
Journal xx (2021) 1–28

A metaheuristic for crew scheduling in a pickup-and-delivery
problem with time windows

Mauro Luccia,b, Daniel Severína,b and Paula Zabalaa,c,∗

aCONICET, Argentina
bDepartamento de Matemática (FCEIA), Universidad Nacional de Rosario, Av. Pellegrini 250, Rosario, Argentina

cDepartamento de Computación (FCEN), Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria Bs. As., Argentina
E-mail: mlucci@fceia.unr.edu.ar [M. Lucci]; daniel@fceia.unr.edu.ar [D. Severín]; pzabala@dc.uba.ar [P. Zabala]

Received DD MMMM YYYY; received in revised form DD MMMM YYYY; accepted DD MMMM YYYY

Abstract

A vehicle routing and crew scheduling problem (VRCSP) consists of simultaneously planning the routes of a
fleet of vehicles and scheduling the crews, where the vehicle–crew correspondence is not fixed through time. This
allows a greater planning flexibility and a more efficient use of the fleet, but in counterpart, a high synchronisation
is demanded. In this work, we present a VRCSP where pickup-and-delivery requests with time windows have to be
fulfilled over a given planning horizon by using trucks and drivers. Crews can be composed of 1 or 2 drivers and
any of them can be relieved in a given set of locations. Moreover, they are allowed to travel among locations with
non-company shuttles, at an additional cost that is minimised. We tackle this problem with a two-stage sequential
approach: a set of truck routes is computed in the first stage and a set of driver routes consistent with the truck
routes is obtained in the second one. We design and evaluate the performance of a metaheuristic based algorithm
for the latter stage. Our algorithm is mainly a GRASP with a perturbation procedure that allows reusing solutions
already found in case the search for new solutions becomes difficult. This procedure together with other to repair
infeasible solutions allow us to find high-quality solutions on instances of 100 requests spread across 15 cities
with a fleet of 12-32 trucks (depending on the planning horizon) in less than an hour. We also conclude that the
possibility of carrying an additional driver leads to a decrease of the cost of external shuttles by about 60% on
average with respect to individual crews and, in some cases, to remove this cost completely.

Keywords: vehicle routing; crew scheduling; Greedy Randomised Adaptive Search Procedure, Variable Neighbourhood Descent

1. Introduction

Vehicle Routing Problems (VRPs) arise naturally in a wide range of real-world applications. A well-known
particular case is the Pickup-and-Delivery Problem with Time Windows (PDPTW) which establishes that
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customers demand transportation requests from pickup to delivery locations at certain time intervals, see
Dumas et al. (1991). However, there are applications where the vehicle routing must be planned together
with a crew scheduling simultaneously. Here, crews can change through time, in opposition to use a
standard approach where it is considered a fixed vehicle-crew correspondence during the whole planning
horizon. The new approach might improve the productivity since a new driver can continue a task when
the previous driver takes a mandatory rest. However, the whole operation becomes more complex since
now separate routes for vehicles and for drivers have to be determined, and both must be synchronised
in space and time. Even worse, the synchronisation leads to the so-called interdependence problem: a
change in one route may affect the feasibility of other routes, as stated in Drexl (2012).

In the vast majority of the literature on VRPs, vehicles and crews are treated as inseparable units. In
that case, the working time regulations of the drivers are unnecessarily imposed on vehicles that could be
used 24 hours per day. Hence, the main contribution of this work is to study how variable crews can be
exploited to improve the crew scheduling in a PDPTW that arose in a long-distance road transport company.
Specifically, we propose a two-stage heuristic algorithm based on an integer programming approach
combined with a hybrid metaheuristic that uses Greedy Randomised Adaptive Search Procedure (Resende
and Ribeiro (2016)), Variable Neighbourhood Descent (Hansen and Mladenović (2001)) and Iterated
Local Search (Lourenço et al. (2003)). Each of the mentioned metaheuristics have been successfully
applied to provide good feasible solutions to difficult combinatorial optimization problems.

The rest of the paper is structured as follows. In Section 2, we colloquially describe our problem. In
Section 3, we analyse some other related works and the connection between them and ours. In Section
4, we formalise the problem and explain how it is addressed. In Section 5, we present our algorithm. In
Section 6, we carry out several experiments in order to measure the performance of our algorithm in
instances of different sizes as well as to evaluate the features of our particular problem. Finally, in Section
7, we draw some conclusions and comment on future works.

2. Problem description

In our problem, a set of pickup-and-delivery requests has to be fulfilled over a given planning horizon,
using the available resources of the company: trucks and drivers. Each request involves the transportation
of an item between two different locations, known as the pickup and delivery locations, with certain
temporal constraints. There is a time window for the pickup and one for the delivery of each request,
indicating when the service is allowed to begin. The time window opens once a day, from an initial day,
during a certain time interval, e.g., from the second day of the planning horizon onward and from 10:00am
to 6:00pm. Trucks may arrive earlier, but they must wait until the time window opens to proceed with the
service. The delivery does not have a deadline, but there is a penalty with the delay, where the cost is
proportional to the days elapsed since the delivery time window opens for the first time and until the item
is delivered. The duration of the service time is 1 hour, i.e., it takes 1 hour to load or unload an item.

The company’s trucks and drivers are homogeneous, except for their initial locations at the beginning of
the planning horizon. They do not have to return to their initial locations at the end of the planning horizon,
but the final locations become initial in the next planning. Trucks have enough capacity to transport any
request on a single trip, but just one at a time. Trucks require drivers when transporting a request and
during the service time, and at such circumstances, the drivers are considered to be working. In any other



circumstance, drivers are considered to be resting. Rest begins when the driver descends from the vehicle
and ends when she/he ascends to that vehicle or another. There are several factors that regulate rest times,
e.g. labour law, collective bargaining agreements, company policy. The company requires drivers to rest
at least 12 hours in every 24-hour interval (this rest might be split) and at least a whole day in any 7-day
interval, these constraints will be called L1. For the last part of this work, we also consider more restrictive
variants where there are cumulative constraints limiting the amount of hours worked every week, called
L2, and minimum rest duration constraints between consecutive work periods, called L3.

There is a set of locations where the trucks and drivers are allowed to stop, and they are not allowed
to stop anywhere else or en route. This set contains all the pickup and delivery locations and the initial
location of the trucks and drivers. The travel time between the locations is known and constant throughout
the day. Drivers can be relieved at any location and at any time (before, during or after performing a
request), even if this causes a detour in the route. The driver that descends may immediately ascend to
another truck or may stay resting (until she/he ascends to another truck). In our problem, drivers can be
transported with shuttles (external to the company) for an additional cost. In a more restrictive variant of
this problem, which we refer as no-shuttle, drivers are only allowed to travel by company’s trucks.

The main feature of the problem is that the crews can have 1 or 2 drivers. In the latter case, both are
considered to be working and each of them can be relieved independently of the other. This adds great
flexibility since a truck could be used as a “shuttle” to transport the drivers among the locations. For
example, a driver who descends at a location l1 and who needs to ascend at a location l2 might take
advantage of some truck going from l1 to l2 in order to reach l2. Of course, this is possible as long as
the additional driver fits into the intermediate truck (recall that no more than two drivers are allowed per
crew) and as long as all these events are synchronised.

The whole operation consists of determining separated routes for the trucks and the drivers, but
synchronised in space and time, to fulfill all the requests at minimum operation costs. The costs are
associated with the total distance travelled by the trucks, the penalties for the delay in the deliveries, and
the usage of the external shuttles.

3. Literature review

One of the pioneer works that deals with the PDPTW is due to Dumas et al. (1991). The authors present an
integer programming based exact algorithm for this problem, which allows multiple vehicles and depots
but, on the other hand, no distinction is made between vehicles and drivers, i.e., a fixed vehicle-crew
correspondence, nor does it consider drivers’ breaks.

The earliest papers where regulations regarding drivers’ working hours are contemplated still consider
a fixed vehicle-crew correspondence. Also, changes of drivers on a vehicle route are not allowed, i.e.,
the entire trip of a vehicle is covered by a single driver. Therefore, each vehicle trip must satisfy the
driver’s work rules, causing that the truck remains “idle” while the driver rests. Within this group Xu
et al. (2003) stands out. The authors present an exact algorithm for solving a PDPTW proposed by
Manugistics (a company that develops software for logistic companies, now part of JDA Software). Their
problem considers multiple pickup time windows, multiple delivery time windows, maximum driving
time restrictions, and it does not allow a daily rest period to be taken before the maximum daily driving
time is exhausted. They solve the problem with a column generation based approach.



Although the fixed vehicle-crew correspondence is barely abandoned throughout the extensive literature
on VRPs for road transport, there are several works that effectively deal with simultaneous Vehicle Routing
and Crew Scheduling Problems (VRCSPs). A fairly complete review (until then) can be consulted in
Drexl et al. (2013), while here we only cite some featured or recent works.

Hollis et al. (2006) is one of the first works where the design of truck routes and scheduling of crews
are divided, thus addressing a simultaneous VRCSP that arises from a mail distribution problem faced by
the Australia Post. In this work, a driver can descend and change to another vehicle upon arrival at a depot.
The authors solve the problem in two stages. First, they determine feasible vehicle routes by solving a
path-based MIP model with a heuristic column generation approach. Then, they generate worker and
vehicle schedules that fit in the routes obtained in the first stage.

