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Abstract

In this work, we consider the internal logistics processes in the car assembling company SEAT S.A. We focus on the
design of the supplying routes from the warehouse towards the workstations along a production line. The In-house
Logistics Routing Problem (ILRP) can be seen as an extension of the classical Vehicle Routing Problem considering
special features such as long-term fixed routes, unknown orders, backorders, and homogeneous fleet. To solve the
ILRP, we propose an Integer Linear Programming (ILP) model and a Simulation Iterated Local Search (SimILS)
algorithm. We conduct two computational experiments. The first experiment analyzes the methods’ performance,
and the second one compares the SimILS results with the current company’s routes, considering real data provided
by the SEAT S.A. The results show that the SimILS provides the best overall results overcoming both the ILP
approach and the current company’s solution, leading to a significant improvement in the company’s processes.

Keywords: Metaheuristics; Integer Programming; Logistics; Combinatorial Optimization; Automotive Industry

1. Introduction

Designing efficient logistics systems has been one of the main topics in many business, including man-
ufacturing ones. The logistics field is related to the flows of materials between and within organizations.
Indeed, companies focus more and more on the logistics field. The logistics area is seen as a strategi-
cal field to gain competitiveness in markets by reducing costs as well as providing a better service’s
level to customers, see Muñuzuri et al. (2005). Also, it is a relevant field considering the industry 4.0’s
applications.

This work focus on internal logistics operations, which means flows of materials inside the same
business or the same plant, for example, from a warehouse (WHS) to an assembly line. The improvement
of these flows can lead to a reduction of the delays, production’s disruptions, and also contribute to
minimizing logistics costs. Precisely, this work considers the automotive sector to conduct its research
over an actual internal logistics system.
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We highlight that this work was carried out under collaboration and agreement with SEAT S.A.,
which provided us with all the necessary data and support. SEAT (Sociedad Española de Automóviles
de Turismo) is a Spanish company, a subsidiary of the Volkswagen Group (www.seat.es). In 2019, SEAT
was present in more than 75 countries. Also, the company has manufactured more than 500,000 vehicles
in 2019.

1.1. The In-House Logistics Routing Problem

To provide suitable guidance to the reader, we present the essential pillars that define the main SEAT’s
internal logistics processes or the in-house ones. In other words, these processes refer to the materials
handling inside the company. Consequently, the in-house activities are in charge of storing the received
materials in the warehouse, executing the picking of these materials, and proceeding with the supply of
the placed orders in the assembling lines. For materials-handling related works see Mason et al. (2003);
Poon et al. (2009); Klug (2013); Atieh et al. (2016); Zhou and Peng (2017); Ribino et al. (2018).

Then, those placed orders are supplied through routes or logistics flows. The supplying routes are the
logistics flows responsible for delivering those materials whose consumption rate is not regular. A non-
regular consumption rate may occur due to products’ customization issues or a not standardized placing
orders process, for example. The main processes of the supplying routes are presented in Table 1.
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Fig. 1. The summary of the processes of a non-regular departure logistic flow.

First, the warehouse (WHS) receives orders through the commercial system SAP. Notice that these
orders are not steady, which results in a non-regular departure. Consequently, a ”Capacity vs. Time” rule
is defined. This rule ensures that each convoy leaves the WHS as soon as it is either loaded completely
or a defined amount of time is achieved since the first order had been assigned to that convoy. So, there
are two criteria that regulate the departure that refer to the capacity and the time. So, after the arrival of
the first orders, the maximum time a convoy can wait to be loaded is 60 minutes in this work. Moreover,



there is a relevant materials’ classification that concerns to the Stocking Keeping Unit’s (SKU) size. In
the company, there are two main classes of SKU, i.e., the Small Boxes class (SB) and the Large Container
(LC) one. So, there is a premise that establishes the division between SB convoys and LC ones. In other
words, it is not allowed to mix both SB and LC in the same convoy. Note that an order is viewed as the
request of a single SKU in this work.

Afterward, the second phase is the checking workstations one. In SEAT, workstations are clustered
into logistics groups and many of them can be created. As a result, a logistics group corresponds to a
subsection of the assembling line compound of a set of workstations. Usually, a logistic group’s work-
stations are close to each other. Besides that, the company assigns one operator to one route. Also, it is
assigned a set of logistics groups to each router. Each logistics group is exclusively linked to a router.
As a result, a logistics group, or a set of workstations, is not allowed to be attended by different routes.
That premise is valid for routes of the same SKU class only. Other relevant premises refer to the logistics
flows’ trajectory. By definition, a logistics flow must complete all its trajectory whenever it starts. Also,
the set logistics flows are considered to be kept fixed for a long-term period, e.g., months. It is justified
because the logistics operators are in charge of both supply the material and place the orders. We de-
fine this procedure as self-ask-supply procedure. As a result, the routes are fixed to keep the supplying
activities under control as well as the placing orders activity.

Figure 2 illustrates the amount of orders placed over 117 days. That data correspond to two work-
stations’ orders. Notice that the orders present an unsteady behaviour. In this work, the orders data is
gathered through the company’s SAP system. As a result, real-historical data was approached.

Fig. 2. An example of two workstations requests’ pattern over three months.

Later, the third phase refers to the supplying activity. During a route trajectory, an operator must park
the convoy to supply a workstation. Then, the operator supplies the material and restart its trajectory.
Note that the operators spend time to place the SKU in the right position.

Lastly, the final step is the return to the WHS. After checking the workstations’ under his/her respon-
sibility, the operator returns back to the WHS to deliver the empty racks and get new loaded ones. Later,
the convoy departs from the WHS towards the assembly line, and the cycle starts again. Therefore, note
that the definition of the logistics flows in SEAT is a challenging task. Furthermore, it becomes even



more inspiring when fixed routes scenario is considered along unsteady orders behaviors. For further
references of routing strategy, see Mehami et al. (2018); Vavrı́k et al. (2017); Lima and Ramalhinho
(2017).

Concerning to the assembling workshop, it is compose of more than 120 workstations. Those work-
stations are able to produce nearly 2,400 personalized cars each day. As a result, the logistics manager
must define the most suitable set of fixed routes to supply all the required materials throughout the day
from the warehouse to the production line. For production-flow related works, see Patchong et al. (2003);
Faget et al. (2005); Michalos et al. (2010); Seebacher et al. (2015).

As mentioned, the placed orders are sent to the SAP system. Later, an outsourced company orga-
nizes all the orders and execute the picking activities in the warehouse according to the First-In-First-
Out (FIFO) criterion. Figure 3 illustrates the company’s workshop layout. For layout-evaluation related
works, see Martı́nez-Barberá and Herrero-Pérez (2010); Horta et al. (2016).
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Fig. 3. An illustration of the company’s workshop, which is composed of a warehouse, a turnover area, and an assembly line
distribution.

To sum up, the Internal Logistics Routes Management (ILRM) system applied by SEAT is summarized
as follows: (i) long-term and fixed routes; (ii) self-ask-supply procedure; (iii) First-In-First-Out criterion;
(iv) each workstation is assigned to one logistics operator only; (v) convoys are loaded with one type of
product only, which are LC or SB; and (vi) unsteady demand. Moreover, the logistics director ’s main
goal is to design an ILRM system that provides a set of routes that incurs in smaller costs as possible.
The costs are measured in the sense of the number of routes, the distance covered by these routes, and
the number of delayed delivery or backorders. Among these three metrics, the number of routes is the
most important criterion for the company.

