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Abstract

We study uncertain linear complementarity problems (LCPs), that is, problems in which the LCP vector q or
the LCP matrix M may contain uncertain parameters. To this end, we use the concept of �-robust optimiza-
tion applied to the gap function formulation of the LCP. Thus, this work builds upon Krebs and Schmidt
(2020). There, we studied �-robustified LCPs for �1- and box-uncertainty sets, whereas we now focus on el-
lipsoidal uncertainty sets. For uncertainty in q or M, we derive conditions for the tractability of the robust
counterparts. For these counterparts, we also give conditions for the existence and uniqueness of their solu-
tions. Finally, a case study for the uncertain traffic equilibrium problem is considered, which illustrates the
effects of the values of � on the feasibility and quality of the respective robustified solutions.

Keywords: robust optimization; linear complementarity problems; ellipsoidal uncertainty sets; traffic equilibrium prob-
lems

1. Introduction

Linear complementarity problems (LCPs) are a powerful tool in mathematical optimization with
many applications in, for example, game theory, traffic modeling, economics, or energy markets
but also within mathematics and optimization itself. For an overview of LCPs, we refer the reader
to the seminal book by Cottle et al. (2009). As it is the case for most likely all other fields of
optimization, the main branch of research on LCPs deals with the case of certain problem data,
that is, both the matrix M and the vector q describing the specific LCP at hand are considered to be
certain. However, in many practical applications these data are not known exactly and thus subject
to uncertainty. This is, for example, the case for the future demand in energy markets modeled using
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LCPs or for the demand and travel times in traffic equilibrium models that are also often studied
using complementarity problems.

There are two major fields of optimization under uncertainty: stochastic (Kall and Wallace, 1994;
Birge and Louveaux, 2011) and robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2011).
In stochastic optimization, uncertainties are described by probability distributions and, based on
that, one usually optimizes expected values or considers chance-constrained models. In robust op-
timization, it is assumed that such distributions are not available and optimization of expected
values is replaced by optimizing the worst case that might appear with respect to given uncertainty
sets. Both routes can also be followed for uncertain LCPs. Accordingly, in the stochastic case, one
usually minimizes the expected value of the LCP’s gap function, which is called expected residual
minimization in the literature; cf., for example, Chen and Fukushima (2005), Chen et al. (2009,
2012), and Lin and Fukushima (2006) and the references therein. In this paper, we instead consider
the minimization of the worst-case gap of the LCP, that is, we follow a robust approach to uncertain
LCPs. For this setting, much less literature is available. To the best of our knowledge, the first paper
on robust LCPs is Wu et al. (2011), where the authors apply the concept of strict robustness. The
same concept has also been studied in Xie and Shanbhag (2014, 2016), where the authors consider
strict robustness for uncertain LCPs for the case of different uncertainty sets like box or ellipsoidal
uncertainties and focus on questions of tractability of the respective robust counterparts. The first
and, to the best of our knowledge, only application of the results in Xie and Shanbhag (2014, 2016)
is given in Mather and Munsing (2017), where the general theory is applied to Cournot–Bertrand
equilibria on power networks. A related study of robustified market equilibrium problems can be
found in the recent paper by Kramer et al. (2018).

One criticism often raised with respect to strictly robust optimization is that it typically leads
to highly conservative solutions because they are explicitly hedged against the worst-case scenario.
Thus, alternative robustness concepts have been developed starting with the �-approach introduced
in Bertsimas and Sim (2004) that we also study in this paper in the context of uncertain LCPs. The
�-approach for uncertain LCPs has also been studied in the recent paper by Krebs and Schmidt
(2020), where �1- and box-uncertainty sets have been considered. The present paper is an extension
of the latter work and studies �-robustified LCPs with ellipsoidal uncertainty sets.

Our contribution is the following. First, following Krebs and Schmidt (2020), we review the con-
cept of �-robust LCPs and afterward analyze in which cases we can reformulate them as a tractable,
that is, convex, optimization problem. To this end, we consider two different cases separately: un-
certainties in the LCP vector q and uncertainties in the LCP matrix M. Moreover, we consider
the related concept of ρ-robustness that has been introduced in Wu et al. (2011). For the tractable
counterparts mentioned above, we also derive conditions for the existence and uniqueness of solu-
tions. Finally, we apply the concept of �-robustified LCPs with ellipsoidal uncertainty sets to the
well-studied case of traffic equilibrium problems; see, for example, Dafermos (1980), Facchinei and
Pang (2003), and Patriksson (2015).

The remainder of the paper is structured as follows: In Section 2, we review LCPs, their gap func-
tion formulation, and state the uncertain and robustified LCP with different variants of ellipsoidal
uncertainty sets that we afterward study. Then, in Section 3, we derive counterparts for these uncer-
tainty sets, where we analyze uncertainty in the LCP vector q and in the LCP matrix M separately.
Further, we consider the concept of ρ-robustness. For the tractable counterparts, we study existence
and uniqueness of solutions in Section 4. Finally, a case study for the classic traffic equilibrium
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problem is given in Section 5 before we close the paper with a conclusion and the discussion of
some future research perspectives in Section 6.

2. Problem statement

We consider the LCP(q, M), which is the problem to find a point x ∈ R
n satisfying

0 ≤ x ⊥ Mx + q ≥ 0, (1)

where M ∈ R
n×n is a given matrix and q ∈ R

n is a given vector, or to show that no such point exists.
Here and in what follows, we use the standard ⊥-notation, which abbreviates

0 ≤ a ⊥ b ≥ 0 ⇐⇒ 0 ≤ a, b ≥ 0, a	b = 0

for vectors a, b ∈ R
n. In the following, let X := {x ∈ R

n : x ≥ 0, Mx + q ≥ 0} be the set of feasible
points of (1). The gap function formulation of the LCP (1) is the quadratic optimization problem

min
x∈Rn

g(x) := x	(Mx + q) s.t. x ≥ 0, Mx + q ≥ 0. (2)

Here, the objective function g is the so-called gap function of the LCP (1). Obviously, the objective
function g of Problem (2) is bounded from below by zero on its polyhedral feasible set X , which
ensures the existence of a minimizer by the theorem of Frank–Wolfe (Frank and Wolfe, 1956) if the
feasible set is not empty.

In this paper, we consider the situation in which the entries in the problem’s data M and q are
uncertain, that is, we have M(u1) and q(u2) with ui ∈ Ui, i = 1, 2, and Ui are given uncertainty sets.
Taking these uncertainty sets into account means that we have an infinite family of complementar-
ity problems

{0 ≤ x ⊥ M(u1)x + q(u2) ≥ 0}(u1,u2 )∈U1×U2
(3)

instead of the single nominal LCP (1). We call Problem (3) an uncertain LCP (ULCP). In this
uncertain setting, there exists a lot of work, for example, Chen and Fukushima (2005) and Chen
et al. (2009, 2012) focusing on the minimization of the expected gap function. In this paper, our
focus, however, is not on the minimization of the expected gap function. Instead, we consider worst-
case minima, that is, the robust case. Thus, we study the problem

min
x

{
sup

(u1,u2 )∈U1×U2

g(x; u1, u2) : x ∈ X (u1, u2) for all (u1, u2) ∈ U1 × U2

}
, (4)

that is, the robust feasible set is given by

X (u1, u2) := {x ∈ R
n : x ≥ 0, M(u1)x + q(u2) ≥ 0}.