One of the works that inspired us is Drexl et al. (2013) which addresses a simultaneous VRCSP for
long-distance road transport according to the EU legislation. In this problem, drivers can only change
trucks in relay stations, but breaks and rests can be taken anywhere en route. Crews are limited to single
drivers and there are non-company shuttles to transport the drivers among the stations for an additional
cost. The authors follow a two-stage decomposition of the problem: first, they deal with the vehicles,
and after that with the drivers. A Large Neighbourhood Search method is proposed for both stages, but
making some simplifications in order to keep the computational cost low, e.g. drivers are forced to visit
some relay station to take a daily rest when a fixed time is expired, and they can only change truck after a
daily rest. These simplifications are probably the reason why the authors conclude that a simultaneous
approach does not outperform a fixed vehicle-crew correspondence on an instance coming from a major
German freight forwarder with 2800 requests, planning horizon of 6 days, 1975 locations, 1645 trucks
and drivers, 43 depots, and 157 additional relay stations.

There are few recent analyses concerning crews with more than one driver in the road transport sector,
e.g. in Goel et al. (2019). This work investigates under which conditions it is convenient to use single
or team driving in European road freight transport, and concludes that the latter is beneficial for longer
routes. However, a fixed vehicle-crew correspondence is assumed, and one driver of the team can rest
while the other drives. Besides, some tasks, such as loading or unloading goods, can be performed in
parallel, which reduces times. The authors implement a Hybrid Genetic Search metaheuristic, which is
tested on instances with 100 customers and planning horizon of 6 days. Note that in all these studies, a
crew is handled as an indivisible unit, differing from our problem where any member of a crew can be
arbitrarily changed at any time and location.

Other scenarios where a synchronisation between vehicles and crews happens are in the airline sector,
although, unlike road transport, planes cannot interrupt their flights for the crew to change or rest. In
Kasirzadeh et al. (2017), a review is presented about these problems and methodologies are proposed.
Salazar-González (2014) addresses simultaneously the aircraft routing, crew pairing and fleet assignment
problems, modeled as a VRP with multiple depots and changes in the crew among time. Lam et al.
(2015) considers another simultaneous VRCSP with time windows where airplanes are operated by
crews that are able to interchange vehicles at different locations. Also, the operating time of each crew is
limited, although they can travel as passengers outside their working hours. The authors first propose an
integer programming formulation and a constraint programming formulation that model the problem in a
single stage. Then, they consider a two-stage resolution method (similar to Drexl et al. (2013)) where
at the first stage, a VRP is formulated as a constraint programming model and then solved via a Large
Neighbourhood Search heuristic, and the second one is a set covering problem solved with a standard



column-generation approach. In contrast to Drexl et al. (2013), the results presented in Lam et al. (2015)
show that the “vehicle interchange” feature and the fact that the crews can wait in a location for an
unlimited amount of time lead to significant better solutions.

On the other hand, in the context of health care transportation, vehicles as well as crews are usually
heterogeneous (e.g. sometimes particular equipment must be transported with special aircraft; medical
staff can be for personal care, rehabilitation services, postoperative care and domestic help services). In
addition, maximum length of routes are limited to daily working hours of employees. See, for instance,
Lin et al. (2018); Nasir and Kuo (2020).

On the subject of public transport, in Ma et al. (2016), a specific VRCSP is presented to solve a public
transport problem according to Chinese regulations. Here, a set of trips is already assigned to each bus
(including the departure and the arrival time of each trip) and a daily bus crew scheduling problem is
solved via a Variable Neighbourhood Search. The latter problem takes into account a set of restrictions
on driver schedules: the daily working time for a driver is limited to a certain number of hours, a driver
is normally required to have a break if the continuous driving time has reached a certain limit, among
others limitations. The problem also allows drivers to be relieved at any moment while a bus is parked at
a location. Unlike ours, public transport has timetabled trips.

4. Solution approach

For a better understanding of our work, let us begin with a preliminary description of how we tackle our
problem. The concepts presented here are further developed in the rest of the paper.

We follow a two-stage decomposition approach. In the first stage, we route the trucks in order to fulfill
all the requests, without worrying about the drivers. This means that we suppose that the trucks are driven
by themselves or by fictional drivers who do not need to rest.

As a result, a set of tasks emerges from the truck routes, each of them can be the pickup/delivery of
a request or a trip between two locations, and it has a tentative start time. Let us clarify the meaning
of tentative. As far as trucks are concerned, the i-th task of the route could be indistinctly scheduled
at any time from the end of the (i − 1)-th task to the beginning of the (i + 1)-th task, as long as the
pickup/delivery time window is still open in the case that the i-th task is a pickup/delivery. However, it is
worth mentioning that the start time is not indifferent to the drivers, e.g., a task could be delayed to allow
a driver to rest. Thus, each task has a particular time window of possible start times, which is dynamic
since it depends on the current truck route (note that changing the start time of a task affects the time
window of the contiguous tasks). This is a major difference with respect to Drexl et al. (2013), where the
time windows of the tasks are computed at once before entering the second stage.

In the second stage, we have to determine the concrete start time and the crew for all the tasks. Observe
that each task might have a different crew since it is possible to relieve the drivers in any location. We
consider the option of using external shuttles (e.g., taxis), so drivers can ascend to a truck in a different
location from where they are. The benefits of using shuttles are clear but, in counterpart, they incur
additional costs that should be minimised. The duration of the shuttles is not negligible in the case of
long-distance transport, and since one should consider that the driver is not resting while travelling, the
departure time of the shuttles really matters, as the next example illustrates. Suppose that a driver works
the first day from 0:00 to 8:00 and the second day from 16:00 to 0:00 and that she/he needs an intermediate



Fig. 1: Timelines for a driver who has to take a shuttle.

shuttle of 6 hours long, then the shuttle can only depart the first day from 20:00 to 22:00 in order to meet
the stipulated rest in every 24-hour interval. One of such scenario is depicted in Figure 1 (a).

Considering that the duration of the shuttles cannot be ignored, and the fact that deciding the best
departure time for them involves another optimization problem, we pick a compromise solution where
shuttles are always delayed as much as possible. In the previous example the shuttle would depart the
second day at 10:00 and the solution would become infeasible since the driver rests less than 12 hours
on the second day, see Figure 1 (b). This decision is arbitrary and a same treatment could be done, for
instance, if they are scheduled as early as possible. For the same reason, the possibility of splitting shuttles
is not addressed in this work. Although these simplifications might compromise the solutions space,
perhaps they are more consistent with real-world applications than Drexl et al. (2013), where the shuttle
travel time is ignored in the working time calculation. As a final consideration, we assume that there are
as many shuttles as required in any location, but they only carry one person at a time.

The reason behind using a sequential approach relies on keeping the whole operation simpler, as both
objects (trucks and drivers) are not dealt at once. In addition, the first stage is fairly standard (a PDPTW
with no depots and penalties for late deliveries) and can be resolved by known means. Our work focuses
on the recently presented second stage for our problem. We propose a metaheuristic based algorithm,
which is developed in Section 5.

The rest of this section is devoted to present the mathematical models for our problem. Let us first
present the necessary elements to define it.

• H is the number of days of the planning horizon,
• L is the set of locations where the trucks and drivers can stop,
• R is the set of requests,
• V is the set of trucks,
• D is the set of drivers,
• lpr , ldr are the pickup or delivery location corresponding to r ∈ R, respectively,
• [apr , b

p
r ], [adr , b

d
r ] are the pickup or delivery time window corresponding to r ∈ R, respectively,

• daypr , daydr are the initial day where r ∈ R can be picked up or delivered, respectively,



• cr is the cost per day for delivering the request r ∈ R late,
• lv ∈ L is the initial location of each truck v ∈ V ,
• ld ∈ L is the initial location of each driver d ∈ D,
• LD

.
= {ld : d ∈ D}, i.e. the sets of initial locations of drivers,

• travelT imeT : L× L → R+
0 and travelT imeS : L× L → R+

0 are functions that return the travel
time (in hours) between two locations by truck or by shuttle, respectively,

• travelDist : L× L→ R+
0 is the function that returns the distance between two locations, and

• shuttleCost : L× L→ R+
0 is the function that returns the cost of a shuttle between two locations.

4.1. First stage: determination of truck routes

The first stage consists in constructing valid routes for the trucks, such that all the requests are fulfilled
during the planing horizon. A truck route is valid if it starts from the truck’s initial location, the time
windows are obeyed along the route, a pickup and the corresponding delivery are performed by the
same truck, each pickup occurs prior to the corresponding delivery, and the truck does not pick up
another request until the current one is delivered. No driver constraint is considered during this stage. We
contemplate two objectives:

• Z1: deliver the requests as soon as possible since there is a penalty cr for a request r not delivered
during daydr proportional to the number of delayed days, i.e., minimise

∑
r∈R cr(d

d
r − daydr ), where

ddr is the day r is delivered.
• Z2: minimise the total distances travelled by the truck fleet.

Although the previous paragraph already describes the first stage (and the reader may understand the
rest of this work without further details), we give in the Appendix a (standard pick-up and delivery) multi-
objective integer linear programming formulation for the sake of completeness. Besides, this formulation
performs well when used to determine the truck routes on small and medium-sized instances.