Those premises may place the company’s designing routes tasks in the Vehicle Routing Problem



(VRP) class of problems. Next, we present the related classes of VRP that more similarities share with
the company’s premises.

1.2. Related Work

According to Laporte (2009), the VRP is stated as the problem of designing least-cost delivery routes
from a depot to a set of geographically sparse customers, subject to side constraints. Consequently, due to
a significant variety of side constraints, as well as different optimization goals, there are several variants
of the problem because of the diversity of operating rules and constraints found in real-life applications.
To further explanation about the VRP methodology, see Toth and Vigo (2002). Also, for a complete
survey of the VRP literature, see Laporte et al. (2000); Laporte (2009); Braekers et al. (2016); Koç et al.
(2016).

Notice that the amount of works that compound the VRP area is considerable. So, from now on, only
the VRP classes that are similar to the work’s approach will be discussed. These classes are presented
by Table 1, which resumes the main related work considering the routes’ properties aspects, as well as
the placing orders aspects.

Table 1
The summary of the VRP classes structure, regarding the differences between the evaluated In-house Routing Problem (ILRP)
and the related VRP found in the literature. The related VRP classes are the following: Traditional VRP (TVRP), Consistent
VRP (CVRP), Periodic VRP (PVRP), Stochastic VRP (SVRP), Dynamic VRP (DVRP), and Inventory Routing Problem (IRP).

ID Characteristic ILRP TVRP CVRP PVRP SVRP DVRP IRP

1 Self-ask-supply order approach x
2 Automatic/Forecasted orders approach x x x x x
3 Deterministic demand x x x x
4 Stochastic and/or unknown demand x x x
5 Fixed routes during the time horizon x x
6 Variable routes during the time horizon x x x
7 Node permanently linked to a router x x

According to the surveys presented by Laporte (2009) and Braekers et al. (2016), the traditional VRP’s
primary objective is to minimize the total cost of routing a fleet of vehicles to supply a set of clients.
Among the traditional VRP is the Asymmetric Capacited VRP (ACVRP), which is defined by a asym-
metric distance matrix and capacited fleet, Crainic and Laporte (2012). Likewise, the major objective of
the ILRP is to minimize the total cost of routing a fleet of vehicles to supply a set of clients. Also, the
ILRP aims to minimize the total number of vehicles, the routes’ distance and the number of backorders.

Regarding the Consistent VRP, the problem was introduced by Groër et al. (2009). In this scenario,
the routes are kept fixed, and the drivers with the routes as well. Orders are known in advance by the
managers. Also, when a customer receives service, the same driver visits the client at roughly the same
time over the planning horizon. In the ILRP, the routes must be kept fixed on the long-term horizon as
well. On the contrary, the router is the one in charge of placing orders instead of the client (self-ask-
supply procedure), which contributes to making the demand stochastic.



Concerning the Stochastic VRP, it arises whenever any part of the data is stochastic or unknown in
advance such as stochastic travel times or stochastic demand, see Gendreau et al. (1996); Adulyasak
and Jaillet (2016). The main idea of the Stochastic VRP is to compute a set of routes that perform well
considering the stochastic data input. In this work, the input data that is considered as stochastic one is
the demand. The demand is viewed as stochastic and unknown due to the following factors: (i) self-ask-
supply procedure; (ii) issues in the assembly line, and (iii) flexible cars-production scheduling, which is
not shared among the departments. The stochastic demand behavior approach can also be observed in
Bertsimas (1992); Novoa and Storer (2009).

The Dynamic VRP is described by Braekers et al. (2016), in which relevant data is continuously up-
dated over the considered time horizon, such as the costumers’ demand. Then, based on these inputs, the
vehicles could adapt their routes dynamically. By contrast, the ILRP does not allow routes adaptations.
A practical example of the Dynamic VRP is the taxi fleet management. Also, Albareda-Sambola et al.
(2014) consider probabilistic information to compute each period’s set of routes.

Regarding the Periodic VRP application, it assumes that the customers require visits on one or more
days within a planning period. Also, there are a set of feasible visit options for each customer. A VRP
is solved for each component in the planning period. Usually, the main goal is to minimize the total
distance traveled over the planning period. Francis et al. (2007) define the operational complexity in
implementing a solution to the periodic VRP, such as crew size definitions.

Lastly, Coelho et al. (2014) and Moin and Salhi (2007) present a literature review of the Inventory-
Routing Problem (IRP), in which the demand is stochastic, and there are not clients’ orders. Instead, the
supplier decides when to visit each customer, based on forecasts, communications, and monitoring. Note
that deterministic demand is also possible. The planning horizon is multiple periods in length. Note that
the IRP and the VRP are different categories of problems. However, they share some concepts, such as
the routing calculations and pursuing solutions with a minimal number of routes.

Regarding the VRP tackled by this work, it is defined as In-house Logistics Routing Problem
(ILRP). It is a VRP and, consequently, a NP problem as stated by Dantzig and Ramser (1959). Also, to
the best of the authors’ knowledge, it represents a novel VRP approach. The In-house Logistics Routing
Problem is summarized as follows: (i) stochastic and unknown demand; (ii) self-ask-supply approach;
(iii) long-term and fixed routes; (iv) drivers must return to the depot after concluding the route; (v) orders
are made throughout the time-horizon; (vi) backorders are allowed; (vii) each customer is assigned to
a route; (viii) fixed-customer-sequence definition; (ix) capacitated; and (x) homogeneous fleet. Those
characteristics are observed in many problems presented in the literature. However, those aspects are not
viewed all together to compound a similar VRP approach.

The motivation of this work is to provide the company with a set of Operational Research methods to
support the routing-related processes. As a result, three major objectives are faced in this work. Firstly,
propose a deterministic mathematical model based on Integer Linear Programming (ILP), which pro-
vides solutions to the described problem. Secondly, present a simulation-based Iterated Local Search
(SimILS) metaheuristic capable of calculating good solutions for large-scale and stochastic versions of
the cited problem. Finally, apply these methods to a real data context and analyze the results.

Consequently, three major objectives are pursued that are translated into the following primary Key
Performance Indicators (KPIs): (i) the number of routes; (ii) the total routes’ distances; and (iii) the total
volume of materials not supplied on time (backorders). All of these indicators are standardized under the
same measure, a cost function defined by the company.



The paper is organized as follows. Section 2 and 3 describe the Integer Linear Programming (ILP)
formulation and the SimILS, respectively. Next, Section 4 presents the experiments and reports the com-
putation results. Finally, Section 5 concludes the paper.

2. Mathematical Formulation

The Integer Linear Programming (ILP) model of the deterministic version of the In-house Logistics
Routing Problem (ILRP) is an extension of the Asymmetric Capacitated VRP model described in Crainic
and Laporte (2012). The main objective of the mathematical model is to find the optimal-fixed routes to
be applied. Therefore, an important aspect of the model is the input data, in particular, how the worksta-
tions’ orders are considered in the model.

As mentioned in section 1, the workstations’ orders are gathered through the SEAT’s SAP system.
Consequently, the orders are a sample of historical data. Then, the total demand of a workstation will be
the sum of the orders clustered chronologically over specific time windows or periods. See figure 4 for
further information about orders clustering. As a result, we are introducing a sample of historical and
known data that is collected from stochastic processes. The details of the ILP model are detailed next.