Note that this can be seen as the feasible set of a semi-infinite optimization problem; see, for exam-
ple, Reemtsen and Rückmann (1998). To be more specific, we consider the �-robust setting. This
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means, there are at most �M ∈ {1, . . . , n2} many values in M(u1) and �q ∈ {1, . . . , n} =: [n] many
values in q(u2), which are uncertain and can thus realize in a worst-case way. In the paper by Krebs
and Schmidt (2020), we already considered Problem (4) for uncertainty realizing in q or M and for
box- and �1-norm uncertainty. Here, we consider the case of ellipsoidal uncertainty sets. To this
end, we define the ellipsoidal uncertainty set as

U2 := {u ∈ R
n : ‖u‖2 ≤ 1}.

Applying the �-approach to ellipsoidal uncertainty leads to the set

Ů2
� := {u ∈ R

n : ‖u‖2 ≤ 1 ∧ |{l ∈ [n] : ul �= 0}| ≤ �}.

Moreover, we also consider the convex version

U2
� := {u ∈ R

n : ‖u‖2 ≤ 1 ∧ ‖u‖1 ≤ �}.

In the recent paper by Kurtz (2018), a slightly different definition for the convex ellipsoidal un-
certainty set is introduced. There, the set

U2
�,λ :=

⎧⎨
⎩u ∈ R

n : ‖u‖2 ≤ 1 ∧
∑
l∈[n]

∣∣∣∣ ul√
λl

∣∣∣∣ ≤ �

⎫⎬
⎭

is used, where λ = (λl )l∈[n] denotes the axis-length of the ellipsoid in direction l . We will use this
concept later. With these definitions and the inequality ‖u‖1 ≤ √

n‖u‖2, we obtain ‖u‖1 ≤ √
n for

u ∈ U2.
This means that for � ≥ √

n one has U2
� = U2 and, thus, the uncertainty set U2

� can only be
smaller than U2 in cases where � <

√
n holds, that is, for problems in which only a few worst-case

deviations from the nominal values occur at the same time.

3. Tractable counterparts

In this section, we derive tractable counterparts of �-robust LCPs for uncertainties in q and M
separately. We start with uncertain LCP vector q in Section 3.1 and afterward study the case of
uncertain M in Section 3.2.

3.1. Uncertain LCP vector q

In this section, we consider uncertainties in the vector q, that is, we consider the uncertain LCP

0 ≤ x ⊥ Mx + q(u) ≥ 0, u ∈ U ,
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and the parameterization

q(u) := q0 +
∑
l∈[m]

ul ql

for u ∈ U , q0, ql ∈ R
n, l ∈ [m]. Here, the vector q0 contains the nominal values. In this case, the

robust counterpart (4) can be written as

min
x≥0

x	(Mx + q0) + max
u∈U

∑
l∈[m]

ul x	ql (5a)

s.t. 0 ≤ Mi,·x + q0
i + min

u∈U

∑
l∈[m]

ul ql
i , i ∈ [n]. (5b)

Note that the minimization problems in (5b) do not depend on the variables x. For a shorter nota-
tion, we define

pi := min
u∈U

∑
l∈[m]

ul ql
i , i ∈ [n]. (6)

In a first step, we consider the nonconvex ellipsoidal uncertainty set Ů2
� and state a reformulation

of Problem (5).

Theorem 1. Let the uncertainty set be Ů2
�. Then, Problem (5) is equivalent to

min
z≥0

x	(Mx + q0) + μ (7a)

s.t. Mi,·x + q0
i + pi ≥ 0, i ∈ [n], (7b)

μ2 ≥ �α +
∑
l∈[m]

βl , (7c)

α + βl ≥ (x	ql )2, l ∈ [m], (7d)

where z := (x	, α, β	, μ)	.

Proof. As max{u	v : u ∈ U2} = ‖v‖2 holds for v ∈ R
n and since at most � components of the un-

certain vector u are nonzero in Ů2
�, we obtain

max
u∈Ů2

�

∑
l∈[m]

ul x	ql =
√

max
{L⊆[m]:|L|≤�}

∑
l∈L

(x	ql )2. (8)

By introducing a nonnegative variable μ, we can rewrite Problem (5) as

min
x≥0,μ≥0

x	(Mx + q0) + μ (9a)

s.t. Mi,·x + q0
i + pi ≥ 0, i ∈ [n], (9b)
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μ2 ≥ max
{L⊆[m]:|L|≤�}

∑
l∈L

(x	ql )2. (9c)

In a second step, we reformulate the inner maximization problem in (9c) to

max
z∈{0,1}m

∑
l∈[m]

(x	ql )2zl s.t.
∑
l∈[m]

zl ≤ �.

Now, we use its tight convex relaxation (see, for example, Proposition 1 in Sim (2004)) and the
corresponding dual problem

min
α≥0,β≥0

α� +
∑
l∈[m]

βl s.t. α + βl ≥ (x	ql )2, l ∈ [m],

to obtain the claim of the theorem. �
Note that the Reformulation (7) contains inner minimization problems (see the definition of pi in

(6)) in the Constraints (7b). Since pi, i ∈ [n], does not depend on the variables x, it can be computed
before solving Problem (7). Using the fact that at most � many parameters realize in a worst-case
way and since max{u	v : u ∈ U2} = ‖v‖2 holds for v ∈ R

n, we obtain

pi = −
√

max
{L⊆[m]:|L|≤�}

∑
l∈L

(ql
i )

2 (10)

for each i ∈ [n].

Remark 1. Unfortunately, as Constraint (7c) is nonconvex quadratic, the optimization problem (7)
is, in general, not tractable.

In a second step, we consider the convex ellipsoidal uncertainty set U2
� and give a reformulation

of Problem (5). In this case, we obtain a tractable convex optimization problem.

Theorem 2. Let the uncertainty set be U2
�. Then, Problem (5) can be reformulated as

min
z≥0

x	(Mx + q0) + α� + ‖β‖2 (11a)

s.t. Mi,·x + q0
i + pi ≥ 0, i ∈ [n], (11b)

α + βl ≥ |x	ql |, l ∈ [m], (11c)

where z := (x	, α, β	)	.

