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Abstract 

The literature on the nature and representation of time is full of disputes and 
contradictory theories. This is surprising since the nature of time does not cause 
any worry for people in their everyday coping with the world. What this suggests is 
that there is some form of common sense knowledge about time that is rich enough 
to enable people to deal with the world, and that is universal enough to enable 
cooperation and communication between people. In this paper, we propose such a 
theory and defend it in two different ways. We axiomatize a theory of time in terms 
of intervals and the single relation MEET. We then show that this axiomatization 
subsumes Allen's interval-based theory. We then extend the theory by formally 
defining the beginnings and endings of intervals and show that these have 
properties we normally would associate with points. We distinguish between these 
point-like objects and the concept of moment as hypothesized in discrete time 
models. Finally, we examine the theory in terms of each of several different models. 
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Introduction 

The literature on the nature and representation of time is full of disputes and 
contradictory theories. This is surprising since the nature of time does not cause 
any worry for people in their everyday coping with the world. What this 
suggests is that there is some form of common-sense knowledge about time that 
is rich enough to enable people to deal with the world and universal enough to 
enable cooperation and communication between people. In this paper we 
propose such a theory and defend it in two different ways. 

First, the theory is powerful enough to include the distinction between 
intervals (i.e., times corresponding to events with duration) and moments (i.e., 
times corresponding to instantaneous events), as well as allowing substantial 
reasoning about temporal ordering relations (including the abilities described in 
[Allen, 1984]). In addition, it includes a formalization of the beginnings and 
endings of events by introducing the corresponding beginnings ind endings of 
times. We show that beginnings and endings act in many ways like moments, 
yet can be distinguished from them. 

Second, the theory has as allowable models a number of the temporal models 
that are suggested in the literature. This includes models that equate time with 
intervals and points on the real number line, models that hypothesize discrete 
time, and any model that mixes real points and intervals. Our claim is that if 
our common-sense theory of time excluded anyone of these models, then there 
would be no debate as to whether that model was valid, since in that case our 
own primitive intuitions on the matter would be extremely clear. 

An important intuition that guides us is that time is only a projection of 
events that occur and properties that hold. If the universe did not change, there 
would be no time. Any sort of event or happening that can be described or 
thought of has a corresponding time, and the universe of times consists of these. 
It is important to note, however, that we are not constructing a logic of events 
such as that described in Kamp [1979]. In an event calculus, two events may be 
temporally identical yet distinct. In the interval logic, two identical intervals 
are by necessity equal. 

A consequence of this view is that we will start with a neutral term, time 
period, and introduce properties of such periods as they are needed. The 
primary requirement is that time periods must be able to meet, which occurs 
when two periods neither share any time in common nor have any time between 
them. For example, if some property P changes from being true to being false, 
the period where P is true meets the period where P is false. These two periods 
neither overlap (in which case P would be simultaneously true and falsel) nor 
are separated by any time (in which case there would be a truth gap). The 
importance of the meets relation in naive theories of time has been argued 
elsewhere (e.g., [Allen, 1984]) and will not be defended further here. 
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Let us consider the issue of how small a time period might be or, in fact, 
whether they must have a duration at all. There seem to be several situations 
that intuitively require small periods. Below we introduce two that will be 
examined at length in this paper. 

A moment is simply a nondecomposable period. Given the above discussion, it 
should be clear that nothing could change during a moment. If there were an 
observable change during the moment, then we could subdivide it into the part 
before the change and the part after. A natural example of a moment is the time 
taken for a flash of lightning, or a flash of a strobe light, where the world 
appears to be frozen. Another example is the time it takes to take a picture. As 
one can see, what might be considered a moment may depend very much on the 
context, and on the measuring instruments available. A moment in everyday 
life may be a bewildering complex interaction of events to a researcher in 
particle physics! 