Assign the orders in the 
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I24D I23D I23D I22D I22D I21D I21D I20D I19D I19D I18D I18D I17D I17D I16D I15D I15D I14D I14D I13D I13D I12D I12D I11D I11D I10D I10D I9D I9D I8D I8D I7D I7D I6D I6D I5D I5D I4D I4D I3D I2D I2D I1D

I24- I23- I23- I22- I22- I21- I21- I20- I19- I19- I18- I18- I17- I17- I16- I15- I15- I14- I14- I13- I13- I12- I12- I11- I11- I10- I10- I9- I9- I8- I8- I7- I7- I6- I6- I5- I5- I4- I4- I3- I2- I2- I1-

I24E I23E I23E I22E I22E I21E I21E I20E I19E I19E I18E I18E I17E I17E I16E I15E I15E I14E I14E I13E I13E I12E I12E I11E I11E I10E I10E I9E I9E I8E I8E I7E I7E I6E I6E I5E I5E I4E I4E I3E I2E I2E I1E

I24- I23- I23- I22- I22- I21- I21- I20- I19- I19- I18- I18- I17- I17- I16- I15- I15- I14- I14- I13- I13- I12- I12- I11- I11- I10- I10- I9- I9- I8- I8- I7- I7- I6- I6- I5- I5- I4- I4- I3- I2- I2- I1-

H24D H23D H23D H22D H22D H21D H21D H20D H19D H19D H18D H18D H17D H17D H16D H15D H15D H14D H14D H13D H13D H12D H12D H11D H11D H10D H10D H9D H9D H8D H8D H7D H7D H6D H6D H5D H5D H4D H4D H3D H2D H2D H1D

H24E H23E H23E H22E H22E H21E H21E H20E H19E H19E H18E H18E H17E H17E H16E H15E H15E H14E H14E H13E H13E H12E H12E H11E H11E H10E H10E H9E H9E H8E H8E H7E H7E H6E H6E H5E H5E H4E H4E H3E H2E H2E H1E

H24- H23- H23- H22- H22- H21- H21- H20- H19- H19- H18- H18- H17- H17- H16- H15- H15- H14- H14- H13- H13- H12- H12- H11- H11- H10- H10- H9- H9- H8- H8- H7- H7- H6- H6- H5- H5- H4- H4- H3- H2- H2- H1-

G24E G23E G23E G22E G22E G21E G21E G20E G19E G19E G18E G18E G17E G17E G16E G15E G15E G14E G14E G13E G13E G12E G12E G11E G11E G10E G10E G9E G9E G8E G8E G7E G7E G6E G6E G5E G5E G4E G4E G3E G2E G2E G1E

G24- G23- G23- G22- G22- G21- G21- G20- G19- G19- G18- G18- G17- G17- G16- G15- G15- G14- G14- G13- G13- G12- G12- G11- G11- G10- G10- G9- G9- G8- G8- G7- G7- G6- G6- G5- G5- G4- G4- G3- G2- G2- G1-

G24D G23D G23D G22D G22D G21D G21D G20D G19D G19D G18D G18D G17D G17D G16D G15D G15D G14D G14D G13D G13D G12D G12D G11D G11D G10D G10D G9D G9D G8D G8D G7D G7D G6D G6D G5D G5D G4D G4D G3D G2D G2D G1D

G24- G23- G23- G22- G22- G21- G21- G20- G19- G19- G18- G18- G17- G17- G16- G15- G15- G14- G14- G13- G13- G12- G12- G11- G11- G10- G10- G9- G9- G8- G8- G7- G7- G6- G6- G5- G5- G4- G4- G3- G2- G2- G1-

F24- F23- F23- F22- F22- F21- F21- F20- F19- F19- F18- F18- F17- F17- F16- F15- F15- F14- F14- F13- F13- F12- F12- F11- F11- F10- F10- F9- F9- F8- F8- F7- F7- F6- F6- F5- F5- F4- F4- F3- F2- F2- F1-

F24E F23E F23E F22E F22E F21E F21E F20E F19E F19E F18E F18E F17E F17E F16E F15E F15E F14E F14E F13E F13E F12E F12E F11E F11E F10E F10E F9E F9E F8E F8E F7E F7E F6E F6E F5E F5E F4E F4E F3E F2E F2E F1E

F24- F23- F23- F22- F22- F21- F21- F20- F19- F19- F18- F18- F17- F17- F16- F15- F15- F14- F14- F13- F13- F12- F12- F11- F11- F10- F10- F9- F9- F8- F8- F7- F7- F6- F6- F5- F5- F4- F4- F3- F2- F2- F1-

F24D F23D F23D F22D F22D F21D F21D F20D F19D F19D F18D F18D F17D F17D F16D F15D F15D F14D F14D F13D F13D F12D F12D F11D F11D F10D F10D F9D F9D F8D F8D F7D F7D F6D F6D F5D F5D F4D F4D F3D F2D F2D F1D

E24- E23- E23- E22- E22- E21- E21- E20- E19- E19- E18- E18- E17- E17- E16- E15- E15- E14- E14- E13- E13- E12- E12- E11- E11- E10- E10- E9- E9- E8- E8- E7- E7- E6- E6- E5- E5- E4- E4- E3- E2- E2- E1-

E24E E23E E23E E22E E22E E21E E21E E20E E19E E19E E18E E18E E17E E17E E16E E15E E15E E14E E14E E13E E13E E12E E12E E11E E11E E10E E10E E9E E9E E8E E8E E7E E7E E6E E6E E5E E5E E4E E4E E3E E2E E2E E1E

E24- E23- E23- E22- E22- E21- E21- E20- E19- E19- E18- E18- E17- E17- E16- E15- E15- E14- E14- E13- E13- E12- E12- E11- E11- E10- E10- E9- E9- E8- E8- E7- E7- E6- E6- E5- E5- E4- E4- E3- E2- E2- E1-

E24D E23D E23D E22D E22D E21D E21D E20D E19D E19D E18D E18D E17D E17D E16D E15D E15D E14D E14D E13D E13D E12D E12D E11D E11D E10D E10D E9D E9D E8D E8D E7D E7D E6D E6D E5D E5D E4D E4D E3D E2D E2D E1D

E24- E23- E23- E22- E22- E21- E21- E20- E19- E19- E18- E18- E17- E17- E16- E15- E15- E14- E14- E13- E13- E12- E12- E11- E11- E10- E10- E9- E9- E8- E8- E7- E7- E6- E6- E5- E5- E4- E4- E3- E2- E2- E1-

D24- D23- D23- D22- D22- D21- D21- D20- D19- D19- D18- D18- D17- D17- D16- D15- D15- D14- D14- D13- D13- D12- D12- D11- D11- D10- D10- D9- D9- D8- D8- D7- D7- D6- D6- D5- D5- D4- D4- D3- D2- D2- D1-

D24E D23E D23E D22E D22E D21E D21E D20E D19E D19E D18E D18E D17E D17E D16E D15E D15E D14E D14E D13E D13E D12E D12E D11E D11E D10E D10E D9E D9E D8E D8E D7E D7E D6E D6E D5E D5E D4E D4E D3E D2E D2E D1E

D24- D23- D23- D22- D22- D21- D21- D20- D19- D19- D18- D18- D17- D17- D16- D15- D15- D14- D14- D13- D13- D12- D12- D11- D11- D10- D10- D9- D9- D8- D8- D7- D7- D6- D6- D5- D5- D4- D4- D3- D2- D2- D1-

D24D D23D D23D D22D D22D D21D D21D D20D D19D D19D D18D D18D D17D D17D D16D D15D D15D D14D D14D D13D D13D D12D D12D D11D D11D D10D D10D D9D D9D D8D D8D D7D D7D D6D D6D D5D D5D D4D D4D D3D D2D D2D D1D

C24E C23E C23E C22E C22E C21E C21E C20E C19E C19E C18E C18E C17E C17E C16E C15E C15E C14E C14E C13E C13E C12E C12E C11E C11E C10E C10E C9E C9E C8E C8E C7E C7E C6E C6E C5E C5E C4E C4E C3E C2E C2E C1E
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Fig. 4. Steps to Cluster orders into periods: (1) to select the workstations in the workshop; (2) to collect the respective orders
in the Orders’ system; (3) to place them in the time-horizon chronologically. Later, those orders may be clustered considering

the time-window assigned to a period.