4.2. Second stage: determination of driver routes

Truck routes can be segmented in pickup, delivery, and trip tasks. A pickup/delivery task consists of
loading/unloading a request in some location, and its duration is given by the service time (1 hour). A trip
task consists of driving from an origin to a destination location, and its duration is given by the travel time.
For example, suppose that the route of the truck v begins with the transportation of a request r. Then, this
route is segmented in the following tasks: a trip task from lv to lpr (whenever lv 6= lpr ), a pickup task in
lpr , a trip task from lpr to ldr , and a delivery task in ldr . Tasks are the smallest pieces of work that must be
entirely performed by the same crew. But a truck can have a different crew for each task since drivers are
allowed to change in any location.

Now, let us introduce the following necessary elements:

• T p, T d, and T t are respectively the sets of pickup, delivery, and trip tasks involved in the routes
constructed in the first stage.

• T .
= T p ∪ T d ∪ T t



• For each t ∈ T , pt ∈ L is the origin, qt ∈ L is the destination, and at ∈ R+ is the duration of t.
• req : T p ∪ T d → R is the function that returns the request associated to a given pickup or delivery

task.

For instance, a trip task t1 ∈ T t from a location l1 to a location l2 of 4 hours long has pt1 = l1,
qt1 = l2, and at1 = 4. A pickup task t2 ∈ T p associated to a request r has pt2 = qt2 = lpr , at2 = 1,
and req(t2) = r; whereas a delivery task t3 ∈ T d associated to r has pt3 = qt3 = ldr , at3 = 1, and
req(t3) = r. The next definition states when a schedule for the tasks is valid.

Definition 1. Given T and req, a start time assignment for T is a function δ : T → R+
0 such that:

1) whenever two tasks ti, tj ∈ T are consecutive in any truck route then δ(ti) + ati ≤ δ(tj), 2) δ(t) ∈
[apreq(t), b

p
req(t)] for each t ∈ T p, and 3) δ(t) ∈ [adreq(t), b

d
req(t)] for each t ∈ T d.

Condition (1) imposes precedence constraints on tasks of the same truck route: ti must be finished
by the time tj starts whenever both tasks are assigned to the same truck and performed consecutively.
Conditions (2) and (3) enforce the pickup and delivery time windows. While the first stage already assigns
a tentative start time for the tasks of T p ∪T d, the possibility of rescheduling them during the second stage
increases the planning flexibility of the crews. It is worth mentioning that the three conditions guarantee
that the truck routes remain valid when the tasks are scheduled according to δ. The following definition
provides a necessary condition for a driver to perform a sequence of tasks.

Definition 2. Given T , d ∈ D and a start time assignment δ for T , a driver route for d is a sequence of
tasks 〈t0, . . . , tk〉 with t0, . . . , tk ∈ T such that 1) travelT imeS(ld, pt0) ≤ δ(t0), and 2) δ(ti) + ati +
travelT imeS(qti , pti+1

) ≤ δ(ti+1) for all i = 0, . . . , k − 1.

Condition (1) ensures that the driver can perform the first task of the route when departing from her/his
initial location, and condition (2) determines whether the driver can perform two tasks consecutively; in
both cases possible shuttle trips are taken into account.

The second stage consists in deciding a start time assignment for the tasks and constructing valid routes
for the drivers, such that each task is covered by one or two drivers. Below, we elaborate when a driver
route is valid, where it can be seen as certain kind of directed paths in the following digraph.

Given a start time assignment δ for T , consider the simple digraphGδ = (V,A) with weightsw ∈ R+
0
E .

The node set is
V .

= {sl : l ∈ LD} ∪ {nt : t ∈ T} ∪ {s̃},

where sl is referred to as source node for each initial location l of some driver, nt as task node for each
task t and s̃ as the sink node. The arc set A has three types of weighted arcs:

• From each source node sl to each task node nt such that a driver is able to perform t when departing
from l at the beginning of the planning horizon, i.e, travelT imeS(l, pt) ≤ δ(t). The weight of this
arc is the cost of a shuttle trip from l to pt, i.e, w(sl, nt) = shuttleCost(l, pt).

• Between each pair of task nodes (nti , ntj ) such that a driver is able to perform ti followed by tj , i.e.,
δ(ti) + ati + travelT imeS(qti , ptj ) ≤ δ(tj). Here, w(nti , ntj ) = shuttleCost(qti , ptj ).

• From each source node or task node u to s̃. The weight w(u, s̃) is always 0.

Following the usual terminology, given a, b ∈ V , a directed walk P from a to b inGδ is a finite sequence
of nodes u1, u2 . . . , uk−1, uk such that u1 = a, uk = b and (ui, ui+1) ∈ A for all 1 ≤ i ≤ k − 1. When
all the vertices visited by P are distinct, we say that P is a directed path from a to b, also referred to



pt qt at t ∈ δ(t)

t1 l1 l1 1 T p 1
t2 l1 l2 3 T t 3
t3 l2 l2 1 T d 4
t4 l2 l2 1 T p 8

nt1

nt2

nt4

nt3

sl1

sl2

s̃

Fig. 2: Example of the digraph construction.

as (a, b)-directed path, and if the only repeated vertices are v1 and vk, then P is called directed cycle.
The set of nodes visited by P is denoted with V(P ) and the set of arcs visited by P with A(P ). The cost
w(P ) of P is defined as

∑
e∈A(P )w(e).

Let us present an example of this construction. Consider two locations l1 and l2 with
travelT imeS(l1, l2) = 3 and four tasks t1, t2, t3 and t4, whose attributes are displayed in the table
on the left-hand side of Figure 2. The first row says that t1 is a pickup task whose origin is l1 at instant 1
and whose destination is also l1 at instant 2. Based on these tasks, we construct the digraph shown on the
right-hand side of Figure 2. We indicate with a dashed-line arc when a shuttle trip is required between
the tasks, and a solid-line arc otherwise. In this digraph, for instance, there is not an arc between nt2 and
nt3 since t2 and t3 are overlapped, and from sl2 to nt1 nor from nt1 to nt3 because the time gap between
them is not enough to take the corresponding shuttle trip. If, for example, a driver d satisfies ld = l1 then
〈t1, t2, t4〉 is a driver route for d, which corresponds with the directed path sl1 , nt1 , nt2 , nt4 , s̃. The cost of
this path is 0 since no shuttles trips are required or, equivalently, no dashed-line arcs are traversed.

The structure of Gδ makes straightforward to prove the following remarks:

1. Gδ is a directed acyclic graph, i.e., a digraph with no directed cycles.
2. If travelT imeS(pt, qt) ≤ at for all t ∈ T t, then the edge relation in Gδ is transitive, i.e., if (u1, u2) ∈
A and (u2, u3) ∈ A then (u1, u3) ∈ A, for all u1, u2, u3 ∈ V .

3. There is a one-to-one correspondence between the driver routes for d ∈ D and the (sld , s̃)-directed
paths in Gδ.

The hypothesis of the second remark means that the shuttles are as fast as the trucks. As a consequence
of the transitivity, removing a vertex from a directed path results in a new directed path. The last remark
allows us to define a feasible solution for the second stage of our problem as a pair, where the first
component is a start time assignment δ for T and the second one is a set with a (sld , s̃)-directed path Pd



in Gδ for each d ∈ D satisfying:

Crew size constraints: For all t ∈ T , 1 ≤ |{d ∈ D : nt ∈ V(Pd)}| ≤ 2.
Rest constraints: For all d ∈ D, L1 is satisfied for d, i.e., d rests at least 12 hours in every 24-hour

interval and d has at least one day off in every 7-day interval.

The objective value of a feasible solution S = (δ, {Pd : d ∈ D}) is the total cost given by w(S) =∑
d∈D w(Pd), and the aim of this stage is to find a solution S that minimises w(S); we refer to this value

as Z3. In the appendix, we present an integer programming formulation that better describes our model,
however a reader may omit it to understand the rest of this work.

In the next section we present the main components of our algorithm, based on schemes of well-known
metaheuristics, and we give details on how to implement them in terms of our specific problem. The
reader may consult Gendreau and Potvin (2019) for a more detailed explanation about general schemes
of Greedy Randomised Adaptive Search Procedure (GRASP), Iterated Local Search (ILS), Variable
Neighbourhood Descent (VND) and hybrid optimization approaches.

5. Our algorithm

Let us start by giving a brief description of how our algorithm works before moving on to more specific
details. During the first stage, two methods can be applied: a direct one is to solve an integer linear
programming formulation (see appendix) which has the advantage that the given solution is optimal; the
other is to provide a feasible solution via a heuristic which in our case is semi-greedy. We give a brief
explanation of this algorithm at the end of this section since this phase is beyond the scope of the current
work.

For the second stage, we first construct a semi-greedy initial solution, whose drivers may work more
time than allowed. We then apply a repair procedure that, among other things, moves the start time of the
tasks in conflict to minimise the workload of the drivers. Once we reach a feasible solution, we focus on
minimising the cost related to the external shuttle transports, using suitable moves to explore the space of
feasible solutions. After we reach a local optimum, we try to escape by applying a perturbation procedure
that randomly changes the start time assignment without losing feasibility. The best solution is kept and
returned after a given time limit.

For the sake of clarity, we introduce our algorithm incrementally. We first present a simple procedure
that constructs a greedy feasible solution for our problem. This procedure usually returns poor-quality
solutions. Nevertheless, in subsequent steps, we incorporate new features that allow us to reach better
results. These results will be later reported along with other computational experiments in Section 6.