A point, in contrast to a moment, has a zero duration time and arises in 
situations where we need to reason about the beginnings and endings of events. 
The beginning of a race is the time of transition from the race not being in 
progress to the race being in progress. Such points cannot be viewed as having 
duration unless we are willing to accept truth gaps (i.e., is the race on or not yet 
begun at the beginning of the race"). A classic example, from elementary 
physics, concerns the path of a ball thrown vertically into the air. We all learned 
that there is a time when the ball is stationary, and is neither rising nor falling. 
Depending on how literally we take this fact, the time the ball is stationary will 
be a moment or a point. One version is that the ball is stationary only for a time 
of zero duration, which in fact is the point where the interval in which the ball is 
rising meets the interval in which it is falling. If, on the other hand, you believe 
that the ball is stationary for some non-zero duration, then the time is a 
moment. The interval in which the ball is rising meets the moment where it is 
stationary, which in turn meets the interval where it is falling. In this case, the 
rising interval is strictly before the falling interval. 

In Section I, we axiomatize a theory of time in terms of the single relation 
meets. It is then shown in Section II that this axiomatization subsumes the 
interval-based theory proposed in [Allen, 1983; 1984]. We then extend the 
theory to point-like time periods. Section ill discusses the distinction between 
moments and points, and Section IV formally defines the beginnings and 
endings of intervals and shows that they have the properties we normally would 
associate with points. Section V gives a set-theoretic definition of points 
providing an alternative analysis to that in Section IV. Section VI discusses the 
properties of moments, and Section VII examines the theory in terms of each of 
several different models. 
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The proofs of the theorems are not included in this paper. Most of them are 
fairly straightforward. Where this is not the case, we try to give an intuitive 
argument of why it is true. All the proofs are included in the appendix. 

We will be using the first-order predicate calculus with equality throughout, 
with the operators & (and), V (or), EB (exclusive-or), ::J (implication), == 
(equivalence), and the standard quantifiers 'tJ (universal) and 3 (existential), 
Scoping will be indicated by parentheses or by the dot notation. For example: 

'tJ ij . P(ij) ::J Q(ij) 

is the same as 

'tJ ij (Pti.j) ::J Q(ij)) 

I. An Axiomatization of Interval Time 

We start the formal development by positing a non-empty class of objects in 
our ontology that we shall call time periods. These are intended to correspond 
to our intuitive notion of when some event occurs. We do not, at this early stage, 
make any commitment as to whether all times are decomposable or not. 

We define the single relation meets between times and formulate its 
properties. We deliberately make no commitments as to the structure of the 
time periods--whether they are continuous, divisible, etc. The single intuitive 
idea we try to capture is that periods are all contained in a single "time-line." 
We will write the meets relation as a colon in formal expressions, and use 
chained infix notation to compactly express a conjunction of meetings, so that "i 
meets j" is written as i.j, and "i meets j and j meets k and k meets I" will be 
written i.j:k:l. 

The first axiom is based on the intuition that the "place" where two periods 
meet is unique and closely associated with the periods. Thus if two periods both 
meet a third, then any period met by one must also be met by the other. This can 
be compactly stated as: 

(M1) 'tJ ij,k,I. (i.j & i:k & l.j) :J I:k 

Next, we need to ensure that meeting-places are totally ordered. This axiom 
uses a technique for asserting that one meeting-place is earlier than another 
that we will make extensive use of later. This says that if period i meets} and 
period k meets I, then exactly one of the following holds: 

1) i meets I; 

2) there is an m such that i meets m and m meets I; 

3) there is an n such that k meets nand n meets}. 
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In other words, we have exactly three possible cases, shown in Figure 1, for any 
four times i,j, k, and 1. 