The deterministic version of the ILRP’s notation:
(n ∈ N) the set of workstations to supply, in which (n = 1) represents the depot
(a ∈ A) the arc set
(l ∈ L) the periods set, in which L represents the complete time horizon
(r ∈ R) the routes’ frequency set

C the convoy’s capacity
MC the fixed travel cost spent to go from node (i ∈ N) up to node (j ∈ N)
RC the fixed cost of introducing a route
SC the fixed cost of a backorder
SC the distance between nodes (i, j ∈ N) is (dij)
K the maximum number of convoys
T one period’s length



tsup the time required to supply a material at the delivery point
v the convoy’s average speed
R the maximum frequency (laps) a route can have within one period
dil the demand of the node (i ∈ N) at the period (l ∈ L), which is the demand of a workstation

during a considered period l
xijkr This variable will be equal 1 if arc (i, j) ∈ A belongs to the route (k ∈ K) and has a

frequency (r ∈ R) within a period, 0 otherwise
yikr This variable will be equal 1 if node (i ∈ A) is visited by vehicle (k ∈ K), which has a

frequency (r ∈ R)
bclk This variable represents the backorders inserted in the vehicle (k ∈ K) at the period (l ∈ L)
fkr This varibale represents the frequency (r ∈ R) that a route (k ∈ K) has within each period

(l ∈ L)
addk This variable defines the additional capacity that a route (k ∈ K) can receive

Notice that deterministic data values, such as speed and a material’s supplying time were defined by
the company; and the considered workstations’ orders were based on historical data. The ILP model is
presented next:

min
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N∑
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xijkr = yikr ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1 (7)
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xjikr = yikr ∀k ∈ K, r ∈ R, i ∈ N\i 6= 1 (8)
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xijkr = |S| − 1 ∀S ⊂ N, k ∈ k, r ∈ R (9)

addk ≤ C ∀k ∈ K (10)
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r ∗ (dij/v)xijkr ≤ T ∀k ∈ K, l ∈ L

[T − (r + 1)(

N∑
i

N∑
j\(i 6=j)

(dij/v)xijkr)− (fkrrCtsup)]/tsup ≤ addk ∀k ∈ K, r ∈ R (12)

xijkr ∈ {0, 1} ∀i, j ∈ A, k ∈ K, r ∈ R (13)
yikr ∈ {0, 1} ∀i ∈ N, k ∈ K, r ∈ R (14)
fkr ∈ {0, 1} ∀k ∈ K, r ∈ R (15)
bclk ∈ Z+ ∀l ∈ L, k ∈ K (16)
addk ∈ Z+ ∀k ∈ K (17)

The objective function (OF) (1) minimizes the sum of the costs related to the total distances covered
by all the routes, the number of routes, and the costs related to the backorders of the route (k ∈ K) at
a period (l ∈ L). The constraints (2) define the number of laps, or the frequency (r ∈ R), that route
(k ∈ K) does during one period. Constraints (3) state the maximum number of nodes a route (k ∈ K)
can visit, considering its frequency (r ∈ R). Constraints (4) state that each customer must be attended
by only one route. Constraint (5) states that the depot must be visited by |K| vehicles at most. Next,
the constraints (6) define the number of backorder bclk of the route (k ∈ K) in the period (l ∈ L). The
constraints (7) and (8) define that the vehicles that visit a node (i ∈ N) must depart from that location
after the supplying activity. The constraints (9) are responsible for avoiding the sub-tours to happen. The
constraints (10) state that the maximum additional capacity a route can receive is fewer or equal to C.
The constraints (11) state that each route can last up to T minutes, taking into account the capacity, the
supplying time, the distance, and the traveling speed. The constraints (12) define the maximum additional
capacity a route can receive, based on the amount of time left in a period. Lastly, constraints (13), (14),
(16), (15), and (17) define the domain of the variables.



Notice that the constraints (6), (10), and (12) aim to increase a convoy’s capacity as much as possible.
To do so, the constraints consider a rule called as residual capacity, which is explained as follows. A
convoy’s capacity is calculated through a function that has the following parameters: (i) convoy speed;
(ii) period duration; (iii) time to supplied materials; and (iv) route’s length. For example, suppose one
scenario, in which a period has 60 minutes and a route’s duration is about 21 minutes, including the
supplying time to place all materials in the correct place. Consequently, the route can complete two trips
within 60 minutes. If the convoy has its capacity limited to 4 orders per travel, the capacity will be equal
to 8 as a result. Nevertheless, there are 19 minutes left to supply. So, we add to the capacity the exact
number of orders the convoy is able to supply and back to the depot before finishing the current period.
So, if the trajectory takes 12 minutes, the supplying procedure three minutes per order and there are 19
minutes left, the algorithm will be able to add two units more in the total capacity. As a result, the total
capacity of this route will be ten units per period. That procedure enables the algorithm to come closer
to real practice.

To obtain the solutions for this model, the AMPL language was used and solved by CPLEX 12.8.0, as
we explain in section 4.

Also, note that the model evaluates the workstations’ order for each period to compute the optimal set
of fixed routes. Besides that, the model calculates the routes taking into account every single workstation
as one independent node. As a result, the model does not consider the company’s logistics group concept,
but a more detailed one.

3. Simulation-based Iterated Local Search Metaheuristic

According to Glover et al. (1996), heuristics may be linked with other approaches such as simulation
procedures. Following this premise, we have implemented an Iterated Local Search (ILS) metaheuristic,
in which a simulation procedure is embedded. For ILS metaheuristic related works, see Vansteenwegen
et al. (2009); Penna et al. (2013); Coelho et al. (2016); Lourenço et al. (2019).

This aggregation is defined as Simulation-based Iterated Local Search (SimILS) metaheuristic that
was proposed by Grasas et al. (2016). According to the authors, the junction of a standard ILS meta-
heuristic framework and a simulation-optimization procedure result in a method capable of dealing with
stochastic COPs, such as real problems whose demand is unknown.

In this work, the simulation is useful to deal with the workstations’ orders that present a stochastic
behavior. Consequently, we can take advantage of this method to simulate the number of backorders of
each 60-minute period, see Figure 4. To execute the simulation, we take into account a defined set of
routes as well as the company’s parameters. We highlight that both ILP and SimILS methods share the
same objective function, which is defined by expression 1 presented in Section 2.

Remember that we have to assign costs, or weights, to each component of the objective function.
Besides, the main managerial goal of the company is to minimize the number of routes. Consequently,
the weight assigned to the number-of-routes factor will be always higher than the other two components.
Next, the SimILS algorithm is presented.

