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tive reasoning betrays the same attitude that Hilbert’s 6th 
problem does. (This problem, posed before Einstein’s work 
became public, encouraged mathematicians to axiomatize phy- 
sics.) Both are rooted in the belief that science is merely an 
extension of mathematics, philosophy, and logic. 

Herbert Simon, on the other hand, studies the psychology of 
humans doing science, and not how they ought to do it. He 
finds this a fruitful source of ideas for building computer 
models of the scientific reasoning process. 

In short I believe we must build theories that describe 
how humans do induction-these will be a better source of 
inspiration than philosophical argumentation about normative 
theories. 
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I am broadly in sympathy with Cheeseman’s attempt to pro- 
mote the use of Bayesian probability in artificial intelligence; it 
may well have a role to play in inference, especially in the rep- 
resentation of uncertainty and jumping to conclusions. How- 
ever, Cheeseman’s argument is deficient in a number of key 
areas, and so fails to carry the force that he would like. 

1. The role of Bayesian inference 
The first deficiency is that he fails to make clear exactly 

what role he is proposing for his mechanism of Bayesian infer- 
ence. Is he proposing it as a mechanism for modelling human 
inference, or as a component in expert systems, or merely as a 
technique worthy of further study? This crucial issue is not dis- 
cussed, which makes his advocacy vague and hard to evaluate. 

Any claim to psychological validity is belied by several of 
Cheeseman’s assertions, which imply that people do not use 
Bayesian inference. For instance, 

“there is considerable evidence that people are very poor 
at combining many pieces of information.”; 

“That such a simple problem could lead people astray 
should indicate that applying Bayesian inference requires at 
least as much care as in applying logic.”; 

“In English, such probabilistic information is usually 
signalled by words such as usually, most, occasionally, some- 
times, etc.”; 

“a Bayesian analysis shows that the obvious method is 
incorrect! ”. 

Cheeseman does claim that Bayesian inference is a superior 
technique to logic for the representation of commonsense rea- 
soning. In particular, he claims that it overcomes the technical 
difficulties identified by McDermott with the aid of his “Yale 
shooting” example (McDermott 1987). Unfortunately, since 
Cheeseman omits to show how the Yale shooting example is 
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handled by Bayesian inference, it is impossible to evaluate his 
claim that the technical difficulties are overcome. 

Even more unfortunately, Bayesian inference seems to be 
ruled out as a candidate for representing commonsense reason- 
ing. Our only criterion for what constitutes a valid common- 
sense inference (as opposed to, say, a deductive inference) is 
whether it is an inference that (some? all’?) people would draw. 
However, as several of the above quotes make clear, not only 
do people not use Bayesian probability to make inferences, 
they often make inferences with conclusions not sanctioned by 
Bayesian inference. 

What this leaves us with is an interesting mechanism for 
plausible inference, which might find application in expert 
systems. We also have a specification of a “correct” infer- 
ence, which is neither deductive nor commonsense. 

2. Combining logical and Bayesian inference 
Another claim in Cheeseman’s article is that Bayesian and 

logical inferences can be combined. Unfortunately, he does 
not show us how this is to be done. In particular, he omits to 
address the key technical problem in making any such combi- 
nation: how to make a probabilistic logic that is, what I have 
elsewhere (Bundy 1985) called, proof  fitnctionul. 

A proof functional logic is one in which the truth values of 
the theorems can be calculated from the truth values of the 
axioms. This is such an obvious property of two-valued class- 
ical logics that we tend to overlook it, but it is often a hard 
property to achieve in multivalued, plausible logics. Consider, 
for instance, the & introduction rule of inference from the 
natural deduction formulation of propositional or predicate 
logic. 
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Suppose we have associated probabilities with Q and R. To 
make any logic, containing this rule, proof functional, we must 
be able to calculate the probability of Q&R.’ Unfortunately, 
this cannot be done without further information about the 
dependencies between Q and R.  For instance, if Q and R both 
have. probabilities of % then the probability of Q&R could take 
any value between 0 and %. To see this, consider the cases R 
is -Q and R is Q. 