--l-- I--J-- I--J-- I--J-­--l-- --l-­

--k--I--I-- I--m--I I--n--I
 
--k--I--I-- --k--I--I-­

Case 1 Case 2 Case 3 

Figure 1: The Three Possible Orderings ofi,j, k, and 1 in Axiom M2 

(M2) V ij,k,l . (i.] & k.l} ::J i:l EB (3 m. itm.l) EB (3 m . k:m.j) 

Notice that if i:l then k:j, by Ml. The exclusive-ors in this axiom have some 
quite powerful consequences. In particular, they ensure that there can be no 
circular times. Suppose i meets itself: then the appropriate instance ofM2 allows 
us to conclude both that i:i and that there exists an m with i:m:i (since i:i:i). 
Then two cases of the conclusion of M2 would be simultaneously true, 
contradicting the exclusivity of the exclusive-or. Thus we have the lemma: 

(ML1) Vi. • i:i 

Similarly, assume i.j andj:i. In this case axiom M2 allows us to conclude both 
3 m. i:m:i and 3 m .j:m.j, again violating the exclusivity of the exclusive-or. 
Thus we have: 

(ML2) V ij . itj ::J '(j:i) 

More generally, the above argument shows that there is no period m such that 
. ..
l:m:l, i.e., 

(ML3) Vi. ·3 m. i:m:i 

Next we need some existence axioms. The simplest merely does not allow 
time to start or stop. 

(M3) Vi 3j,k .j:i:k 

We need one further existence axiom. The presence of a period between any 
identifiable meeting places is a very basic fact in this world-picture: it is the 
presence or otherwise of such intervals that "encodes" time-order, for example, 
as in M2. If two meeting-places are separated by a sequence of intervals, we 
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need to be able to conclude that this sequence itself constitutes a longer period. 
Here, for the first time, periods exist which have an internal structure. 

(M4) V ij . itj ::J (3 k,m,n . m:i.j:n & m:k:n) 

Notice the use of auxiliary times (m and n) whose function is merely to 
ensure that k and i start at the same point and k and} finish at the same point. 
This is another trick which we will use again. That such times exist on either 
side of i and} is of course guaranteed by M3. 

Our final axiom in the basic theory of meeting is a simple extensionality 
assumption which says that there is only one time period between any two 
meeting-places. Without this assumption, time could branch arbitrarily in the 
past or future directions. 

(M5) V ij,k,Z . (i.j.l & i.k.l) == } = k 

It now follows that the period whose existence is guaranteed by M4 must be 
unique, since if m:i:}:n and m:k:n and m:k ~'n, then k = k'. Thus we can think of 
there being a function from two adjacent periods to this longer period, which we 
will call the ordered union or sum of i and}, and write as i +}, so that M4 can be 
restated as: 

(M4.1) V ij . i.j ::J (3 m,n . m:i.j:n & m.ti +j):«) 

It is easy to show that + is associative, so we will let ourselves abuse notation in 
the future by wri ting expressions such as i +} +k. 

This is the complete basic set of axioms concerning the meets relation. These 
are enough to reconstruct the larger theory of interval relations. Simple 
definitions of the complete set of possible relationships between intervals can be 
given in terms of meets. The definitions work by hypothesizing intervals which 
represent the gaps between the ends of the given intervals, as in axiom M2, and 
using auxiliary intervals to tie loose ends together, as in M4. 

For example, we can define a relationship BEFORE to hold between two 
times only if there is a period which spans some time between them. Thus 

i BEFORE} == 3 k . i:k:j 

The relation STARTS, which holds between a time and one which is a 
continuation of it, can be defined by asserting the existence of an interval which, 
when added to the second, makes the first: 

i STARTS} == 3 k.} = i+k 

Ifone expands the definition of + using M4.1, this becomes 
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i STARTS} = 3 k,m,n. m:i:k:n & m.j:n 

All the definitions using + below are equivalent to formulae of this simple 
form, in which a number of times are asserted to exist that meet one another. 
The most complex is OVERLAPS, which requires five extra periods to be 
hypothesized. 