The ILS metaheuristic implementation is composed of four main steps, which are defined as follows:
(i) compute an initial solution; (ii) execute a Local Search, which improves the solution initially obtained;
(iii) execute the perturbation phase, where a new starting point is computed through a perturbation of the



solution returned by the Local Search; (iv) acceptance Criterion, which decides from which solution the
search should continue. Concerning the simulation embedded in the ILS procedure. It is responsible for
calculating the objective function of the problem. Algorithm 1 presents the SimILS framework.

Algorithm 1 The SimILS Algorithm
1: (S0)← Generate Initial Solution
2: (S∗)← Execute a Local Search(S0)
3: (S∗, of(S∗))← Simulation(S∗ )
4: while Stopping criterion is not met do
5: (S

′
)← Perturbation(S∗)

6: (S∗∗)← Execute a Local Search(S
′
)

7: (S∗∗, of(S∗∗))← Simulation(S∗∗ )
8: (S∗)← Acceptance criterion (S∗∗, S∗)
9: end while

10: (S∗, of(S∗)) = Simulation(S∗ )
11: Return (S∗, of(S∗))

From the algorithm 1, the simulations procedures are placed after applying the Local Search to eval-
uate the current local optimal solution (S∗ and S∗∗). These simulations consider a solution and a set of
parameters such as convoys’ speed and capacity. So, the SimILS algorithm obtains the corresponding
simulated objective function, of(solution), because it manages to compute the number of backorders for
each period. Therefore, the main function of the simulation is to estimate the expected cost value of a
newly generated solution. Next, we present algorithm 2 that summarizes the application of the SimILS
algorithm as well as the introduced weights inserted in the objective function’s terms.

Algorithm 2 The complete SimILS Algorithm
1: (S0)← Generate Initial Solution
2: (S

′
)← Execute the SimILS(S0,WPriority routes weights)

3: (S∗)← Execute the SimILS(S
′
,WPriority SQL weights)

4: Return Best Sol(S∗)

The algorithm 2 shows that the SimILS procedure is applied twice with different inputs and objectives.
In the first phase, the method seeks a solution (S

′
) with reduced number of routes. Indeed, a solution

with bigger number of routes than the current company’s solution is not feasible for the company. Conse-
quently, fictitious high weights are introduced on the routes’ and the distances’ terms, and low fictitious
weight is assigned to the backorders one. It is done to force the reduction of the number of routes and
the total routes’ distance.

Afterward, the SimILS procedure is repeated, but based on the solution (S
′
), which was previously

computed, and different fictitious weights. The new weights are related to the Service-Quality-Level
(SQL). The SQL is defined as the rate between the number of orders supplied at the correct period per
the total of orders received during all considered periods. The SQL is an important concept that will
be approached further ahead. As a result, the SimILS algorithm is forced to improve the backorders



indicator without increasing the number of routes and the total routes’ distance. As a result, the output
solution is a trade-off between those three considered elements placed in the Objective function. Next,
we place comments over each one of the four components of the SimILS algorithm.

1. Compute an initial solution
An initial feasible solution is obtained through a greedy algorithm, in which each workshop’s aisle is
viewed as a route. So, on the one hand, the initial solution will have many routes. On the other hand,
these routes are sequenced correctly. That is viewed as an advantage because the workstations are
supposed to be visited in sequence. The initial solution is introduced through the method Generate
Initial Solution in the algorithm 2.

2. Local Search
The local search methods considers both an Intra-Route Neighborhood Search (Intra-RNS) moves and
Inter-RNS moves. The Intra-RNS consists of applying moves inside the same route. The Inter-RNS
moves involve a set of nodes that moves between routes.
The Intra-RNS move applied is the Or-optK one, which refers to K adjacent nodes that are removed
from a route and inserted in another position of the same route. Its computational complexity is O(n2).
Later, the Inter-RNS moves that presented a positive impact on the local search are the Shift (1,0) and
the k-Shift. The Shift (1,0) selects a unique node and inserts it in any position of the new route. The
k-Shift move consists in selecting a subset of consecutive nodes K from a route A and inserting them
at the end of a route B. In both moves, it must be checked the new route’s capability to deliver the
relocated demand, concerning the route’s capacity. Notice that both Inter-RNS classes have the same
computational complexity, which is O(n2).
As a result, the moves’ strategy is defined based on Penna et al. (2013). However, a modification
of the k-Shift movements is executed, which we called as k-Shift-complete. Even though a solution’s
cost is still an important acceptance criterion here, there are two main differences between this work’s
approach and the k-Shift and Shift (1,0) ones. The first variance concerns the confrontation between
demand and capacity. On the one hand, the k-Shift-complete permits backorders to happen. On the
other hand, it will penalize the objective function whenever it occurs. In contrast, the k-Shift and Shift
(1,0) moves do not allow backorders. The second difference regards the nodes relocation from the
original route into a second one. The k-Shift-complete places a subset of K consecutive nodes into all
the possible locations of another route, including at the beginning and the end. By contrast, Penna
et al. (2013) state the k-Shift places the transferred nodes at the end of a route only.
So, the k-Shift-complete is neither limiting the movement to a route’s end location nor transferring
only one node at each time.
To conclude, the SimILS takes into account the best improvement strategy, whenever the local search
phase is executed, because the problem is considered as a strategical one and the execution time is
not a relevant issue. An example of both Intra and Inter-RNS moves are illustrated in figure 5.

3. Simulation
To execute the simulation procedure, two main inputs are necessary, which are: (i) the fixed routes
calculated in the Local Search phase, and (ii) the workstations’ orders. Afterward, the simulation pro-
cedure discloses the results related to the primary KPIs, which are necessary to calculate a solution’s
objective function. Moreover, a set of secondary KPIs can also be calculated through the simulation.
The secondary KPIs are out of the objective function calculation (see expression 1). However, it pro-
vides useful managerial insights to the logistics managers to evaluate a solution. The secondary KPIs
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Fig. 5. An Or-opt2 (I) and a 2-Shift-complete (II) moves examples.

are defined as follows: (i) the total orders supplied; (ii) the total distance covered throughout the sim-
ulation; and (iii) the total of empty spots of the convoys that departed from the warehouse during the
simulation. The simulation structure is presented by algorithm 3.

Algorithm 3 The Simulation Algorithm
1: S∗← Input Solution (Fixed Routes)
2: for (p ∈ TotalofPeriods) do
3: for (Route ∈ S∗) do
4: Total Backorders += Get Back Orders(Route, p)
5: Total Supplied Route += Get Supplied(Route, p)
6: Total Dist Traveled += Get Distance Traveled(Route, p)
7: Total Empties Route += Get Empties(Route, p)
8: end for
9: end for

10: Return (of best sol) Simulated OF and KPIs.