5.1. Constructing a greedy feasible solution

We follow a best insertion strategy to construct a greedy feasible solution: each task is inserted into the
driver route that results in the lowest increase in the cost function; see the pseudo-code in Figure 3. At
the beginning, the tasks are sorted by start time, and the driver route of each driver d is represented as a
directed path Pd with the single node sld . In each iteration, an unplanned task t is taken and a candidate list



Require: Start time assignment δ for T
1: procedure GREEDY
2: sort T by start time
3: Pd ← {sld} for each d ∈ D
4: for all t ∈ T do
5: CL ← {d ∈ D : Pd ∪ {nt} is a directed path of Gδ ∧

rest constraints hold for d}
6: if CL = ∅ then fail
7: let d∗ ∈ CL such that w(Pd∗ ∪ {nt}) is minimum
8: Pd∗ ← Pd∗ ∪ {nt}
9: Pd ← Pd ∪ {s̃} for each d ∈ D

10: return (δ, {Pd : d ∈ D})

Fig. 3: Pseudo-code of our greedy construction.

CL is constructed with every driver d such that nt can be inserted at the end of Pd, i.e., the augmentation
of Pd with nt is also a directed path and the rest constraints still hold for d. After that, the driver d∗ of
CL that causes the smallest increase in the overall cost is chosen and nt is inserted at the end of Pd∗ .
After all the tasks have been inserted, the sink node s̃ is inserted at the end of every directed path, leading
to a feasible solution. On the other hand, the algorithm fails if some task remains unassigned. A repair
procedure will be proposed later to deal with these cases.

It is clear that the greedy decisions we make during the construction may have led to a poor-quality
solution. For this reason, the first improvement is to use a search strategy to explore the space of feasible
solutions to minimise the total cost associated with the external shuttle transports.

5.2. Minimising the total shuttle cost

We use an iterative search to minimise the total shuttle cost of a feasible solution. The moves that define
the neighbourhood structures fall in two groups. The first group of three moves has been extensively used
in the literature, e.g., Shen and Kwan (2001); Ma et al. (2016), and, in the context of our problem, they
move one or more tasks from one driver route to another. The second group of two moves is specific
to our problem, and they change the size of a crew. We explore each neighbourhood in order to find a
lower-cost feasible solution, with respect to the cost function Z3, and we use a VND to deal with the
multiple neighbourhood structures, e.g., Hansen and Mladenović (2001); Hansen et al. (2010).

Next, we give a comprehensive description of the aforementioned moves. The input of each one is
a feasible solution S = (δ, {Pd : d ∈ D}) and they return a new solution S′ = (δ, {P ′d : d ∈ D}). We
remark that S′ might be infeasible (and in that case, the new solution is not considered). The conditions
that S′ must meet in order to be feasible are: (i) P ′d must be a (sld , s̃)-directed path of Gδ for all d ∈ D,
(ii) crew size constrains must be satisfied for all tasks, and (iii) rest constraints must be satisfied for all
drivers. The first two conditions are checked before the movement is performed, while (iii) is checked
once S′ is constructed. If S′ becomes infeasible or its cost is not better than w(S), S′ is discarded. In



Pd : sld u v s̃. . . × . . .

Pd′ : sld′ u′ nt′ v′ s̃. . . × × . . .

(a) Relocating a task.

Pd : sld uu nt v s̃. . . × × . . .

Pd′ : sld′ u′ nt′ v′ s̃. . . × × . . .

(b) Swapping two tasks.

Pd : sld u nt s̃. . . × . . .

Pd′ : sld′ u′ nt′ s̃. . . × . . .

(c) Swapping two arcs.

Pd : sld u

nt

v s̃. . . × . . .

(d) Inserting a task.

Pd : sld u nt v s̃. . . × × . . .

(e) Removing a task.

Fig. 4: Moves.

Figure 4, we display a scheme of each move. Here, the straight lines with a cross in the middle represent
those edges removed from a path during the move, and the dotted lines represent those edges added to a
path after the move is performed.

MOVE-1: relocating a task. For d, d′ ∈ D, relocate a task node nt′ from Pd′ to Pd between a couple of
consecutive nodes u and v (see Figure 4a).

MOVE-2: swapping two task. For d, d′ ∈ D, swap a task node nt from Pd with a task node nt′ from
Pd′ (see Figure 4b).

MOVE-3: swapping two arcs. For d, d′ ∈ D, swap the arc prior to a task node nt from Pd with the arc
prior to a task node nt′ from Pd′ , i.e., break the paths at those arcs and reconnect the first part of each
one with the second part of the other (see Figure 4c).

MOVE-4: inserting a task. For d ∈ D and t ∈ T , insert a task node nt into Pd between a couple of
consecutive nodes u and v (see Figure 4d).

MOVE-5: removing a task. For d ∈ D, remove a task node nt from Pd (see Figure 4e).

Up to this point, we have an algorithm that constructs a greedy feasible solution and moves iteratively
to a lower-cost feasible solution following a VND strategy, until a local optimum (with respect to each
of the neighbourhood structures) is reached. We remark that this algorithm is deterministic, i.e., each
execution converges to the same local optimum. It is clear that the chances of guiding the search to a
near-global optimum are increased when starting from different starting points. For this reason, the feature
presented in the next subsection is aimed to introduce non-determinism during the construction of the
initial solution.



5.3. Constructing semi-greedy feasible solutions

A semi-greedy construction can be easily derived from the greedy construction of Section 5.1: instead of
inserting each task into the best driver route, we make a random decision among those that result in a cost
contribution within a rate α of the best improvement. To do so, we construct a restricted candidate list
RCL from CL using a quality-based parameter α ∈ [0, 1], where α = 0 stands for a behaviour exactly
as the greedy construction of Section 5.1, and α = 1 means a pure random construction (see Festa and
Resende (2009); Resende and Ribeiro (2016)), and we choose the driver d∗ ∈ RCL randomly.

Now, we define a GRASP based algorithm using the previous semi-greedy construction for the
construction phase and the VND search of Section 5.2 for the local search phase: if the semi-greedy
construction fails, i.e., there is a task with an empty candidate list, the partial solution obtained so far is
dismissed and the semi-greedy algorithm is started over.

Based on preliminary tests, we noted that the rest constraints are sometimes hard to meet and construct-
ing feasible solutions becomes troublesome. This happens more frequently in instances where the number
of drivers is tight, since the drivers have greater workloads. A well-known approach for this drawback is
to allow infeasible solutions and minimise the infeasibility through the cost function; this approach is
addressed by the next feature.

5.4. Handling semi-feasible solutions

We address the problem of constructing feasible solutions with a two-stage procedure. First, we allow
to construct solutions where the drivers may violate one of the rest constraints given by L1, specifically,
now a driver may rest less than 12 hours in every 24-hour interval. We call it semi-feasible. After that, we
apply a repair procedure that tries to make it feasible. The first stage is a modification of the semi-greedy
construction, and the second one is an iterative search that minimises the infeasibility through an adequate
cost function. Before giving further details, let us introduce a new cost function to rank the semi-feasible
solutions.

We refer to Γdi as the number of hours that a driver d works in the 24-hours interval [i, i+ 24] with
0 ≤ i ≤ 24H − 24 (we consider that the time is divided into units of 1 hour, so 24H is the total number
of hours of the planning horizon). Observe that Γdi can be easily computed from the driver route and the
start time assignment (we recall that δ also sets the start time of the shuttle trips, since we assumed that
they are scheduled as late as possible). Now, given a semi-feasible solution S = (δ, {Pd : d ∈ D}), we
define the cost function:

winf (S) =
∑
d∈D

24H−24∑
i=0

max{0,Γdi − 12} (1)

For each d ∈ D, the term in the summation quantifies the total number of extra hours that d works in each
24-hours interval. It is easy to see that winf (S) = 0 if and only if S is feasible.

Note that our definition of semi-feasible solution still does not allow a driver to work every day of
the week. Previous experimentation indicates that solutions generated by the semi-greedy violate this
restriction infrequently.



Require: Start time assignment δ for T , α ∈ [0, 1]
1: procedure SEMI-GREEDY
2: sort T by start time
3: Pd ← {sld} for each d ∈ D
4: for all t ∈ T do
5: CL← {d ∈ D : Pd ∪ {nt} is a directed path of Gδ
6: ∧ rest constraints hold for d}
7: if CL = ∅ then
8: CLinf ← {d ∈ D : Pd ∪ {nt} is a directed path of Gδ
9: ∧ 1-day off constraints hold for d}

10: let d∗ ∈ CLinf such that winf (δ, Pd∗ ∪{nt}) is minimum
11: else
12: make RCL from CL with quality-based parameter α
13: choose a random d∗ ∈ RCL
14: Pd∗ ← Pd∗ ∪ {nt}
15: Pd ← Pd ∪ {s̃} for each d ∈ D
16: return (δ, {Pd : d ∈ D})

Fig. 5: Pseudo-code of our semi-greedy construction to return semi-feasible solutions.

We are now able to explain how the semi-feasible solutions are constructed and repaired.