Relation Definition Inverse Relation 
Between I &J 

BEFORE, b 3 k. I:k:J AFTER,a 

OVERLAPS, 0 3 k,l,m.I = k+l &J OVERLAPPED-BY,oi 
= l+m 

STARTS,s 3k.J=I+k STARTED-BY, si 

FINISHES, f 3k.J=k+I FINISHED-BY, fi 

DURING, d 3 k,l . J = k +I + I CONTAINS, di 

MEETS,: I:J MET-BY,mi 

Figure 2: The Six Relationships Between I and J 

Six relationships between periods are defined in Figure 2, which also gives 
the shorter notation which we will use in formulae and the names of the 
inverses. We include the meets relation above so that we have a convenient 
notation for the inverse of meets (i.e., mi) in later discussion. We will also use 
the abbreviations for disjunctions used in [Allen, 1983]. Thus} (0 oi s f d) i is 
shorthand for the formula 

} OVERLAPS i V } OVERLAPPED-BY i V } STARTS i V
 
} FINISHES i V } DURING i
 

The thirteenth relationship is equality. If we take equality as a nonlogical 
symbol, then axiom M5 can be taken as its definition in the same style as the 
others shown. 

In addition, we will define a relation IN to include all the relationships 
involving "containment," i.e., 

iIN} == iDURING} V iSTARTS} V iFINISHES} V i <i 

An intersection operator on times also proves useful throughout in the 
proofs. Let I!J be the intersection of I and J, which is defined as follows: I!J is 
the interval that exists if there exists a subinterval common to both I and J, 
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(11) 3 i . (i IN n & (i IN J) :J (l!J IN 1) & (I!J IN J) 

and is the largest common subinterval, 

(12) Vi. (iIN n & (iIN J) :J iIN I!J 

We can prove that I!J is unique ifit exists (Lemma ILl), and it exists whenever I 
and J overlap in the intuitive sense of the word, i.e., I (0 oi s si f fi d di =) J 
(Lemma IL2). Since this is all derivable from axioms M1-M5, axioms 11 and 12 
can be regarded as a definition of this notation. 

Some other lemmas will be useful later. In particular, 

Lemma IL3: If i = a +b andj:b, then ifj exists and is equal to afj. If i = a +b 
and a.j, then ifj exists and is equal to bfj. 

II. Capturing the Behavior of an Interval-Based Temporal Reasoner 

The question now arises as to whether the above axiomatization of meet and 
the definitions of the other relationships totally capture the behavior of the 
interval logic in [Allen, 1983]. This turns out to be the case, although it is 
tedious to show. Before we expand on this, the intended meaning of the 
transitivity table in [Allen, 1983] should be made clear. Consider an entry for 
the relations MEETS and BEFORE, which has the value BEFORE. If encoded 
in FOPC, this entry would have the following interpretation: 

(*) Va,b,c . a MEETS b & b BEFORE C :J a BEFORE C 

In particular, the meaning of the table entries cannot be defined by a 
biconditional (i.e., iff) statement. In fact, strengthening (*) to a biconditional 
would actually force all intervals to be decomposable (among other things), a 
characteristic that we explicitly do not want in the basic model. 

We can prove that, for any two intervals I and J, then exactly one of the 
thirteen interval relationships possible holds between them. We can also show 
that the transitivity table in [Allen, 1983] is a result of the above 
axiomatization. This had to be shown entry by entry through the table, 
following the intuitive reasoning by possible cases which was used to construct 
the table originally. The proof, while long, is simple, as it only involves the 
repeated application of the ordering axiom M2. For example, given I, J, and K 
such that I OVERLAPS J & J DURING K, we know 

3 a,b,c,d,e . a:I:d:e & 
a:b:J:c & 
b:c:d 

"I 



3 f ,g,hj . {:g:J:hj &
 
{:K:j
 

These facts can be presented pictorially as in Figure 3. 