Proof. First, we rewrite the inner optimization problem in the objective function (5a). For that
reason, we mention that with (ui)i∈[m] ∈ U2

�, the vector (u1, . . . , ui−1, −ui, ui+1, . . . , um)	 for each
i ∈ [m] is contained in U2

�, too. This is why we can replace the maximization problem

max
u∈U2

�

∑
l∈[m]

ul x	ql
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with

max
u∈U2,u≥0

∑
l∈[m]

ul |x	ql | s.t.
∑
l∈[m]

ul ≤ �. (12)

Now, we state its dual problem and then use strong duality to reformulate (5a). We are able to do
this because Slater’s condition is satisfied for Problem (12) due to the fact that � > 0 holds. The
Lagrangian of (12) with multipliers α ≥ 0 and ωl ≥ 0, l ∈ [m], reads

L(u, α, ω) =
∑
l∈[m]

ul |x	ql | − α

⎛
⎝∑

l∈[m]

ul − �

⎞
⎠ +

∑
l∈[m]

ωl ul

=
∑
l∈[m]

ul (|x	ql | − α + ωl ) + α�.

Then, the dual problem of (12) is given by

min
α≥0,ω≥0

φ(α, ω) (13)

with

φ(α, ω) := max
u∈U2

L(u, α, ω).

As max{u	v : u ∈ U2} = ‖v‖2 holds for v ∈ R
m, one has

φ(α, ω) =
√∑

l∈[m]

(|x	ql | − α + ωl )2 + α�.

Now, we can rewrite Problem (13) as

min
α≥0,ω≥0,β

‖β‖2 + α� s.t. βl = |x	ql | − α + ωl , l ∈ [m]. (14)

In a last step, we note that we can restrict us to the case β ≥ 0: Assume that (α, ω, β ) is an
optimal solution of (14) with βl < 0 for at least one index l ∈ [m]. From feasibility of (14), we
obtain |x	ql | − α < 0. This is a contradiction to optimality since choosing ωl such that βl =
|x	ql | − α + ωl = 0 would lead to a solution with lower objective function value. We also note
that we can eliminate the slack variables ω. Thus, the dual problem reads

min
α≥0,β≥0

‖β‖2 + α� s.t. βl ≥ |x	ql | − α, l ∈ [m].

Using strong duality, due to the fact that Slater’s condition is satisfied, the claim follows. �
If we assume that the matrix M is positive semidefinite, we obtain a tractable robust counterpart.
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Corollary 1. Let M be positive semidefinite. Then, the robust counterpart (11) is equivalent to the
convex (and tractable) optimization problem

min
z≥0

x	(Mx + q0) + α� + μ (15a)

s.t. Mi,·x + q0
i + pi ≥ 0, i ∈ [n], (15b)

α + βl ≥ x	ql , l ∈ [m], (15c)

α + βl ≥ −x	ql , l ∈ [m], (15d)

μ ≥ ‖β‖2, (15e)

where z := (x	, α, β	, μ)	.

Proof. The Constraints (15c) and (15d) are reformulations of (11c). �
Remark 2. Note that each constraint i ∈ [n] in (11b) and (15b), respectively, contains an inner
optimization problem denoted by pi given in (6). In the case of the uncertainty set U2

�, it is an
convex optimization problem because U2

� is a convex set and we have a linear objective function.

Next, we briefly consider the uncorrelated ellipsoidal uncertainty specified in the following as-
sumption.

Assumption 1. The uncertainty vector is given by q(u) := q0 + u with u ∈ {u ∈ R
n : u	
u ≤ 1} for

a positive definite diagonal matrix 
 ∈ R
n×n.

Corollary 2. Suppose that Assumption 1 holds. Then, the robust counterpart (5) reads

min
z≥0

x	(Mx + q0) + α� + μ, (16a)

s.t. Mi,·x + q0
i − λ

− 1
2

i ≥ 0, i ∈ [n], (16b)

α + βi ≥ xiλ
− 1

2
i , i ∈ [n], (16c)

μ ≥
√∑

i∈[n]

β2
i , (16d)

where λi, i ∈ [n], are the eigenvalues of 
 and z := (x	, α, β	, μ)	.

Proof. With qi := λ
−1/2
i ei, i ∈ [n], and unit vectors ei, we can write q(u) = q0 + ∑

i∈[n] uiqi and u ∈
U2

�. Then, the claim follows by Corollary (1) and

pi = − max
u∈U2

�

−
∑
l∈[n]

ul ql
i = −qi

i = −λ
− 1

2
i . �

Remark 3. The mathematical model of the robust counterpart (5) for the uncertainty set U2
�,λ, as

discussed in Kurtz (2018), is given in the master thesis by Müller (2019). There it is shown that it can
be formulated as a tractable optimization problem, which is achieved by using the same techniques
as used in this section. As this uncertainty set only leads to more complicated notation, we decided
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to present the results for the notationally simpler uncertainty sets in the section for the ease of
better reading.

We close this section by a brief discussion about ρ-robustness as it is introduced in Wu et al.
(2011). The proof of the following theorem is analogous to the one of Theorem 3.12 given in Krebs
and Schmidt (2020) in case of ρ-robustness. We consider the uncertain set U2

� and an uncertain
vector q; cf. Theorem 2.

Theorem 3. Let M be positive semidefinite. Then, x is a ρ-robust LCP solution if and only if there
exist α ∈ R and βl ∈ R, l ∈ [m], that satisfy

x	(Mx + q0) + α� + ‖β‖2 ≤ ρ,

Mi,·x + q0
i + pi ≥ 0, i ∈ [n],

α + βl − |x	ql | ≥ 0, l ∈ [m],

α ≥ 0,

xi ≥ 0, i ∈ [n],

βl ≥ 0, l ∈ [m].

3.2. Uncertain LCP matrix M

In this section, we consider uncertainty in the LCP matrix M, that is, we consider the uncertain
LCP

0 ≤ x ⊥ M(u)x + q ≥ 0, u ∈ U ,

and the parameterization

M(u) := M0 +
∑
l∈[m]

ul Ml

for u ∈ U and positive semidefinite matrices M0, Ml ∈ R
n×n, l ∈ [m]. Here, the matrix M0 contains

the nominal values. As it was the case for uncertainty in q in the last section, we analyze the robust
counterpart

min
x≥0

x	(M0x + q) + max
u∈U

∑
l∈[m]

ul x	Ml x (17a)

s.t. M0
i,·x + qi + min

u∈U

∑
l∈[m]

ul Ml
i,·x ≥ 0, i ∈ [n], (17b)

for the different uncertainty sets U introduced in Section 2. First, we consider the nonconvex ellip-
soidal uncertainty set Ů2

�.
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Theorem 4. Let the uncertainty set be Ů2
�. Then, Problem (17) can be reformulated as

min
z≥0,η≥0,μ≥0

x	(M0x + q) + η (18a)

s.t. η2 ≥ α� +
∑
l∈[m]

βl , (18b)

α + βl ≥ (x	Ml x)2, l ∈ [m], (18c)

M0x + q − μ ≥ 0, (18d)

μ2
i = γi� +

∑
l∈[m]

δi,l , i ∈ [n], l ∈ [m], (18e)

γi + δi,l ≥ (Ml
i,·x)2, i ∈ [n], l ∈ [m], (18f)

where z := (x	, α, β	, γ 	, δ	)	.