Here, all periods of the time horizon are considered. As a result, it is defined as the complete simula-
tion (Comp Sim). The Comp Sim has its advantages and drawbacks. On the one hand, it may lead
to a high computational effort, depending on the time horizon’s size. On the other hand, it permits a
complete evaluation of the time horizon considered. Therefore, the algorithm could assess extensively
the solutions calculated by the Local Search phase. In this sense, Comp Sim is a suitable approach
because the SimILS deals with a strategic problem.
Then, the Algorithm 1 executes the Comp Sim in three moments. The first one is placed at the begin-
ning of the SimILS procedure to compute and save the of(Initial Solution). Next, the Comp Sim
is called after the LS phase to compute the of(Local Search). Finally, the Comp Sim computes the
of(Final Solution) to close the SimILS procedure. Note that the Comp Sim is responsible for cal-
culating a solution’s objective function value. Moreover, the residual capacity rule, stated in Section
2, is also considered here.
To conclude the Comp Sim description, we state that the algorithm 3 can be applied to assess any set
of routes, such as the company’s ones for example. As a result, it is a helpful tool to compare two
different solutions.

4. Perturbation phase
The perturbation procedure applied in this work is based on the Inter-RNS moves described previ-
ously. Considering previous experiments, the algorithm is set to run ten iterations during the pertur-



bation phase. Moreover, it has the same Inter-RNS moves’ structure except for two main differences.
First, on the one hand, the inter-RNS algorithm evaluates the solution’s cost in order to decide if a new
solution should be accepted or not. On the other hand, the perturbation procedure focus on a solution’s
Service-Quality Level (SQL) instead of its costs. So, a new route will be accepted in the solution as
long as its SQL value is lower or equal to the defined SQL limit, which is set as 50% in this work. As
a result, the SQL is a relevant indicator because it avoids low-SQL solutions, which could produce
poor results at the local search phase further ahead. Then, the second divergence between the Local
Search and the perturbation procedure refers to the way that the SQL is computed. So, all periods
are simulated during the computation of the objective function, which we call a complete simulation.
Differently, a partial simulation (Partial Sim) is applied in the perturbation phase instead.
The Partial Sim works over a single newly generate route only, which is the one created by the inter-
RNS moves in the perturbation phase. The main idea is to perform a short simulation and reduce the
computational effort during the simulations executions. So, a biased-random method was created to
reduce the simulation iterations, in which all the periods are sorted in a decreasing manner, regarding
its backorders values. So, the first item of the list will be the period that has the highest backorders
value (likewise, the worst SQL result). That method was developed based on the work of Grasas et al.
(2017).
In addition, there is another important criterion to take into account, which concerns the solution in-
troduced in the perturbation procedure. It varies depending on the iteration that the SimILS algorithm
is. So, the current solution (S‘) will be the input up to the first half of the total of iterations. Afterward,
the best solution found so far (S∗) will be introduced.

5. Acceptance Criterion and Stopping Criterion
The local search must compute a solution that meets the conditions that are presented by expression
18. This expression states that the newly generated solution must be either cheaper than the best
solution found so far or present a better SQL up to the first half of the number of iterations. Later,
only the cost criterion will be evaluated.

(of best sol > of current sol) ∧ (SQLofBest sol

< SQLofcurrent sol ∨ it < Total it/2) (18)

Concerning the stopping criterion, the main condition to interrupt the procedure is whenever the
maximum number of iterations is achieved. The SimILS algorithm’s maximum number of iterations
value is presented in the appendix A1 at the end of this chapter.

4. Computational Experiments

The methods described in the previous sections are evaluated through two main computational experi-
ments. The main goal of the first experiment is to compare the performance between the ILP model and
the SimILS algorithm. The second experiment aims to compare the solutions provided by the SimILS
algorithm and the company’s actual solution.

The experiments were carried out on the Operational System Windows 7 Enterprise 64 bits, Intel Core
i7-4810MQ, 2.80GHz, 8 cores and 16 GB of RAM as the maximum capacity. Moreover, the program-
ming languages JAVA were used to build the SimILS algorithm. Also, the ILP was modeled through



AMPL language and was solved by CPLEX 12.8.0. Next, we present the instances.

4.1. The instances

An instance is defined as the number of orders that a set of workstations (WST) requires over a deter-
mined time-horizon. So, one instance differs from another regarding the following aspects: (i) the set
of WST considered; (ii) the number of orders; (iii) the SKU class (small boxes (SB) orders or large
containers (LC) ones), and (iv) the time-horizon considered.

Next, for each SKU class, three groups of data were collected. The first group is called Test data, which
is a particular subset compose of a selection of all the workshop’s WST and their respective orders. By
contrast, the second group considers all WST that composed the assembly line, as well as their respective
orders; in the second group case, five working days were used. Finally, the third group of data is like
the second one (all WST considered) but studying the demand during a larger time-horizon size, in this
case, four weeks.

Furthermore, those orders were collected over two different periods in the year, which refer to dif-
ferent production levels and other intrinsic features. The orders were collected directly in the material
management system of the company (SAP). The table 2 summarizes the instances’ characteristics, and
the data’s details are presented in the table A1.

Table 2
The summary of the instances’ structure. In this table there are the following indications, concerning the data clustering strategy:
(1) test data; (2) real data with five-days time horizon; and (3) real data with a four-weeks time horizon. Next, the Item column
refers to the name of the instances; the Material Type refers to an instance’s SKU class; the column Days refers to the instance’s
number of days; column Period represents the number of periods an instance considers; the WST refers an instance’s total of
workstations considered. The * marker highlights the real-world instances.

Class (Group) Item Material Type Days Periods WSTs

Test Data(1) 1-3 5 105 10
4-6 5 105 15
7-9 Small 5 105 20

Real Data(2) 10* Boxes 5 105 123
Real Data(3) 11* 22 420 122

Test Data(1) 12-14 5 105 10
15-17 5 105 15
18-20 Large 5 105 20

Real Data(2) 21* Containers 5 105 127
Real Data(3) 22* 22 420 126

The parameters used in the experiments are either set by the company (e.g., cost values or vehicles
capacity) or obtained via preliminary experiments (e.g.,total of iterations in the perturbation phase). The
parameters used in the experiments are indicated in table A1. Moreover, a C++ code procedure was
developed to build a distance matrix. That matrix presents the minimum distance from one workstation
to the others, considering the workshop layout.



As mentioned, two main experiments are performed in this work. Experiment 1 aims to evaluate the
performance between the ILP model and the SimILS algorithm approaches through a subset of WST
and their respective demands. Note that the ILP is known to provide-proofed optimal solutions. Also,
the ILS has been successfully applied to complex Combinatorial Optimization problems, see Lourenço
et al. (2019). Moreover, each method’s performance is measured based on the objective function value,
given by expression 1, and computational time. The data applied is the Test data class (1), see in Table
2.

Afterward, experiment 2 is conducted to evaluate real and complete instances. In this experiment, we
take each one of the real historical data (2) and (3) and split it, chronologically, in two parts. The data
set clustering idea illustrated by Figure 6.

Cluster 1 Cluster 2

Solution calculation data Simulation data

The time horizon’s length

Fig. 6. The data clustering scheme. The first cluster gives support for the routes optimization. Then, the second cluster’s major
purpose is to evaluate the previous solution obtained. Each cluster is composed of orders that were introduced over a

chronological fashion. Then, the first cluster refers to the first half of the sequenced orders. Likewise, cluster 2 refers to the
second half left.

The first part is called cluster 1. Then, the cluster 1 data is inserted in the SimILS algorithm as an
input to calculates a set of fixed routes. Later, the second phase of experiment 2 starts. It refers to the
application of the second part left of the real historical data (2) and (3). The goal is to simulate the cluster
1’s solution over a different set of data. Consequently, we will evaluate how the computed fixed set of
routes perform under a new set of orders. Then, we compute the SimILS algorithm solution’s KPIs and
compare them with the KPIs of the company’s solution. Note that the simulation procedure (algorithm
3) is applied to the current fixed solutions used in the company also. Table 3 resumes the experiments
conducted.

