cardinality of Q. If |Q| = 1, then the common cluster to Qk
contains points that are all in a maximum un-rooted PCEST. If |Q| > 1, then each Qk contains a cluster
cQk

at least one of which must be in a maximum un-rooted PCEST.

7. Conclusions

In this paper, we have described a new algorithmic framework for solving PCEST problems. The broad
strategy is to first find a solution to the rooted PCEST problem. Then, if a solution to the un-rooted
PCEST problem is required, it can be obtained by judicious application of the rooted PCEST problem
to a small set of cases. A key issue is that points provided in a problem instance for a PCEST problem
are only possible terminals in the solution. The strategy for solving the rooted PCEST problem is to
reclassify possible terminals to ruled in or ruled out, through a series of tests. Points that are ruled out
are discarded. What remains is a set of ruled in terminals and a set of possible terminals.

The remaining topics covered in this paper concern GeoSteiner, a software package that includes
efficient algorithms to solve Euclidean Steiner tree problems. We have described ways in which
GeoSteiner’s Generation and Concatenation functions can be adapted to the PCEST problem. The effi-
cient implementation of all these changes, along with associated computational analysis, is a topic for
future research.
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