Proof. With the same strategies as they are used for the case of uncertainty in q, we reformulate
Problem (17). In a first step, we consider the inner maximization problem in the objective function.
Again we use the fact that

max
u∈U2

u	(x	M1x, . . . , x	Mmx)	 = ‖(x	M1x, . . . , x	Mmx)	‖2

holds. As at most � components of u are nonzero in Ů2
�, we have

max
u∈Ů2

�

∑
l∈[m]

ul x	Ml x =
√

max
{L⊆[m]:|L|≤�}

∑
l∈L

(x	Ml x)2.

Hence, we consider

min
x≥0,η≥0

x	(M0x + q) + η (19a)

s.t. max
{L⊆[m]:|L|≤�}

∑
l∈L

(x	Ml x)2 ≤ η2, (19b)

M0
i,·x + qi + min

u∈Ů2
�

∑
l∈[m]

ul Ml
i,·x ≥ 0, i ∈ [n], (19c)

instead of Problem (17). With the same argumentation as in the previous proofs, we state and use
the dual problem to reformulate the inner maximization problem in (19b). This means, we use the
dual problem

min
α≥0,β≥0

α� +
∑
l∈[m]

βl s.t. α + βl ≥ (x	Ml x)2, l ∈ [m],
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of

max
z

∑
l∈[m]

(x	Ml x)2zl ,

s.t.
∑
l∈[m]

zl ≤ �,

0 ≤ zl ≤ 1, l ∈ [m],

which is the convex relaxation of the maximization problem in Constraint (19b). Now, we use the
same techniques for the reformulation of the inner minimization problems in the Constraints (19c).
We can replace these constraints by

M0
i,·x + qi − μi ≥ 0, μ2

i = max
{L⊆[m]:|L|≤�}

∑
l∈L

(Ml
i,·x)2, μi ≥ 0, i ∈ [n], (20)

because

min
u∈Ů2

�

∑
l∈[m]

ul Ml
i,·x = − max

u∈Ů2
�

∑
l∈[m]

ul
(−Ml

i,·x
) = −

√
max

{L⊆[m]:|L|≤�}

∑
l∈L

(Ml
i,·x)2

holds. Using again a dual problem of the inner maximization problem in (20) with dual variables γi
and δi,l , i ∈ [n], l ∈ [m], we obtain

M0
i,·x + qi − μi ≥ 0, i ∈ [n],

μ2
i = γi� +

∑
l∈[m]

δi,l , i ∈ [n], l ∈ [m],

γi + δi,l ≥ (Ml
i,·x)2, l ∈ [m],

γi ≥ 0, i ∈ [n],

δi,l ≥ 0, i ∈ [n], l ∈ [m]

for the Constraints (19c) and the claim follows. �
As it was the case for the uncertainty set Ů2

� and uncertainty in q, Model (18) is not convex. We
see in the following that we obtain a tractable reformulation of the robust counterpart (17) for the
convex uncertainty set U2

�.

Theorem 5. Let the uncertainty set be U2
�. Then, Problem (17) is equivalent to

min
z≥0

x	(M0x + q) + α� + ‖β‖2 (21a)

s.t. M0
i,·x + qi − γi� − ‖δi‖2 ≥ 0, i ∈ [n], (21b)

α + βl ≥ x	Ml x, l ∈ [m], (21c)
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γi + δi,l ≥ |Ml
i,·x|, i ∈ [n], l ∈ [m], (21d)

where z := (x	, α, β	, γ 	, δ	)	.

Proof. First, we rewrite the inner optimization problem in the objective function (17a). As all
matrices Ml , l ∈ [m], are positive semidefinite, we can restrict ourselves to the case u ≥ 0. Then,
this problem is equivalent to

max
u∈U2,u≥0

∑
l∈[m]

ul x	Ml x s.t.
∑
l∈[m]

ul ≤ �.

With the same arguments as in the proof of Theorem 2, we replace this problem with its dual
problem

min
α≥0,β≥0

‖β‖2 + α� s.t. α + βl ≥ x	Ml x, l ∈ [m].

Again, with the same arguments as in the proof of Theorem 2, we can replace each inner minimiza-
tion problem in (17b) with

− max
u∈U2,u≥0

∑
l∈[m]

ul | − Ml
i,·x| s.t.

∑
l∈[m]

ul ≤ �

and its dual problem

− min
γi≥0,δi≥0

‖δi‖2 + γi� s.t. γi + δi,l ≥ |Ml
i,·x|, l ∈ [m].

Note that we make use of strong duality. We are able to do so, as Slater’s condition is satisfied with
the same argument as in proof of Theorem 2. �

With analogous arguments as used for the tractability in Corollary 1, we obtain the following
corollary.

Corollary 3. The robust counterpart (21) is equivalent to the convex optimization problem

min
z≥0

x	(M0x + q) + α� + ‖β‖2 (22a)

s.t. M0
i,·x + qi − γi� ≥

√∑
l∈[m]

δ2
i,l , i ∈ [n], (22b)

α + βl ≥ x	Ml x, l ∈ [m], (22c)

γi + δi,l ≥ Ml
i,·x, l ∈ [m], i ∈ [n], (22d)

γi + δi,l ≥ −Ml
i,·x, l ∈ [m], i ∈ [n], (22e)

where z := (x	, α, β	, γ 	, δ	)	.
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Before we close this section, we consider the robust counterpart for the uncertainty set U2
�,λ

discussed in Kurtz (2018). As the following result (in contrast to the case of uncertain q) is not
given in Müller (2019), we also state and proof the result here.

Theorem 6. Let the uncertainty set be U2
�,λ. Then, Problem (17) can be reformulated as the tractable

optimization problem

min
z≥0

x	(M0x + q) + α� + ‖β‖2

s.t. βl + α√
λl

≥ x	Ml x, l ∈ [m],

M0
i,·x + qi + p̂i ≥ 0, i ∈ [n],

with

p̂i := min
u∈U2

�,λ

∑
l∈[m]

ul Ml
i,·x

for i ∈ [n] and z := (x	, α, β	)	.

Proof. To prove this theorem, we proceed as in the proof of Theorem 2. Here, we have the opti-
mization problem

max
u∈U2,u≥0

∑
l∈[m]

ul x	Ml x s.t.
∑
l∈[m]

ul√
λl

≤ �

instead of (12). Its Lagrangian reads

L(u, α, ω) :=
∑
l∈[m]

ul

(
x	Ml x − α√

λl
+ ωl

)
+ α�

and in this case, Problem (13) is given by

min
z≥0

x	(M0x + q) + α� + ‖β‖2 s.t. βl + α√
λl

≥ x	Ml x, l ∈ [m],

where z := (x	, α, β	)	. We are able to use strong duality because Slater’s condition is always sat-
isfied. Each p̂i, i ∈ [n], is given by a convex optimization problem, which completes the proof. �

As it was the case in the section before, we close this section by a brief discussion about ρ-
robustness. Again, the proof of the following theorem is analogous to the one of Theorem 4.10
given in Krebs and Schmidt (2020). Here, we consider the uncertain set U2

�, an uncertain matrix M,
and obtain the following theorem.