Constructing semi-feasible solutions. We modify the semi-greedy algorithm of Section 5.3 to allow the
construction of semi-feasible solutions. The main idea is that we may insert a task into a driver route that
introduces infeasibility (violations of the rest constraints) when no other options are available. However,
we use the cost function winf to guide the construction towards good-quality semi-feasible solutions.
The pseudo-code of the new algorithm is shown in Figure 5. We introduce the following changes with
respect to the original algorithm: the choice of d∗ depends on whether the candidate list is empty or not.
If so, we build a second candidate list CLinf with every driver d such that Pd ∪ {nt} is a directed path
of Gδ, without requiring that the 12-hour rest constraints hold. Then, we choose d∗ ∈ CLinf such that
winf (δ, Pd∗ ∪ {nt}) is minimum. If CL 6= ∅, we proceed as the original semi-greedy construction.

The previous construction returns a semi-feasible solution S = (δ, {Pd : d ∈ D}). It is clear that if
winf (S) = 0, then S is already a feasible solution and nothing else should be done; otherwise, S should
be repaired. A further description of how this repair procedure works is given below.

Repairing semi-feasible solutions. The repair procedure uses an iterative search to minimise the cost
function winf given in (1). Again, the moves that define the neighbourhood structures fall in two groups.
The first group has the five moves already presented in Section 5.2, which modify the driver routes and
preserve the start time assignment. The second group has a single move which, conversely, modifies
the start time of a task and preserves the driver routes. We explore the neighbourhoods defined by these
moves to find a lower-cost semi-feasible solution, with respect to the cost function winf . We use a VND
to deal with the multiple neighbourhood structures.



Fig. 6: a) A semi-feasible solution, b) repairing the infeasibility.

It is easy to see that all these moves can help reducing infeasibility, even the insertion of a task. Before
proceeding, let us give an example of this. Suppose that there are three tasks: t1 whose destination is l1
and its duration is 4 hours, t2 from l1 to l2 of 6 hours long, and t3 whose origin is l2 and its duration is 8
hours, such that travelT imeS(l1, l2) = 6, δ(t1) = 0, δ(t2) = 10 and δ(t3) = 30. Additionally, suppose
that a driver route has both t1 and t3, one after the other. It is clear that such driver works more than 12
hours in the 24-hour interval [24, 48], since the shuttle from l1 to l2 is scheduled immediately before t3,
see Figure 6(a). Now, if the task t2 is inserted into this route between t1 and t3, then the shuttle is no
longer needed and the previous infeasibility is repaired, as illustrated in Figure 6(b).

Let us present the formal definition of the new move. The input is a semi-feasible solution S = (δ, {Pd :
d ∈ D}) and the output is another solution S′ = (δ′, {Pd : d ∈ D}). We remark that S′ might be
infeasible (and in that case, it will not be accepted as the next current solution). The conditions that S′

must meet in order to be semi-feasible are: (i) δ′ must be a start time assignment for T , (ii) Pd must be a
(sld , s̃)-directed path of Gδ′ for all d ∈ D, and (iii) 1-day off constraints must be satisfied for all drivers.

MOVE-6: changing the start time of a task. For t ∈ T and a new start time i for t, change the value
of δ(t) to i.
As we have anticipated in Section 4, there is a dynamic time window with the tentative start times
for t, delimited by the contiguous tasks in the truck route and the pickup/delivery time windows. By
choosing i in this time window, we ensure that condition (i) is met. More explicitly, the value of i must
verify:

• Let v ∈ V be the truck whose route contains t. If t′ is the task that precedes t in trv, then
i ≥ δ(t′) + at′ ; if t′′ is the task that follows t in trv, then i ≤ δ(t′′)− at. And,

• if t ∈ T p ∪ T d, then i must belong to the respectively pickup/delivery time window of t. In
addition, we do not allow to change the day in which the items are delivered to preserve the cost
of the solution (recall that there is a penalty for the delay in the deliveries).

Besides, the task t should be performed by the same crew (since this move does not modify the driver
routes), so the value of i is also delimited by the contiguous tasks in the driver routes. In order to meet
(ii), the value of i must also verify:



• Let d ∈ D be a driver whose route contains t (there are at most two of such drivers). If t
is the first task of drv, then i ≥ travelT imeS(ld, pt). If t′ is the task that precedes t in drv,
then i ≥ δ(t′) + at′ + travelT imeS(qt′ , pt); if t′′ is the task that follows t in drv, then i ≤
δ(t′′)− at − travelT imeS(qt, pt′′).

Again, the condition (iii) is checked once S′ is constructed.
As we have said before, in our GRASP based algorithm, we apply the repair procedure after the

semi-greedy construction provides a semi-feasible (but non feasible) solution. When the repair procedure
is unable to find a feasible solution, i.e., when it gets stuck in a local optimum S′ with winf (S′) > 0,
we dismiss the current solution and continue with the next GRASP iteration. Once we obtain a feasible
solution, we run the VND search of Section 5.2 to minimise the total shuttle cost.

Preliminary tests evidence that the repair procedure is often too time-consuming and, even worse, it
does not always succeed. Therefore, when a feasible solution is reached, it should be exploited as much
as possible before constructing and repairing a new semi-feasible solution. Next, we design a perturbation
procedure that takes advantage of a current feasible solution to generate others.

5.5. Perturbing feasible solutions

Notice that applying MOVE-6 to a feasible solution does not change its cost with respect to Z3 (since
the shuttle cost does not depend on the start time assignment), but new move opportunities might appear
indeed. A simple ILS, see e.g. Lourenço et al. (2003, 2019), can be derived using this idea to escape from
a local optimum. Our perturbation procedure iterates over t ∈ T in a random order and changes δ(t) for a
random value among those that preserve feasibility (in case that no one preserves feasibility, δ(t) is not
modified).

The full description of our algorithm results from embedding this perturbation procedure into the
GRASP based algorithm. The main idea is to perturb and then improve the solution a certain number of
times before constructing a new semi-feasible solution; we give the pseudo-code in Figure 7.

5.6. Heuristic resolution of first stage

An inexpensive way to deliver truck routes is through a simple semi-greedy algorithm. This algorithm
iterates over the requests and inserts the corresponding pickup and delivery tasks into some truck route
following a semi-greedy strategy. In order to prevent late deliveries and trucks from getting unavailable
for a long time, the start time of the delivery task is always scheduled as early as possible and the pickup
task as near to the delivery task as possible. After this, the algorithm deals with the necessary trip tasks
between the pickup and delivery tasks. Given a pair of locations that needs a connection, the algorithm
computes the shortest path between them and creates a trip task for each segment of the path (segments
are delimited by the cities). A random number is assigned to the start time of the trip tasks, as long as the
truck route keeps synchronised. We remark that the effectiveness of this simple algorithm comes from the
fact that the truck routes are much easier to construct than the driver routes: trucks do not need to rest,
and multiple-day time windows offer great flexibility.



1: procedure OUR-GRASP
2: while stopping criterion not satisfied do
3: S ← construct semi-feasible solution
4: repair S
5: if S is feasible then
6: minimise the total shuttle cost of S
7: repeat
8: perturb S
9: minimise the total shuttle cost of S

10: update best solution S∗

11: until stopping criterion met
12: return S∗

Fig. 7: Pseudo-code of our algorithm.

6. Computational experiments

In the present section we describe the computational experimentation carried out in order to test and eval-
uate the effectiveness of our approach. For the sake of clarity, this section is divided as follows: in Section
6.1 we explain the instances used to test the algorithms, in Section 6.2 we describe the configuration of
the algorithms (e.g., values for the parameters, stopping criterion, and other implementation details), and
in Section 6.3 we report and analyse the results.

6.1. Instance generation

The problem we address comes from a coffee company in Colombia, and the constraints given in
the present work are faithful to those of the original. Unfortunately, it was not possible to access any
information about the company’s resources or instances. For this reason, we decided to generate our own
instances in a way consistent with reality and the nature of the problem.

We use as locations the 15 Argentine cities and the road network shown in Figure 8. These cities meet
several of the objectives sought: they are important urban agglomerations (indeed, almost all of them
are capital cities, excepts Concordia and Sáenz Peña which are the second most important cities in their
provinces), and there is a long distance between each pair of cities but not enough to force the drivers to
rest en route (which is forbidden by the problem’s constraints). For a matter of road traffic safety, the
road network only uses routes and highways of national jurisdiction, and the speed limit of the trucks
and shuttles is set at 90km/h. As a final remark, we are aware of the existence of local companies whose
logistic is similar to the aforementioned one.

We generate the instances with a routine that takes as incoming parameters: the length of the planning
horizon (H) and the number of requests (#R = |R|), trucks (#V = |V |), and drivers (#D = |D|). Values
are usually randomly generated integers with a uniform distribution in a given interval. In particular, the
attributes of each request are generated as follows:



Fig. 8: Cities and road network.

• Origin and destination: random but different cities.
• Pickup time window: the initial day initDayp is random in [0, H − 4], and the time interval has a

random start startT imep in [0, 22] and a random ending in [startT imep, 24].
• Delivery time window: the initial day is random in [initDayp, H − 2], and the time interval has a

random start startT imed in [0, 22] and a random ending in [startT imed, 24].