Table 3
The summary of the instances’ structure.

Item Method Data

1 ILP vs. SimILS Test Data (A subset of workstations)
2 SimILS sol vs.Current sol Real Data (Phases 1 and 2)

Consequently, the main goal of Experiment 2 is to compute a solution to the ILRP, which provides a
satisfactory set of fixed routes to cope with an actual stochastic system over an internal logistics context.
Next, we present each experiment.



4.2. The Experiment 1

Experiment 1’s goal is to compare the results provided by the ILP model and the SimILS algorithm.
These methods have the same objective function expression. As a result, they will be evaluated based
on the objective function values and computational time. The results related to the experiment 1 are
presented in the tables 4 and 5. First, we present the SB results and, then we present the LC ones.

Table 4
The Summary of the small boxes Experiment 1’s results. The bolded values represent optimal solutions. The (*) marker indicates
that no feasible solution was provided. The R. refers to the number of routes. Also, the GAPmet.term refers to the comparison
between the values computed by the ILP and SimILS. It is computed as (ILPV alue/SimILSV alue − 1).

Item WST Method OF R. Distance Back GAP Time
Value (m) Orders cplex(%) (sec)

1 10 ILP 1459,8 1 1359,8 0 0% 16
1 10 SimILS 1607,2 1 1507,2 0 - 6
GAPmet. 10% 11% 0% -

2 10 ILP 1953,9 1 1853,9 0 0% 12
2 10 SimILS 1956,3 1 1856,3 0 - 5
GAPmet. 0,1% 0% 0.1% -

3 10 ILP 2308,9 1 1853,9 355 0% 37
3 10 SimILS 2311,3 1 1856,3 355 - 6
GAPmet. 0.1% 0% 0.1% -

4 15 ILP 1686,9 1 1586,9 0 0% 2219
4 15 SimILS 1741,4 1 1641,4 0 - 6
GAPmet. 3% 3% 0% -

5 15 ILP 2020,4 1 1920,4 0 14% 7200
5 15 SimILS 2032,3 1 1932,3 0 - 6
GAPmet. 1% 1% 0% -

6 15 ILP 2247,18 1 2147,2 0 15% 7200
6 15 SimILS 2251,1 1 2151,0 0 - 5
GAPmet. 0.2% 0.2% - -

7 20 ILP (*) (*) (*) (*) (*) (*)
7 20 SimILS 2357,2 1 2257,2 0 - 8

8 20 ILP (*) (*) (*) (*) (*) (*)
8 20 SimILS 2002,7 1 1902,7 0 - 11

9 20 ILP (*) (*) (*) (*) (*) (*)
9 20 SimILS 2247,2 1 2147,2 0 - 7

So, the ILP model found the optimal solution for four out of nine small boxes (SB) class instances;
two feasible solutions with about 14.5% gap were computed; and the model could not find any feasible
solution for the three instances left. Likewise, nine ILP experiments were conducted for large containers
(LC) instances. Then, the ILP model found the optimal solution for three instances; three feasible solu-



Table 5
The Summary of the Large Containers Experiment 1’s results. The bolded values represent optimal solutions. The (*) marker
indicates that no feasible solution was provided. The R. refers to the number of routes. Also, the GAPmet.term refers to the
comparison between the values computed by the ILP and SimILS. It is computed as (ILPV alue/SimILSV alue − 1).

Item WST Method OF R. Distance Back GAP Time
Value (m) Orders cplex(%) (sec)

12 10 ILP 1100,4 1 997,49 3 0% 16
12 10 SimILS 1150,4 1 1047,4 3 - 5
GAPmet. 5% 5% 0% -

13 10 ILP 1317,2 1 1217,2 0 0% 17
13 10 SimILS 1317,2 1 1217,2 0 - 7
GAPmet. 0% 0% 0% -

14 10 ILP 1349,2 1 1217,2 32 0% 34
14 10 SimILS 1349,2 1 1217,2 32 - 9
GAPmet. 0% 0% 0% -

15 15 ILP 1409,2 1 1132,2 177 13% 7200
15 15 SimILS 1293,9 1 1144,9 49 - 11
GAPmet. -8% 1% -72% -

16 15 ILP 1670,9 1 1493,9 77 26% 7200
16 15 SimILS 1509,4 1 1362,4 47 - 9
GAPmet. -10% -9% -39% -

17 15 ILP 2126,3 2 1920,3 6 21% 7200
17 15 SimILS 1959,5 1 1765,5 94 - 7
GAPmet. -8% -8% 1467% -

18 20 ILP (*) (*) (*) (*) (*) (*)
18 20 SimILS 4756,5 1 1492,5 3164 - 10

19 20 ILP (*) (*) (*) (*) (*) (*)
19 20 SimILS 2658,5 1 2288,5 270 - 8

20 20 ILP (*) (*) (*) (*) (*) (*)
20 20 SimILS 4260,1 1 2537,1 1623 - 11

tions with about 20% gap were computed, and the model could not find any feasible solution for three
instances left.

Concerning the SimILS algorithm’s results, the algorithm was able to find feasible solutions for all
tested instances. Precisely, two of these solutions were optimal ones, as proved by the ILP.

As a result, the ILP and SimILS algorithm methods were compared, taking into account the optimal
solutions provided by the ILP. For those optimal solutions, the GAP between the methods’ solutions
has been smaller or equal than 5% for six out of seven optimal solutions found. Note that the following
expression was considered: GAP = (OFILP /OFSimILS)− 1.

Concluding, although the ILP model can manage to compute the better solutions in the easiest in-



stances, the SimILS algorithm outperformed the ILS in the most complicated ones in a very short com-
putational time. Notice also that the ILP model did not provide solutions for the larger instances (20
WST). Therefore, the SimILS algorithm is able to provide good results in a short time making this
algorithm a proper one to deal with more complicated or real-world instances, like those applied in
experiment 2.

4.3. The Experiment 2

Here, the objective is to compare the performance between the company’s set of routes and the solutions
computed through the SimILS algorithm. To better explain those experiments, this section is divided
into two parts. The first part refers to a solution calculation applying the cluster 1 concept, see Figure 6.
Then, the second part refers to solutions evaluation through the simulation of cluster 1’s solution over
the cluster 2 data.

4.3.1. Solution Calculation Experiments - Cluster 1
Table 6 presents both the results computed by the SimILS algorithm. Also, it presents the results provided
by the simulation of the company’s current routes.

Table 6
The summary of the experiments 2’s result - cluster 1. The first column refers to a instance’s item and the second refers to the
Material type. The LC means Large Containers and SB means Small Boxes. The third column refers to the cluster. The fourth
column indicates the solution’s origin. The fifth column depicts the OF’s value. The sixth column presents the number of routes.
The seventh column refers to the sum of all the solution’s routes distance. The eighth column points out the backorders. The
ninth column presents the total of orders supplied. The tenth column refers to the total of empties spots. The eleventh column
presents the total distance traveled. Finally, the twelfth column refers to the computational time. Also, the GAPmet.term refers
to the comparison between the values computed by the ILP and SimILS. It is computed as (CurrentV alue/SimILSV alue−1).