Theorem 7. Let M0, Ml , l ∈ [m], be positive semidefinite. Then, x is a ρ-robust LCP solution if and
only if there exist α ∈ R,βl ∈ R, l ∈ [m], γi ∈ R, i ∈ [n], and δi,l ∈ R, i ∈ [n], l ∈ [m], that satisfy

x	(M0x + q) + α� + ‖β‖2 ≤ ρ
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M0
i,·x + qi − γi� − ‖δi‖2 ≥ 0, i ∈ [n],

α + βl − x	Ml x ≥ 0, l ∈ [m],

γi + δi,l − |Ml
i,·x| ≥ 0, i ∈ [n], l ∈ [m],

α ≥ 0,

xi, γi ≥ 0, i ∈ [n],

βl ≥ 0, l ∈ [m],

δi,l ≥ 0, i ∈ [n], l ∈ [m].

4. Existence and uniqueness

In this section, we investigate the existence and uniqueness of solutions for the tractable counter-
parts (15) and (22) established in the previous section. Up to this point, we only know that the
objective function of these optimization problems are bounded from below by zero on the respec-
tive feasible sets. For a quadratic function that is bounded from below on a nonempty and convex
polyhedron, the Frank–Wolfe theorem implies the existence of a minimum. If we consider, for ex-
ample, the tractable robust counterpart (15), we face a quadratic objective, which is convex (as M
is positive semidefinite), linear constraints, and a single second-order cone constraint. Thus, the
question arises if there exists a Frank–Wolfe type theorem guaranteeing that an infimum is attained
for this model. To see that this is the case, we have to review the concepts of quasi-Franke-and-
Wolfe sets and recession cones of sets and functions. First, we introduce quasi-convex functions
and quasi-Franke-and-Wolfe sets as given in Martinez-Legaz et al. (2018). A function f : R

n → R

is called quasi-convex on a convex set C ⊆ R
n, if the sublevel sets of f : C → R are convex. Further,

a convex set C ⊆ R
n is called a quasi-Frank-and-Wolfe set, if every quadratic function f , which is

quasi-convex and bounded from below on C, attains its infimum on C.
Let us briefly review the literature on quasi-Frank-and-Wolfe sets. If we consider the set C :=

{x ∈ R
n : fi(x) ≤ 0, i ∈ [m]} with m ∈ N and (quasi-)convex functions fi : R

n → R, C is convex due
to the fact that all sublevel sets of (quasi-)convex functions are convex. If all functions fi, i ∈ [m],
are convex quadratic or linear, then C is a quasi-Frank-and-Wolfe set as shown in Luo and Zhang
(1999). An extension to convex polynomial functions fi is given in Belousov and Klatte (2002) and
an extension for fi being a (quasi-)convex polynomial is given in Obuchowska (2006). Unfortu-
nately, the property of C being a quasi-Frank-and-Wolfe set does no longer hold if all fi define
general second-order cone constraints, that is, if fi(x) = ‖Aix + bi‖2 − x	ci − di with Ai ∈ R

n×n,
bi, ci, di ∈ R

n for all i ∈ [m]. This is shown in Martinez-Legaz et al. (2018) using the following ex-
ample.

Example 1. Let f : R
3 → R be given by f (x) := (x1 − 1)2 − x2 + x3 and define C := {x ∈ R

3 :√
x2

1 + x2
2 ≤ x3}. Then, f does not attain its infimum on C. First, note that f is bounded from

below by zero on C and for the set of points xλ := (1, λ,
√

1 + λ2), λ ∈ R, it holds f (xλ) → 0 for
λ → ∞. This implies that infx∈C f (x) = 0. Second, this infimum cannot be attained because the

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



V. Krebs et al. / Intl. Trans. in Op. Res. 29 (2022) 417–441 431

function value of f is strictly positive on C. This follows from the fact that for x ∈ C with x1 = 0,
we have x3 ≥ x2, and if x1 �= 0, it holds x3 > x2.

Consequently, the question arises if we can guarantee the existence of solutions for the specific
optimization problems (15) and (22). For the following existence theorems, we need the notions of
recession cones of sets and functions. The recession cone RC of a nonempty convex set C is given
by

RC := {d : x + λd ∈ C for all x ∈ C and for all λ ≥ 0}.
An element d ∈ RC is called a direction of recession of C. If the set C is additionally closed, then
one can show that d is a direction of recession if and only if there exists a vector x ∈ C such that
x + λd ∈ C for all λ ≥ 0. For a closed proper convex function f : R

n → (−∞, ∞], the recession
cone of the nonempty level sets {x ∈ R

n : f (x) ≤ r}, r ∈ R, is the recession cone of f and is denoted
by R f . Now, we are able to state a characterization for the existence of solutions of an optimization
problem.

Theorem 8 (Proposition 3.2.2 in Bertsekas (2009)). Let C be a closed convex subset of R
n and let f :

R
n → (−∞, ∞] be a closed convex function such that C ∩ dom( f ) �= ∅. Then, the set of minimizing

points of f over C is nonempty and compact if and only if C and f have no common nonzero direction
of recession.

In the following, we consider again the setting from Example 1 and show that the set of minimiz-
ers is empty.

Example 2. Let f and C be defined as in Example 1. The recession cone RC of C is equal to C. Now,
we show that 0 �= d := (0, 1, 1)	 is a direction of recession of f and C. To this end, let λ ≥ 0. Next,
we show x + λd ∈ C for all x ∈ C. It holds

x2
1 + (x2 + λ)2 = x2

1 + x2
2 + 2λx2 + λ2.

Due to
√

x2
1 + x2

2 ≤ x3, the right-hand side is at most x2
3 + 2λx2 + λ2. Using x2 ≤ x3 for all x ∈ C,

we obtain x2
3 + 2λx3 + λ2 = (x3 + λ)2. This means, we have x + λd ∈ C and, thus, d ∈ RC . As f is

constant in direction d , the vector d is a common nonzero direction of recession. Using Theorem 8,
the set of minimizers of f over C is empty.

Using Theorem 8, we can show that our robust counterpart (15) has a solution under mild as-
sumptions.

Theorem 9. Suppose that Problem (15) is feasible and that M is positive semidefinite. Further assume
that there exists an l ∈ [m] for each i ∈ [n] with ql

i �= 0. Then, there exists a solution of Problem (15).

Proof. Let y := (x	, α, β	, μ)	 ∈ R
n+m+2 and C be the set of feasible points of Problem (15), that

is,

C := {y ∈ R
n+m+2
≥0 : y satisfies Constraints (15b) –(15e)}.

Further, we define f (y) := x	(Mx + q0) + α� + μ, which is the objective function of (15). Note
the following two facts:
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(a) f is bounded from below by zero on C.
(b) For all directions of recession d := (d	

x , dα, d	
β , dμ)	 ∈ RC it holds d ≥ 0. Otherwise, if there

exists a component di < 0, we can choose for each y ∈ C a λ ≥ 0 such that yi + λdi < 0. This
implies that y + λd �∈ C, which contradicts d ∈ RC .