Note that we do not let the initial days be at the end of the planning horizon since such requests would
have few opportunities to be fulfilled, but a request whose initial day for delivery is set to H − 2 can be
still delivered at day H (with the corresponding cost in Z1). The routine sets random initial locations
for the trucks. Then, it places a driver with a probability 0.8 in the initial location of each truck and sets
random locations for the remaining drivers (assuming that there are more drivers than trucks). Thus, there
might be locations with trucks but without drivers (this happens, for example, when a truck-driver couple
stops at some location and, subsequently, the driver is picked up by another truck), and there might be
locations with drivers but without trucks (this happens, for example, when a truck with two drivers leaves
one of them resting at some location).

6.2. Algorithm configuration

We have performed extensive preliminary experimentation to detect the most suitable configuration for
each algorithm detailed in Section 5. This involves choosing values for the parameters, deciding the



stopping criteria, and setting other implementation details such as the order of exploration for the iterative
search. For the sake of simplicity, we avoid reporting these preliminary tests and we directly present
the chosen configurations, which are the ones that showed the best trade-off between quality of the
output solutions and execution time. We set shuttleCost(l1, l2) = travelT imeS(l1, l2) + 1 for every
l1, l2 ∈ L. Below, we enumerate the algorithms to be tested with their respective configurations and other
implementation details.

ALG-1: GRASP presented in Section 5.3. The construction phase uses α = 0.2 to restrict the candidate
lists. The VND uses a first-improving strategy, where the drivers are considered in non-increasing
shuttle cost order, and the neighbourhoods are explored in the following order of moves: MOVE-4,
MOVE-5, MOVE-1, MOVE-2, and MOVE-3. To speed-up the exploration, we first compute the cost of
the neighbouring solution and, only when standing at a lower-cost one, we apply the concrete move
and check feasibility (if the current neighbour turns out to be infeasible, the algorithm moves back
to the last solution and the exploration proceeds). The descent stops when the cost cannot be further
improved.

ALG-2: ALG-1 adapted to manage semi-feasible solutions (see Section 5.4). The construction phase
uses α = 0.2 when d∗ is chosen from CL and a random tie-breaking rule when d∗ is chosen from
CLinf (i.e., when the lowest increase for winf occurs in more than one driver at the same time). The
repair procedure uses a first-improving strategy, where the most infeasible drivers are considered first
(i.e., those whose route has the highest value according to winf ), and the neighbourhoods are explored
in the following order of moves: MOVE-4, MOVE-5, MOVE-6, MOVE-1, MOVE-2, and MOVE-3.
The repair procedure stops when there are no further cost improvements for winf . As this procedure is
very time consuming, we only repair semi-feasible solutions S whose cost winf (S) does not exceed
a threshold β, which is dynamically updated as follows. Initially, β is set to +∞ and is replaced
with winf (S0) for the first semi-feasible solution S0 that the algorithm achieves to repair. Then, β is
increased by 1% each time the construction phase gives a semi-feasible solution S with winf (S) > β
(so the next one has greater chances to be repaired), and it is decreased by 1% otherwise (so it gets
more restrictive).

ALG-3: ALG-2 with the addition of the perturbation procedure (see Section 5.5). The number of times
that a feasible solution is perturbed is ruled by the formula d25γe with γ = fails

it+1 , where it is the
number of the current GRASP iteration and fails is the total number of GRASP iterations where
no feasible solutions could be discovered. The resulting effect is that the number of perturbations
grows exponentially when the algorithm systematically fails. Thus, the few feasible solutions found
are exploited as much as possible to generate new ones.

6.3. Results and analysis

All the experiments are carried out in a desktop computer equipped with an Intel Core i5 2.6GHz
processor (we use a single thread), 5.7GB of memory, Ubuntu 20.04 64bits operating system, GCC 5.4.0
compiler, and CPLEX 12.7 with default parameters (but using a single thread). All the implementations
are written in the C++11 programming language.

First experiment. We test ALG-3 with the two approaches proposed for the first stage: the exact resolution



of the integer program and the semi-greedy heuristic. We generate 3 instances of 100 requests with
different planning horizons: 7, 14, and 28 days. The number of trucks #V is respectively 32, 24, and 16.
This is because it takes more trucks to perform the same number of requests in a shorter planning horizon.
The number of drivers #D is 2(#V ) since, in order for a truck to be manned the whole day, two drivers are
needed. We introduce a parameter λ ∈ [0, 1] and we minimise the single-objective function

Z12 = λZ1 + (1− λ)Z2

with 5 different values for λ: 0, 0.25, 0.5, 0.75, and 1.
We use CPLEX to solve the integer program for each value of λ, by fixing a time limit of 3600 seconds

for each execution. After that, we apply the CPLEX’s populate method to get 4 additional feasible
solutions. We configure this method to obtain solutions whose objective value is at most 3% greater than
the best solution found by CPLEX. On the other hand, we run the semi-greedy heuristic 5 times for each
value of λ. Thus, both methods return 5 different outputs for each instance and value of λ, and for each
one we solve the second stage. The time limit for each run of ALG-3 is 900 seconds.

The results are reported in Table 1. The first 4 columns describe the instance parameters: number
of days in the planning horizon, number of trucks, number of drivers, and the value of λ in Z12. The
next columns report the results obtained by the algorithms. Column “Z∗12” shows the value of Z12 for
the best feasible solution found by CPLEX, “Time/Gap” is the total elapsed time in seconds during the
optimization if the optimality is proven, or the final gap reported by CPLEX otherwise (the symbol “%”
is appended in that case), “#T ” is the average number of tasks, “Sol.” is the number of first stage outputs
where ALG-3 finds some feasible solution. The next 3 columns, “Zmin

3 ”, “Zavg
3 ” and “Zmax

3 ”, display the
minimum, average, and maximum value of Z3, respectively, among the best feasible solutions found by
ALG-3 for each first stage output, “Fails” is the average rate of fails (i.e. iterations where the construction
phase fails to generate a feasible solution) of ALG-3, and “Gap” is the average gap between the costs of
the solutions generated by the semi-greedy heuristic and the best solution found by CPLEX. A symbol
“–” means that no feasible solutions were discovered during the execution of ALG-3. When the values
of “Zmin

3 ”, “Zavg
3 ”, and “Zmax

3 ” are equal, we only report the one of “Zavg
3 ” and leave a blank space in the

others.
The table shows that the exact approach takes a considerable amount of time, and in particular it fails to

prove optimality in 3 of the 15 executions within the time limit. We also noted that this situation worsens
when the instances grow in size (e.g. adding more requests), or when they grow in complexity (e.g. having
a tighter number of trucks). Moreover, high-quality solutions in the first stage do not necessarily lead to
better solutions in the second stage; this fact is noticed in the instance with the longest planning horizon.
Conversely, the heuristic approach runs in a negligible amount of time and offers highly diversified
solutions when runs more than once. Because of these reasons, we will use the semi-greedy heuristic to
deliver the truck routes to test our second-phase algorithm in the subsequent experiments.

When we emphasize Z1 over Z2 (i.e., λ = 1, only delays in deliveries are minimised), the second stage
becomes harder to solve (the percentage of fails is very high). We attribute it to the fact that there are
more tasks and more overlap among them. From now on, we fix λ = 0.25 which allows Z1 and Z2 to
take part and provides a reasonable balance between Z3 and percentage of fails in the second stage.

Note also that in some cases our algorithm is able to deliver optimal solutions for the second stage,
precisely when Z3 = 0, as no shuttles trip are needed. This kind of solutions is of particular interest
because they are also feasible on the no-shuttle variant, i.e., where shuttle trips are not allowed at all.



H #V #D λ
Exact + ALG-3 Heuristic + ALG-3

Z∗12 Time/Gap #T Sol. Zmin
3 Z

avg
3 Zmax

3 Fails Gap #T Sol. Zmin
3 Z

avg
3 Zmax

3 Fails

7 32 64

0 986 4 s 437 5 0 24% 15% 490 3 0 54%
0.25 855.25 0.36% 443 5 0 46% 19% 491 3 0 2 6 63%
0.5 675 137 s 452 5 0 2.4 6 39% 25% 538 1 6 96%

0.75 480.5 48 s 454 3 12 77% 27% 591 0 – 100%
1 283 4 s 583 1 12 99% 22% 604 1 16 95%

14 24 48

0 947 3 s 445 5 0 55% 21% 512 4 0 37%
0.25 770 119 s 452 5 0 38% 19% 508 4 0 59%
0.5 543 86 s 458 5 0 82% 25% 534 5 0 63%

0.75 313 21 s 457 5 0 89% 32% 589 4 0 3.8 15 92%
1 83 209 s 622 3 4 6.3 9 99% 20% 631 4 8 18 25 99%

28 16 32

0 1096 42 s 456 5 30 41.2 65 86% 19% 518 5 16 25.4 42 72%
0.25 916.5 2.84% 473 5 9 14.6 20 70% 15% 521 5 6 18.4 33 73%
0.5 649.5 1.52% 478 5 6 15.4 27 67% 18% 547 5 9 23 34 76%

0.75 370 66 s 480 5 6 11 16 71% 26% 594 4 25 37.8 47 91%
1 89 448 s 619 5 27 51.2 70 97% 30% 624 5 24 31.2 41 87%

Table 1: Comparison between the exact and the heuristic approaches to solve the first stage.

Second experiment. We compare the performance of ALG-1, ALG-2, and ALG-3. We keep the instances
of the first experiment and we consider more number of trucks, now #V ∈ {18, 25, 32} for H = 7,
#V ∈ {13, 18, 24} for H = 14, and #V ∈ {8, 12, 16} for H = 28. These values have emerged from: the
least number of trucks such that the heuristic approach for the first stage is able to find a feasible solution,
an intermediate value, and the number of trucks used in the first experiment. We keep #D = 2(#V ).