Cheeseman would represent these 3 probabilities by 
P(Qlc), P(Rlc), and P(Q&Rlc), where c is the conjunction of 
the axioms and hypotheses. He does not give any algorithm for 
calculating the third from the first and second. 

Bayes Theorem gives the relationship: 

P(Q&R[ c) = P(Q[ c) .P(R[ Q&c) 

Some authors have used this relationship to make the calcula- 
tion by equating P(RIQ&c) and P(R1c). This effectively 
assumes conditional independence between Q and R ,  giving a 
probability of !A for P(Q&Rlc) in the example above. But such 
an assumption is unjustified and leads to erroneous inferences. 

Other authors have abandoned the attempt to have a proof 
functional logic and have settled for calculating upper and 

‘This involves an extension of the concept of rule of inference. 
-~ 

lower bounds on the probability of derived formulae. Others 
have employed alternative assumptions to conditional indepen- 
dence, e.g., maximum entropy. My own proposal is to encode 
the dependencies of formulae within their truth values by 
making them sets of notional situations, rather than numbers 
(Bundy 1985). 

3. Conclusion 
Cheeseman’s article is a useful summary of Bayesian infer- 

ence and makes a case for further study of this mechanism as 
an alternative to and complement of existing plausible infer- 
ence mechanisms. Unfortunately, the case is much weaker 
than it might have been because he fails (a) to clarify exactly 
what claim he is making and (b) to address some of the key 
technical problems. 
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I am in general agreement with most of the major themes in 
Cheeseman’s paper, e.g., that the calculus of probabilities has 
a much wider potential application in A1 than is presently 
exploited, that prior probabilities are not the bugaboo often 
claimed. that intricate ‘‘proceduralist’ ’ approaches to inference 
are more likely to obscure rather than clarify the basic prob- 
lems, and that in cases where the notion of a theory is not well 
established-as in Cheeseman’s illustration of classification- 
retaining all hypotheses with nonnegligible posteriors is a good 
idea. On the other hand, despite his protestations to the con- 
trary, Cheeseman does “sound like a born-again Bayesian” at 
numerous points in the paper, in particular in his insistence that 
“the Bayesian approach is THE theoretical framework for 
induction,” that probabilities are a measure of belief, and that 
the language of probability is the only resource for dealing 
with non all-or-none statements. In addition to this general 
impression, there are a number of more specific caveats. 

1. Ordinary discourse has much wider resources than the 
“for every x” or “there is anx” of elementary logic. In partic- 
ular, it includes arithmetic. In the fragile glass example, the 
man-in-the street can say, “10% of this kind of glass will 
break if dropped from a height of 1 ft” and remain blissfully 
ignorant of the theory of probability. 

2. I haven’t the foggiest notion what Cheeseman means by 
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“monotonic” as applied to probabilities. As I understand the 
term, probabilities are called nonmonotonic because additional 
evidence may either raise or lower a probability estimate-a 
fact which Cheeseman readily admits and illustrates in the fol- 
lowing paragraph. 

3. Cheeseman gives a highly confused account of his percep- 
tion of the relationship between logic and the calculus of prob- 
abilities, at times contrasting the two and at other times 
claiming that the calculus of probabilities is a generalization of 
logic. “If all real-world propositions are statements of belief, 
as required in probability theory, then there is no place for the 
idea of interchanging logically equivalent propositions . . . ” As 
a matter of fact, the probability calculus is completely depen- 
dent on logic, and would be crippled without the ability to 
interchange equivalent propositions. This is highly evident in 
the Cox derivation of the basic properties of probability, and is 
explicitly mandated by property 7 ,-Consistency! On the other 
hand the contention that “logic is just a special case within 
probability theory (where all probabilities are 0 or 1) . . .” is 
subtly false. For example, P(B)  = 1 is not equivalent to 
YxB(x), nor is P(B) = 0 equivalent to Vx i B ( x ) ;  P(B) = 1 can 
be true, and yet any finite number of x’s be non-B (in ordered 
sequences, an infinite number of x’s can be non-B). The con- 
trast between logical and probabilistic inference has a point, 