In order to apply Theorem 8, we have to show that R f ∩ RC = {0} holds with

R f := {d ∈ R
n+m+2 : f (y + λd ) ≤ r ∀λ ≥ 0 and y ∈ R

n+m+2 with f (y) ≤ r}.
There exists a vector y ∈ C satisfying f (y) ≤ r for an r ∈ R. Otherwise, all feasible points have an
unbounded, positive function value and dom( f ) ∩ C = ∅. This means, there exists a feasible point
at which the objective function is defined. In the following, let d ∈ RC be a nonzero direction of
recession. Then, we have to show that f (y + λd ) → ∞ holds for λ → ∞. We have

f (y + λd ) = (x + λdx)	(M(x + λdx) + q0) + (α + λdα )� + (μ + λdμ). (23)

Now, we consider the two cases dx = 0 and dx �= 0. First, let dx = 0. If, additionally, (dα, dμ) = 0,
there exists an l ∈ [m] with dβl �= 0 because d �= 0 holds. So, dβl > 0 follows from Fact (b). Con-
straint (15e) implies μ + λdμ ≥ ‖β + λdβ‖2 for all λ ≥ 0. As there exists for each value s ∈ R a
scalar λs ≥ 0 such that s < ‖β + λsdβ‖2 holds, the left-hand side has to increase with increasing val-
ues of λ. Thus, it is not possible that dμ = 0. Hence, we can assume that (dα, dμ) �= 0. In this case,
Equation (23) reads f (y + λd ) = f (y) + λ(dα� + dμ) and with the preceding arguments we have
f (y + λd ) → ∞ for λ → ∞. Second, let dx �= 0. Then, there exists an index i ∈ [n] such that dxi �= 0
holds. Using the assumption of the theorem, there exists some index l ∈ [m] such that dxi q

l
i �= 0.

Condition (15c) and (15d) imply (α + βl ) + λ(dα + dβl ) ≥ |x	ql + λd	
x ql | and with increasing λ,

the right-hand side increases, and so the left-hand side must increase as well. Thus, dα + dβl > 0
holds. If dβl > 0, it follows from Constraint (15e) that dμ �= 0. Hence, we obtain (dα, dμ) �= 0 and
(α + λdα )� + (μ + λdμ) → ∞ for λ → ∞. The first term on the right-hand side in (23) is nonzero
because d is a direction of recession, thus, y + λd satisfies Constraint (15b), and each pi is due to
its Definition (6) nonpositive. This proves the claim. �

The analogous result for the robust counterpart (22) can be shown using the same techniques as
in the last proof.

Theorem 10. Suppose that Problem (22) is feasible, that M0, . . . , Mm are positive semidefinite, and
that at least one Mi, i ∈ [m], is positive definite. Then, there exists a solution of Problem (22).

Up to this point, we have addressed the existence of solutions. In a next step, we also consider
the uniqueness of solutions.

Theorem 11. Suppose that the matrix M in Problem (15) is positive definite. Then, Problem (15) is
feasible and the solution is unique in x if it exists.

Proof. As M is positive definite, there exists a vector x ≥ 0 satisfying Mx > 0. Thus we can choose
a λ ≥ 0 sufficiently large such that λMx ≥ −q0 − p holds. Here, p ∈ R

n is the vector containing
all pi given in (6). Note that p can be computed a priori. Then, we define x̂ := λx. Hence, α = 0,
βl := x̂	ql , l ∈ [m], and μ = ‖β‖2 is a feasible solution of Problem (15). The uniqueness of the
x-variables is a direct consequence of Mangasarian (1988). �
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Using Mangasarian (1988), we also obtain the analogous statement for Problem (22).

Proposition 1. Suppose that the matrix M0 in Problem (22) is positive definite. Then, the solution of
Problem (22) is unique in x if it exists.

In the light of Example 4.11 in Krebs and Schmidt (2020), we do not expect uniqueness of the
other variables (besides x) in Problem (15) and (22).

Let us close this section with a final remark. Here, we studied the existence and uniqueness of
solutions for the case of the uncertainty set U2

�. We think that the consideration of existence and
uniqueness for the case of the uncertainty set Ů2

� would require different techniques and is, thus,
out of scope of this paper but is a reasonable topic of future research.

5. Case study: The uncertain traffic equilibrium problem

In this section, we exemplarily apply �-robustifications to the well-studied traffic equilibrium prob-
lem (TEP). We first review a standard complementarity modeling for the TEP in Section 5.1, con-
sider uncertain data in Section 5.2, and finally discuss some numerical results in Section 5.3.

5.1. Complementarity modeling of deterministic traffic equilibrium problems

In this section, we review the modeling of the deterministic TEP as a complementarity problem. We
consider a network modeled by a graph G := (N, A), where N denotes the set of nodes and A the
set of arcs. Further, the subset O ⊆ N is the set of origin nodes and D ⊆ N is the set of destination
nodes with O ∩ D = ∅. For an origin-destination (OD) pair p ∈ P ⊆ O × D, the set R(p) contains
the set of cycle-free routes in G for the node pair p and hr is the flow on route r ∈ R := ∪p∈PR(p),
that is, R is the set of all routes. The travel costs tr(h) along route r ∈ R depend on the flow h :=
(hr)r∈R and the minimal costs for an OD pair p ∈ P is denoted by τp. The function dp(τ ) models
the demand between the OD pair p ∈ P for τ := (τp)p∈P. In what follows, we consider the so-called
additive model, that is, the total costs on a route are given as the sum of the costs on each arc of
the route. This means, if fa denotes the flow on arc a ∈ A and ca( f ) is the respective cost function,
then

tr(h) =
∑
a∈A

�a,rca( f )

holds with f := �h, � := (�a,r)a∈A,r∈R ∈ {0, 1}|A|×|R| and

�a,r :=
{

1, if a ∈ r,
0, else.
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Based on Wardrop’s principle, one is interested in equilibria in which each driver minimizes her
travel costs (Wardrop, 1952; Wardrop and Whitehead, 1952). This means we are interested in the
solution of

0 ≤ hr ⊥ tr(h) − τp ≥ 0, r ∈ R(p), p ∈ P. (24)

A flow is called feasible if it satisfies the demand, that is, if∑
r∈R(p)

hr − dp(τ ) = 0, p ∈ P, τp ≥ 0 (25)

holds. We now want to rewrite (25) as a complementarity constraint, which is possible under some
mild assumptions. For a proof of the following theorem, see Section 1.4.5 in Facchinei and Pang
(2003).

Theorem 12. Suppose that the cost and demand functions are nonnegative and that the flow h ≥ 0
satisfies∑

r∈R(p)

hrtr(h) = 0 ⇒ hr = 0 for all r ∈ R(p) (26)

for each OD pair p ∈ P. Then, (24) and (25) are satisfied if and only if (24) and

0 ≤ τp ⊥
∑

r∈R(p)

hr − dp(τ ) ≥ 0 (27)

are satisfied for all p ∈ P.