For each instance, we generate 3 different outputs from the first stage by running the semi-greedy
heuristic. Then, we solve the second stage with the mentioned algorithms, using 3600 seconds as time
limit in each run (summarising a maximum of 81 hours of CPU time). These specifications (number of
outputs and time limit) are fixed for the next experiments.

The results can be found in Table 2. The column Zavg
12 shows the average cost of the solutions generated

by the semi-greedy heuristic, “Iter” is the average number of iterations in thousands done in the second
stage, and “BestT” is the average time in seconds needed to find the best solution in the second stage.

As it can be seen from the table, ALG-1 finds at least one feasible solution in 5 of the 9 instances, but
failing more that 90% of the times in 3 of them. This fact highlights the difficulty of generating feasible
solutions for our problem. ALG-2 finds feasible solutions in more instances, precisely 7 of 9. In particular,
the repair procedure helps to reduce the rate of fails. It is clear that ALG-3 outperforms the others as it
finds the highest-quality solutions. Moreover, when ALG-2 and ALG-3 deliver solutions with the same
cost, the latter finds it faster as evidenced by parameter BestT. In summary, despite the additional features
make the iterations more time-consuming, the whole algorithm becomes more effective.

Also note that the costs of the solutions (both Z12 and Z3) and the number of tasks decrease when
more resources (trucks and drivers) are available.

Finally, we repeated this experiment with a longer time limit (10 hours) for the instances where no
feasible solutions are discovered (H = 14 and #V = 13, and H = 28 and #V = 8), but we obtained the



H #V #D Z
avg
12 #T

ALG-1 ALG-2 ALG-3
Sol. Zmin

3 Z
avg
3 Iter BestT Fails Sol. Zmin

3 Z
avg
3 Iter BestT Fails Sol. Zmin

3 Z
avg
3 Iter BestT Fails

7
18 36 1209 507 0 – – 399 – 100% 2 46 59 6 2887 99% 2 23 31.5 6 1239 99%
25 50 1078 494 1 7 7 293 490 99% 3 4 6.3 28 1082 79% 3 0 4.3 14 959 78%
32 64 1061 494 2 0 6 612 8 82% 2 0 6 18 18 50% 2 0 3 14 7 50%

14
13 26 1144 538 0 – – 494 – 100% 0 – – 1 – 100% 0 – – 1 – 100%
18 36 1027 520 2 10 27.5 214 2405 99% 3 3 7 21 995 78% 3 0 1.3 7 2025 78%
24 48 959 507 2 0 0 250 18 78% 2 0 0 6 137 67% 2 0 0 5 17 59%

28
8 16 1257 556 0 – – 1027 – 100% 0 – – 1 – 100% 0 – – 1 – 100%

12 24 1139 532 0 – – 635 – 100% 2 84 92.5 5 2524 99% 2 59 70.5 5 1727 99%
16 32 1086 521 3 22 29 120 832 91% 3 24 25.7 18 2800 66% 3 12 14.3 7 1032 66%

Table 2: Comparison between ALG-1, ALG-2, and ALG-3.

H #V #D
ALG-3

Sol. Zmin
3 Z

avg
3 Fails

7 18

29 0 – – 100%
36 2 23 31.5 99%
43 3 6 8.7 79%
50 3 0 5.3 68%

14 13
26 0 – – 100%
31 3 6 21 96%
36 3 0 0 63%

28 8
16 0 – – 100%
20 0 – – 100%
24 3 24 35.7 96%

Table 3: Changing the number of drivers.

H #V #D
1 driver ≤ 2 drivers

Sol. Zmin
3 Z

avg
3 Fails Sol. Zmin

3 Z
avg
3 Fails

7
18 36 2 66 84 99% 2 23 31.5 99%
25 50 3 22 23.3 77% 3 0 4.3 78%
32 64 2 6 11 67% 2 0 3 50%

14
13 31 3 61 84 96% 3 6 21 96%
18 36 3 18 21.3 77% 3 0 1.3 78%
24 48 2 5 9.5 67% 2 0 0 59%

28
8 24 3 30 53.3 96% 3 24 35.7 96%

12 24 3 64 86.7 99% 2 59 70.5 99%
16 32 3 41 45 65% 3 12 14.3 66%

Table 4: Changing the crew size.

same negative result. We suspect that these instances are infeasible.

Third experiment. We analyse the impact of changing the number of drivers on the performance of ALG-3.
We select the most challenging instances of the previous experiment, i.e. those with the lowest number of
trucks for each planning horizon, and we consider the following number of drivers: #D ∈ {29, 36, 43, 50}
for #V = 18, #D ∈ {26, 31, 36} for #V = 13, and #D ∈ {16, 20, 24} for #V = 8.

The results are reported in Table 3. Now, feasible solutions can be found for the instances with
#V = 13 and #V = 8 if #D is increased by 20% and 50% respectively, but none for the instance with
#V = 18 if #D is decreased by 20%. Also, the cost of the best solutions and the rate of fails diminish
when there are more drivers. We conclude that our algorithm performs better when more drivers are
available.

Fourth experiment. We test the performance of ALG-3 when the crew size is restricted to a single driver.
This is achieved by disabling MOVE-4 and MOVE-5, i.e., the moves that change the crew size. We use the
same instances as in the second experiment, but taking more drivers in the two instances where ALG-3



does not find any feasible solution. More precisely, as in the third experiment, we take #D = 31 for the
instance with #V = 13 and #D = 24 for the one with #V = 8.

Table 4 presents the results. Columns 4-7 use crews with size equal to 1, and columns 8-11, with size
lower or equal than 2. When MOVE-4 and MOVE-5 are active, there is a major improvement in the cost
of the best solution for all the instances, more precisely Zmin

3 is 60% lower on average. It is evident that
carrying an additional driver is highly effective in reducing the dependence on shuttles.

Fifth experiment. We test ALG-3 with additional rest regulations, where a driver cannot work more than
60 hours per week, and must rest uninterruptedly for at least 11 hours between two consecutive work
periods. We will refer to these variants as: L1 +L2 and L1 +L3, respectively. Any semi-feasible solution
that violates L2 or L3 is considered infeasible for these variants. We select from the previous experiment
the instances with the lowest #V for each planning horizon, and for each one we generate a copy with
30% more drivers (since stronger rest constraints are expected to require more drivers). We also consider
larger instances, of 1000 and 3000 requests, with corresponding reasonable amounts of trucks and drivers
(we keep the same proportion of trucks per requests and #D ∈ {1.9#V , 2.2#V } to be precise). Table 5
summarises the results. Columns 5-9 consider L1, columns 10-14, L1 +L2, and columns 15-19, L1 +L3.
When “Iter” is lower than 0.05 (500 iterations), we write > 0.1.

In the case of 100 requests, the performances are fairly similar when L2 is active, in fact the algorithm
finds feasible solutions of equal cost for the instances with more drivers. Concerning L3, no feasible
solutions are found unless there are more drivers. In that case, Zmin

3 is as good as before for H = 14 and
worse for H ∈ {7, 28}. Also note that with L3, the algorithm does many more iterations and fails more
often; this exposes the difficulty of constructing feasible solutions satisfying L3. Despite these exceptions,
our algorithm seems to adapt to the different regulations.

For large instances and cases L1 and L1 + L2, less drivers are needed per truck and, even so, they
are fairly easy to solve, e.g., an optimal solution is found in few iterations, also useful for the no-shuttle
variant. In the case of L1 + L3, the same pattern (as for 100 requests) arises: more drivers are needed to
find a feasible solution.

7. Conclusions

In the present work, we address a problem concerning the simultaneous routing and scheduling of a
fleet of trucks and a staff of drivers to fulfill pickup-and-delivery requests over a planning horizon. This
problem has the particularity that the trucks play a double role: besides carrying the requests, they can be
used to transport the drivers among the locations.

As it applies to long-distance road transportation, travel times usually exceed the working hours of the
drivers, so it becomes essential to allow relays during the trips (as opposed to short-distance transportation
where a vehicle can be manned by a single driver, who can make multiple requests within her/his working
day). On the other hand, considering more than one driver per crew allows a better use of the fleet, where
each truck is idle for less time.