Item M. Clt Routes’ OF Routes Distance Back T. T. Emp. T. Time
Type Class (units) (meters) Orders Sup. Spots Traveled (sec)

10 SB 1 Current 13.650,49 4 5.800 3.850 11.761 4.923 330.857 1
10 SB 1 SimILS 9.387,34 4 4.722 665 11.783 5.209 273.984 122
GAPmet. -31% - -19% -83% 0% 6% -17%

11 SB 1 Current 325.703,12 4 3.912 317.791 50.981 20.876 911.764 1
11 SB 1 SimILS 188.375,84 4 5.223 179.152 52.862 6.105 1.064.024 547
GAPmet. -42% - 34% -44% 4% -71% 17%

21 LC 1 Current 18.506,60 6 8.313 4.194 3.152 275 1.052.110 1
21 LC 1 SimILS 11.482,32 6 5.214 268 3.256 504 768.700 137
GAPmet. -38% - -37% -94% 3% 83% -27%

22 LC 1 Current 210.550,79 6 6.862 197.689 13.222 1.240 3.394.932 1
22 LC 1 SimILS 82.677,43 6 5.221 71.456 14.680 1.143 3.270.752 784
GAPmet. -61% - -24% -64% 11% -8% -4%



4.3.2. Solution Evaluation Experiments - Cluster 2
To conclude the experiment 2’s executions, the second phase of tests is presented. Here, the goal is to
evaluate the solution computed before (cluster 1) into a new set of data (cluster 2). As a result, both
SimILS solutions and the company’s current solution are simulated based on the cluster 2 data basis.
Table 7 presents the results.

Table 7
The summary of the experiments 2’s result - cluster 2. The first column refers to a instance’s item and the second refers to the
Material type. The LC means Large Containers and SB means Small Boxes. The third column refers to the cluster. The fourth
column indicates the solution’s origin. The fifth column depicts the OF’s value. The sixth column presents the number of routes.
The seventh column refers to the sum of all the solution’s routes distance. The eighth column points out the backorders. The
ninth column presents the total of orders supplied. The tenth column refers to the total of empties spots. The eleventh column
presents the total distance traveled. Finally, the twelfth column refers to the computational time. Also, the GAPmet.term refers
to the comparison between the values computed by the ILP and SimILS. It is computed as (CurrentV alue/SimILSV alue−1).

Item M. Clt Routes’ OF Routes Distance Back T. T. Emp. T. Time
Type Class (units) (meters) Orders Sup. Spots Traveled (sec)

10 SB 2 Current 14.018,49 4 5.800 4.218 8.642 3.303 235.034 1
10 SB 2 SimILS 9.612,34 4 4.722 890 8.773 3.251 192.253 1
GAPmet. -31% - -19% -79% 2% -2% -18%

11 SB 2 Current 206.902,12 4 3.912 198.990 51.763 20.455 908.962 1
11 SB 2 SimILS 146.387,44 4 5.223 137.165 52.681 5.278 1.046.986 1
GAPmet. -29% - 34% -31% 2% -74% 15%

21 LC 2 Current 17.273,60 6 8.313 1.619 1.857 271 702.664 1
21 LC 2 SimILS 11.442,32 6 5.214 228 2.416 352 559.594 1
GAPmet. -34% - -37% -86% 30% 30% -20%

22 LC 2 Current 153.324,79 6 6.862 140.463 13.404 1.250 3.439.588 1
22 LC 2 SimILS 46.669,43 6 5.221 35.448 14.606 1.097 3.247.471 1
GAPmet. -70% - -24% -75% 9% -12% -6%

Regarding the analysis of the results, the SimILS method outperformed the company’s solutions. It
can be confirmed by each objective function’s indicators. Moreover, the secondary KPIs were improved
in most of the cases as well. Even though the both solutions present the same number of routes for
each instance, the reader may notice that the SimILS’s solutions presented a better objective values in
all tested instances. The difference between the SimILS routes and the company’s ones relies on two
premises. The first premise concerns with how the high/low turnover materials are faced. The company
prefers set routes that join workstations, which receive materials with related consumption rate. On the
contrary, this work did not take it into account to compute solutions. As a result, materials with different
consumption rates are allowed to be mixed in the same route in this work

The second premise concerns the workstations clustering as well, but focus on its locations instead.
The company usually does not merge workstations from different areas, or logistics groups, in the same
route. By contrast, this work did not take into account any clustering limitation rule.



5. Conclusion

This work considers a real problem in a real car-assembling company that consists of finding the best
supply routes from the warehouse to workstations, which are located along an assembly line. These
routes are maintained fixed for an extensive period. However, demand is unknown. The objective is to
support the company to compute routes that are cost-efficient and do not lead to delays in production.
To the best of the authors’ knowledge, a brand-new problem to the VRP literature is presented, which
is called the In-house Logistics Routing Problem. That problem is compound by a set of premises
stated as follow: (i) the stochastic and unknown demand; (ii) the self-ask-supply approach; (iii) the long-
term and fixed routes; (iv) the driver must return to the depot after concluding the route; (v) requests
are made throughout the time-horizon; (vi) time-window constraints; (vii) backorders are allowed; (viii)
each customer is assigned to a route; (ix) the fixed-customer-sequence definition; (x) capacitated; and
(xi) homogeneous fleet. That problem is not limited to SEAT application, but all companies that share
similar concepts in their supplying/delivering processes.

So, both an ILP model to a deterministic version of the problem and a SimILS algorithm were pro-
posed to calculate suitable fixed routes. Also, a comparison between these two approaches was per-
formed. According to the results, the SimILS algorithm obtained excellent solutions, in particular for the
larger instances.

A second experiment was conducted. It compared the solutions obtained by the SimILS with the
actual company solution, using large and real data (historical data). For those cases, the SimILS al-
gorithm obtained the best overall results, considering the objective function values and computational
time. Moreover, taking into account the KPIs presented by the company, the SimILS algorithm presented
better performance than the company’s solutions in all the real-world instances evaluated.

As a result, it is possible to state that this work presents a valuable methodology to be applied to any
car-assembling company. Indeed, the methodology and the results received positive and valuable feed-
back from the company’s experts, who found it novel and interesting. So, the third conclusion refers to
the remarkable contribution to the company, as depicted by the results presented as well as the introduc-
tion of applied Operational Research methods into the strategical processes of the company.

As future work, methods that are able to solve optimally large instances of the In-house Logistics
Routing Problem should be explored, such as the branch-and-cut procedure. Moreover, extensions of the
SimILS algorithms and the simulation procedure may be improved by adding a more realistic aspect,
such as the traffic on the assembly-lines and the use of a different type of vehicles.

Finally, concerning the real application, it would be quite interesting studying the introduction of
alternatives systems that do not count with the logistics operator as the one responsible for placing orders
but an automatic-placing-order system. That study should also evaluate the most suitable management
procedure to regulate the logistics flows based on that new scenario.
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Table A1
Appendix A: Summary of the SimILS algorithm’s parameters structure.

Data Application SimILS Parameters
1st phase 2nd phase

Number of Iteration ILS 8 8
Number of Iteration LS 8 8
Fictitious Weight Route 1,000 1,000
Fictitious Weight Distance 100 1
Fictitious Weight Backorders 0.08 1
Max K-value The LS moves 10 nodes
Convoy Speed All cases 7 km/h
Convoy Capacity Large Boxes 4
Convoy Capacity Small Boxes 48
Placing a Large SKU Large Boxes 2.69 min
Placing a Small SKU Small Boxes 0.66 min