Note that also (26) has a natural interpretation: It means that, for any OD pair, the demand is
only over-satisfied if the minimal travel costs are zero. Using Theorem 12, we can thus state the
TEP as the (nonlinear) complementarity system

0 ≤
(

h
τ

)
⊥

(
t(h) − �	τ

�h − d (τ )

)
≥ 0,

where �p,r ∈ {0, 1} for all p ∈ P, r ∈ R, and

�p,r :=
{

1, if r ∈ R(p),
0, else.

If the cost and demand functions are affine, we obtain an LCP. Being more specific, if the costs
are of the form t(h) = T h + t and if the demand is given by d (τ ) = Dτ + d with matrices T and D
and vectors t and d of suitable dimensions, the above complementarity system can be written in the
form of (1) with

x :=
(

h
τ

)
, M :=

[
T −�	

� −D

]
, q :=

(
t

−d

)
.
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If, in addition, the arc flow costs c( f ) := (ca( f ))a∈A are affine, that is, c( f ) = C f + c for a matrix C
and a vector c of suitable dimension, then the path-cost function can be written (in the additive
model) as t(h) = �	c( f ) = �	(C�h + c).

5.2. Uncertain demand and costs

In the last section, we reviewed the standard complementarity formulation for the determinis-
tic TEP. In what follows, we consider the cases of uncertain demand and costs. First, we in-
vestigate the TEP with affine cost and demand functions. Moreover, the affine part d of the
demand function d (τ ) is considered to be uncertain and the uncertainty is parameterized by
d (u) = d0 + ∑

p∈P upd p for U ∈ U ⊆ R
|P| and vectors d p ∈ R

|P| for all OD pairs p ∈ P. Then, the
parameters for the uncertain model in Formulation (5) are

M =
[

T −�	

� −D

]
, q0 =

(
t

−d0

)
, qp =

(
0

−d p

)
.

Further, we make the structural assumption that d p is given by d p = d̄pep, where d̄p ≥ 0 and ep is
the pth unit vector for p ∈ P. In this case, Theorem 2 states that the robust counterpart is given by

min
z≥0

h	(T h + t) − τ	(Dτ + d0) + α� + ‖β‖2 (28a)

s.t. Tr,·h + tr − �	
r,·τ ≥ 0, r ∈ R, (28b)

�p,·h − (Dp,·τ + d0
p ) − d̄p ≥ 0, p ∈ P, (28c)

α + βp ≥ τpd̄p, p ∈ P, (28d)

with z := (h	, τ	, α, β	)	. This problem is convex if T is positive semidefinite and if D is nega-
tive semidefinite. These assumptions are reasonable in many practical applications. Consider, for
instance, the setting in which arc flow costs only depend on the arc’s flow or in which the demand
of an OD-pair does not depend on the demands of other OD-pairs. In this case, T and D are di-
agonal matrices and the mentioned definiteness of the matrices correspond to the monotonicity of
minimal travel costs and demand.

Next, we consider uncertain costs. To this end, let the affine uncertain arc-cost functions be
given as c( f , u) = C(u) f + c, where the uncertain matrix C(u) is parameterized by C(u) = C0 +∑

a∈A uaCa with positive semidefinite matrices C0 and Ca for a ∈ A. By using t(h) = T (u)h + t, the
respective uncertain path-cost matrix can be obtained via t(h) = �	C(u)� + �	c and is thus given
by T (u) = �	C(u)�. Moreover, using the notation T 0 = �	C0� and T a = �	Ca� for a ∈ A, we
obtain T (u) = T 0 + ∑

a∈A uaT a. Note that T 0 and T a are positive semidefinite for all a ∈ A if C0

and Ca, a ∈ A, are positive semidefinite. Defining

M0 :=
[

T 0 −�	

� −D

]
, Ma :=

[
T a 0
0 0

]
for a ∈ A, q :=

(
t

−d

)
,
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we obtain for u ∈ U2
� the convex robust counterpart

min
z≥0

h	(T 0h + t) − τ	(Dτ + d0) + α� + ‖β‖2 (29a)

s.t. T 0
r,·h − �	

r,·τr + tr − γr� ≥
√∑

a∈A

δ2
r,a, r ∈ R, (29b)

�p,·h − Dp,·τ + dp ≥ 0, p ∈ P, (29c)

α + βa ≥ h	T ah, a ∈ A, (29d)

γr + δr,a ≥ |T a
r,·h|, a ∈ A, r ∈ R, (29e)

where z := (h	, τ	, α, β	, γ 	, δ	)	.
Before we discuss the computational results, we also briefly consider the combination of uncer-

tain demand and uncertain costs. In this case, we can easily combine the two given robust coun-
terparts (28) and (29). This is possible because we consider the independent uncertainty model
M(u1)x + q(u2) ≥ 0 with u1 ∈ U1 and u2 ∈ U2 instead of (u1, u2) ∈ U . Thus, the combined robust
counterpart model reads

min
z≥0

h	(T 0h + t) − τ	(Dτ + d0) + α� + ‖β‖2 + α̂�̂ + ‖β̂‖2 (30a)

s.t. �p,·h − (Dp,·τ + d0
p ) − d̄p ≥ 0, p ∈ P, (30b)

α̂ + β̂p ≥ τpd̄p, p ∈ P, (30c)

T 0
r,·h − �	

r,·τr + tr − γr� ≥
√∑

a∈A

δ2
r,a, r ∈ R, (30d)

α + βa ≥ h	T ah, a ∈ A, (30e)

γr + δr,a ≥ |T a
r,·h|, a ∈ A, r ∈ R, (30f)

with z := (h	, τ	, α, β	, γ 	, δ	, α̂, β̂ )	.

5.3. Computational results

For completeness, we stated all three robustified versions of the TEP in the last section. In this
section, we exemplarily study the case of uncertain arc-flow costs numerically and highlight some
effects of the LCP’s robustification. To this end, we consider the 5-node network given in Fig. 1,
which is also studied in Xie and Shanbhag (2016). The uncertain arc-flow costs are given in the sec-
ond column of Table 1 with u ∈ [−1, 1]7; u = 0 corresponds to the nominal case. The nominal arc-
flow cost matrix C0 is given as the diagonal matrix of the flow factors and, for instance, the matrix
Ca1 is given by diag(0.01125, 0, . . . , 0) and so on. The cost vector c is given by (3, 5, 6, 4, 6, 4, 1)	.
The certain demand is d0 = (200, 220)	 and the route-cost matrices T 0, T a1, . . . , T a7 are given as
shown in the previous section.
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Fig. 1. 5-node network.