We propose a hybrid metaheuristic based algorithm to schedule the crews according to the truck routes
determined in a first stage. This algorithm is capable of exploring solutions where the crews can have 1
or 2 drivers through two problem-specific moves. We have performed computational experiments with



#R H #V #D
L1 L1 + L2 L1 + L3

Sol. Zmin
3 Z

avg
3 Iter Fails Sol. Zmin

3 Z
avg
3 Iter Fails Sol. Zmin

3 Z
avg
3 Iter Fails

7 18
36 2 23 31.5 5 99% 1 30 30 5 99% 0 – – 300 100%
47 3 0 3.3 11 64% 3 0 3.3 11 63% 2 16 16.5 122 99%

100 14 13
31 3 6 21 7 96% 3 7 18.7 7 96% 0 – – 109 100%
40 3 0 0 0.1 67% 3 0 0 0.1 67% 3 0 9.3 20 97%

28 8
24 3 24 35.7 6 96% 3 26 36.3 6 96% 0 – – 149 100%
31 3 12 15.7 6 81% 3 12 18.3 6 81% 3 37 55 53 99%

1000
7 180

342 3 0 0 0.1 77% 3 0 0 0.2 77% 0 – – 0.7 100%
396 3 0 0 > 0.1 28% 3 0 0 > 0.1 28% 3 0 0 0.1 72%

28 80
152 3 0 4.7 0.4 87% 3 0 4 0.3 91% 0 – – 1.9 100%
176 3 0 0 > 0.1 27% 3 0 0 > 0.1 56% 2 3 6 1 98%

3000
7 540

1026 3 0 0 > 0.1 86% 3 0 0 > 0.1 86% 0 – – 0.1 100%
1188 3 0 0 > 0.1 0% 3 0 0 > 0.1 0% 2 0 0 > 0.1 81%

28 240
456 3 0 0 > 0.1 56% 3 0 0 > 0.1 47% 2 20 20.5 0.1 99%
528 3 0 0 > 0.1 25% 3 0 0 > 0.1 20% 3 0 2 > 0.1 58%

Table 5: Using additional rest constraints and larger instances.

a set of instances generated with random requests among 15 Argentine cities. The results have shown
the effectiveness of our algorithm, mostly due to the possibility of violating some of the rest constraints
during the construction of the initial solutions (which are later repaired) and the option of changing the
start time of the tasks. The proposed repair procedure plays a fundamental role in the search for feasible
solutions while the perturbation procedure does so in improving the objective function. Concerning the
main feature of our problem, we can assert that the possibility of carrying an additional driver has led to
remarkable cost improvements (about 60%), in comparison to the usage of individual crews. In conclusion,
the developed algorithm has shown to be effective, and even for the variant no-shuttle if more drivers
are considered. It is also robust in the sense that it can be adapted to other scenarios with different rest
regulations.

As future work, we plan to investigate whether a greater connection between both stages of the
sequential approach can produce better solutions. For instance, by taking into account some requirements
of the drivers during the first stage could make the scheduling of the crews easier during the second. It
would also be necessary to weigh the relationship among the objective functions of both stages to globally
compare the solutions.

Another line of research is to analyse our problem in the context of the Physical Internet Initiative
(whose intention is to replace traditional logistical models to a more sustainable and efficient way by
applying ideas of how Internet works), where drivers can be transported from their home to some location
and then use another truck to come back to their hometown.



Appendix

Here, we present integer programming models for both stages.

Integer programming model for first stage. Let us consider a simple digraph G = (U,A) with weights
w ∈ R+

0
V where

U = {uv : v ∈ V } ∪ {ur : r ∈ R} ∪ {us},

this is, a node for each truck and request and a sink node us. The set of arcs A is defined as follows:

• There is an arc (uv, ur) for each v ∈ V and each r ∈ R, with weight w(uv, ur) = travelDist(lv, l
p
r)+

travelDist(lpr , ldr). It models that r is the first request picked by truck v.
• There is an arc (ur1 , ur2) for r1, r2 ∈ R, with weight w(ur1 , ur2) = travelDist(ldr1 , l

p
r2) +

travelDist(lpr2 , l
d
r2). It models that the same truck picks up r2 after it delivers r1.

• There is an arc (uv, us) for each v ∈ V with weight w(uv, us) = 0. This arc allows the model to not
route every truck of the fleet.

• There is an arc (ur, us) for each r ∈ R with weight w(ur, us) = 0.

A set of truck routes can be represented by means of a binary decision variable xe for each e ∈ A,
where xe = 1 if and only if some truck travels arc e. For each request r ∈ R, we also consider four integer
decision variables dpr , ddr , hpr and hdr , which stand for the day or hour the request is picked up or delivered,
respectively. The formulation is given below, where the notation e = (_, s) means that the head of the arc
e is s regardless of the tail (the same applies for the notation (s, _) where the tail is fixed to s), and M is a
large value, e.g., M = 24H +

∑
e∈Aw(e).

Minimise Z1 =
∑
r∈R

cr(d
d
r − daydr ) and Z2 =

∑
e∈A

w(e)xe

subject to:∑
e=(_,ur)∈A

xe = 1, ∀ r ∈ R, (2)

∑
e=(uv,_)∈A

xe = 1, ∀ v ∈ V, (3)

24dpr + hpr + 1 + travelT imeT (lpr , l
d
r) ≤ 24ddr + hdr , ∀ r ∈ R, (4)

travelT imeT (lv , l
p
r) ≤ 24dpr + hpr +M(1− x(uv,ur)), ∀ v ∈ V, r ∈ R, (5)

24ddr1 + hdr1 + 1 + travelT imeT (ldr1 , l
p
r2
)

≤ 24dpr2 + hpr2 +M(1− x(ur1
,ur2

)), ∀ r1, r2 ∈ R, r1 6= r2, (6)∑
e=(_,ur)∈A

xe =
∑

e=(ur,_)∈A
xe, ∀ r ∈ R, (7)

xe ∈ {0, 1}, ∀ e ∈ A, (8)

dpr ∈ Z ∩ [daypr , H), ddr ∈ Z ∩ [daydr , H), ∀ r ∈ R, (9)

hpr ∈ Z ∩ [apr , b
p
r ], h

d
r ∈ Z ∩ [adr , b

d
r ], ∀ r ∈ R. (10)



Constraints (2) establish that all requests are fulfilled. Constraints (3) ensure that all trucks depart from
their initial locations. Constraints (4) forbid that a request r could be delivered before it is picked up,
taking into account the travel time between locations lpr and ldr , and the duration of the service of one hour.
Constraints (5) and (6) consider the time for a truck v to reach the location of its first request r as long as
x(uv,ur) = 1, and the time for some truck to reach the location of a request r2 after delivering another
request r1 as long as x(ur1

,ur2
) = 1, respectively. Finally, constraints (7) are flow conservation equations

and (8)-(10) establish the domain of the decision variables (integrality and bound constraints).
Note that the elements T and req can be generated from the optimal solution of this model

straightforwardly.

Integer programming model for second stage. We consider the digraph G = (V, Ã), having

Ã = {(sl, nt) : l ∈ LD, t ∈ T}∪{(nti , ntj ) : ti, tj ∈ T, ti 6= tj}∪{(sl, s̃) : l ∈ LD}∪{(nt, s̃) : t ∈ T}

with weights we = shuttleCost(l, pt) for all e = (sl, nt), we = shuttleCost(qti , ptj ) for all e =

(nti , ntj ), and we = 0 for all e = (_, s̃). Note that A ⊂ Ã for any Gδ = (V,A), so Ã can be seen as a
superset of arcs. Let δ(t) be an integer variable for each t ∈ T , xde be a binary variable for each d ∈ D
and e ∈ Ãd

.
= Ã \ {(sl, _) : l 6= ld} such that xde = 1 if and only if e belongs to the directed path in Gδ

corresponding to the driver d, and ye be a binary variable for each e ∈ Ã such that ye = 1 if and only if e
belongs to some directed path in Gδ. Then the formulation can be stated as follows.

Minimise Z3 =
∑
d∈D

∑
e∈Ãd

wexde



subject to:

1 ≤
∑
d∈D

∑
e=(_,nt)∈Ãd

xde ≤ 2, ∀ t ∈ T, (11)

∑
e=(sld

,_)∈Ãd

xde =
∑

e=(_,s̃)∈Ãd

xde = 1, ∀ d ∈ D, (12)

∑
e=(_,nt)∈Ãd

xde =
∑

e=(nt,_)∈Ãd

xde, ∀ d ∈ D, t ∈ T, (13)

xde ≤ ye, ∀ d ∈ D, e ∈ Ãd, (14)

travelT imeS(ld, pt)y(sld ,nt) ≤ δ(t), ∀ d ∈ D, t ∈ T (15)

δ(ti) + ati ≤ δ(tj), ∀ ti, tj ∈ T : tj is next to ti in some truck route (16)

δ(ti) + ati + travelT imeS(qti , ptj ) ≤ δ(tj) +M(1− y(nti
,ntj

)),

∀ ti, tj ∈ T : ti and tj belong to different truck routes (17)

xde ∈ {0, 1}, ∀ d ∈ D, e ∈ Ãd, (18)

ye ∈ {0, 1}, ∀ e ∈ Ã, (19)

δ(t) ∈ Z+, ∀ t ∈ T t, (20)

δ(t) ∈
H−1⋃

i=day
p
req(t)

{24 ∗ i+ ap
req(t)

, . . . , 24 ∗ i+ bp
req(t)

}, ∀ t ∈ T p, (21)

δ(t) ∈ {24 ∗ ddreq(t) + adreq(t), . . . , 24 ∗ d
d
req(t) + bdreq(t)}, ∀ t ∈ T d. (22)

Constraints (11) ensure that each task is covered by one or two drivers. Constraints (12) set a single
initial (and final) arc for each driver according to its initial location. Constraints (13) are flow conservation
equations. Constraints (14) control the activation of y. Constraints (15) and (17) enforce Definition 1.
Constraints (16), (21), and (22) enforce Definition 2. The remaining constraints define the domain of
variables. Note that we set the delivery date of the requests from the optimal solution of the first stage in
order to maintain the value of Z1 (ddreq(t) stand for the day the request req(t) is delivered in the optimal
solution of the first stage). We omitted the rest constraints in this formulation for the sake of simplicity.
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