Table 1
Uncertain arc-cost model calibration as well as nominal flows (� = 0) and the �-robust (� ∈ {1, 2, 3}) arc flows in per-
centage with respect to the nominal flow for the 5-node network in Fig. 1

Arc Uncertain cost model Nominal flow � = 1 � = 2 � = 3

a1 (1 + ua1 ) · 0.01125 f + 3 269.20 0.98 1.01 1.02
a2 (1 + ua2 ) · 0.01875 f + 5 150.80 1.03 0.99 0.96
a3 (1 + ua3 ) · 0.04500 f + 6 77.32 0.85 0.95 0.93
a4 (1 + ua4 ) · 0.03000 f + 4 134.68 1.08 1.01 1.03
a5 (1 + ua5 ) · 0.04500 f + 6 85.32 0.88 0.98 0.96
a6 (1 + ua6 ) · 0.03000 f + 4 122.68 1.09 1.03 1.04
a7 (1 + ua7 ) · 0.00750 f + 1 106.55 1.17 1.07 1.14

Table 2
Objective function values for the uncertain TEP on the 5-node network in Fig. 1
for different values of �

� 0 1 2 3

Objective value 0 24.18 · 102 32.83 · 102 33.17 · 102

The robust counterpart (for different values of �) is the SOCP (29), which we set up using
Python 3.6.8 and that is solved with Gurobi 8.1.0. The case � = 0 corresponds to the nominal
model and the case � = 3 corresponds to the strictly robust solution with ellipsoidal uncertainty
since

√
7 < 3; see the remarks at the end of Section 2. As nothing would change for larger �, we

only consider the cases � ∈ {0, 1, 2, 3}. Table 2 shows the objective function values of the solved
SOCPs. The results show the characteristic behavior of the � approach: As expected, lower values
of � lead to less conservative solutions. Figure 2 shows the arc flows in the solutions for different
� and in Table 1 we also show the nominal arc-flow and how the robust flows deviate from the
nominal situation.

Next, we study the feasibility of the different solutions in some “worst-case” scenarios. To this
end, we denote by (h0, τ 0) the solution of the nominal problem and by (hi, τ i) the solution of the
�-robust problem with � = i. The nominal solution can become infeasible in scenarios with lower
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Fig. 2. 5-node arc flow. Top: � = 0 (left) and � = 1 (right). Bottom: � = 2 (left) and � = 3 (right).

Table 3
Feasibility of robust and nominal solution in certain scenarios

arcs u (h0, τ 0) (h1, τ 1) (h2, τ 2) (h3, τ 3)

a1 −1 inf 8.42 · 102 12.43 · 102 11.96 · 102

a1, a4 −0.7 inf inf 11.00 · 102 10.51 · 102

arc cost as Equation (29b) might be violated. This is shown in Table 3. Regarding the worst-case u,
let us briefly discuss what “worst-case” means with respect to u. The table gives information on the
feasibility of solutions. For this case, the worst-case values for u are the minimal ones. Interestingly,
this differs from worst-case values for u in terms of costs, where the maximal values are worse.
Here, we fixed the variables h and τ to the values of the nominal solution (h0, τ 0) and consider
the scenario in which costs on arc a1 are lowered. It turns out that the nominal solution then is
infeasible. In case of fixing the variables to the �-robust solutions for � ∈ {1, 2, 3}, the problem still
remains feasible. For scenarios in which more than � many arcs costs are lowered, obviously, the
robust solution can also become infeasible as feasibility is only guaranteed in dependence of �.
This is illustrated in the second row of Table 3.

Table 4 shows how the nominal and �-robust solutions perform in the worst-case cost scenario
with respect to arc a1. Before we discuss the numerical results, let us briefly comment on the dif-
ferent interpretations of objective function values in the nominal and the robustified setting. The
nominal objective is of the form h	(T h + t) − τ	d (as D = 0 in our model). The first term repre-
sents flow multiplied with costs and the second term represents demand multiplied with minimal
costs per OD-pair. In an equilibrium, all flows between the same OD-pair have the same (minimal)
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Table 4
Comparison for the scenario of worst-case cost on
route a1

Solution Objective Sum of all route costs

(h0, τ 0) 8.15 · 102 106.24
(h0, τ 0

min) 24.40 · 102 106.24
(h1, τ 1) 24.18 · 102 106.61
(h2, τ 2) 28.96 · 102 106.55
(h3, τ 3) 29.03 · 102 106.93

costs τ . Thus, the terms are equal and add up to zero. In contrast, in the robust setting, the second
term represents demand times minimal costs of all possible scenarios. Hence, the robust objective
(for example, � = 1) tries to find (h1, τ 1) that minimizes the difference of worst-case costs of flow h1

and the variables τ 1 multiplied with demand, where τ 1 are variables representing the minimal costs
of all possible scenarios in dependence of h1. To make the second (negative) term as high as pos-
sible, it is preferable to change the flow in a way that the τ 1-variables (representing the minimal
costs of all possible scenarios) are larger as long as the costs for the worst-case scenarios do not
increase. Thus, the robust objective aims at a flow that has low worst-case cost but also high best-
case cost.1 Let us now turn back to Table 4. One might expect that the robust solution for � = 1
yields a better objective value in this scenario than the nominal solution. This is not the case, even
though the sum of all route costs do not differ greatly. In the equilibrium of the nominal problem,
τ 0 = (15.8679, 15.5079)	 represents the minimal route cost between each origin-destination pair.
In the robust setting, due to Equation (29b), τ 1 = (11.9123, 11.9123)	 is forced to be the minimal
route cost of all possible scenarios (in dependence of h1) because of guaranteed feasibility that is
hedged against all possible realization of uncertainty; see also Equation (17b). This results in larger
objective values for the robust solutions in higher cost scenarios as the cost term of the objective
becomes large while the τ -dependent term is forced to be small. If we replace τ 0 by the minimal
route cost τ 0

min = (11.8276, 11.8276)	 of all scenarios2 for the flow h0, we see in Table 4 that the
objective for (h1, τ 1) is actually smaller than for (h0, τ 0

min).

6. Conclusion

In this paper, we studied uncertain linear complementarity problems and used the combination of
�-robustifications together with different variants of ellipsoidal uncertainty sets for modeling the
uncertainty in the parameters of the LCP vector q or the LCP matrix M. We derived conditions for

1In the light of this discussion, let us briefly revisit Table 1. Actually, the scenarios in which costs for a3 or a5 are doubled
are scenarios with lower total route costs compared to the worst case of doubling cost on a1 due to the high flow on
the route. On the other hand, reducing costs on a4 and a6 leads to the lowest route-costs. With the “low worst-case/high
best-case” compromise in mind, it thus makes sense to shift flow from a3 and a5, which does not affect the worst case too
much to a4 and a6, which increases the best-case cost.

2We restrict ourselves here to the scenarios in which a single route is affected. Thus, only one component of u is nonzero
as we want to compare the solution to the � = 1 case.
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the tractability of the robust counterparts and also provided results for the existence and uniqueness
of solutions for these counterparts. Finally, a case study for the well-known traffic equilibrium
problem is given that highlights some effects of �-robustifications applied to this problem.

It turns out that there are at least two issues of robust LCPs that may lead to interesting ques-
tions for future research. First, as for the cases of strict robustness (Xie and Shanbhag, 2016) or
�-robustness using �1- as well as box-uncertainty sets (Krebs and Schmidt, 2020), it cannot be ex-
pected that robust LCP solutions exist in the pure sense of robust optimization. Second, the case
study revealed that it is not easy to interpret solutions of robustified LCPs. Both aspects strongly
lead to the question about other robustification concepts that lead to existing robust LCP solutions
that have a clear-cut interpretation for practical problems.
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