--a-- I --b-- I --c-- I --d-- I --e-­

I ------1------- I 
I ------J-----­

--f--???--g--I	 --h-- --J-­

???- - - - - - - - - - - - - - K - - - - - - - - - - - - - - ­

Figure 3:	 I OVERLAPS J & J DURING K 

Using Axiom M3, and the facts a:b & {:g, we have three cases: 

Case 1:	 a meets g, and hence b = g (since a:b:J & a.g.J); but then 
we have 

a:I:d +h.j & a:K.j, 

which by definition entails I STARTS K 

Case 2: 3 m. a:m:g; in which case we have 

a:m:g+c:d+h.j &
 
a:I:d+h.j &
 
a:m:K.j 

which by definition entails I OVERLAPS K 

Case 3: 3 n. {:n:b; in which case we have 

{:n:I:h.j & {:K.j 

which by definition entails I DURING K 

Thus, we have the fact that 

(l OVERLAPS J & J DURING K) ::J I (s 0 d) K 
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which is one of the entries in the transitivity table in [Allen, 1983]. Some 
additional derivations of entries are shown in the appendix. 

This set of five axioms is of a manageable size for comparing different 
theories and for theoretical proofs. This is not to say, of course, that a reasoning 
system should be implemented solely in terms of the meets relation. There are 
important efficiency gains from using the larger set of primitives, as already 
described in [Allen, 1983]. 

III. Time Moments and Time Points 

So far, times are all things with a duration, a "temporal extent," that are 
positioned next to one another. There is no explicit notion of a place or position 
in time, such as would be the denotation of a clock time. In this section we will 
introduce such time points in several different ways and show that they are all 
equivalent, which helps to bolster our intuition that the interval axioms 
introduced so far form a robust set of basic assumptions about time periods. 

There are several intuitive accounts of what points are. The first takes them 
to be the "places" where one interval meets another, the times of transition. 
From this alone we can develop a precise formalization of points as the endpoints 
of intervals. The time that a ball thrown up in the air is at its peak, i.e., the time 
of transition from rising to falling, would be a point. 

Other examples can be obtained by considering sentences describing the so­
called accomplishment events, such as "I shot the gun." While such an event can 
be located in time (e.g., "I shot the gun at midnight"), it cannot be qualified by a 
duration (e.g., "I shot the gun for ten minutes") without invoking the notion of 
repeated occurrence. A single shooting of the gun cannot be described so. As 
expected, accomplishment sentences all involve transitions. In the above 
sentence, for example, the gun changes state from being loaded to being empty. 
The only cases where it appears that such an event can take time qualification 
actually are better analyzed as the time it took to get the event to occur. For 
example, we can say "It took ten minutes to shoot the gun," but here we are 
saying that it took ten minutes to do the actions that eventually caused the 
firing. 

Note again the distinction between time points in this sense and very short, 
momentary, intervals which are the duration of extremely short events, but 
which do occupy time. For example, consider the flash with which an 
incandescent bulb burns out, plunging a room into darkness: here there are 
three intervals, each meeting the next, the middle one being the time occupied 
by the flashing event. Even though such moments seem instantaneous, they also 
intuitively still have a duration, and by this we can distinguish them from 
points. 
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To elaborate, a sentence describing an event over a moment behaves the 
same way as a sentence describing a point event when duration modifiers are 
added. For example, "He flashed the light for three hours" must take a reading 
involving repetition. With moment events, however, if the duration modifier is 
small enough to satisfy general world knowlege, the modifier becomes 
acceptable for a single occurrence. For example, "He flashed the light for half a 
second" is perfectly acceptable as describing a single flash. For point events, no 
duration modifier, no matter how small, behaves in this way. 

IV. Time Points 

We will introduce points as the "meeting places" of intervals, such as the 
point where the interval associated with "the ball rises" meets the interval 
associated with "the ball falls," or the point where the interval "the door is open" 
meets the interval "the door is closed." Points by definition have no duration, 
and we can only assert properties to hold at points in an indirect fashion by 
referring to an interval that contains the point in some way. For example, 
consider the example of the door closing while a light in the room stays on. The 
situation is as follows: 

Let 0 be the time door is open, 
C be the time door is closed, and 
L be the time light is on. 

L 

o c----1---­
t 
p 

Letp be the point where 0 and C meet. We can say that the light is on at p since 
p is contained in L. We cannot say either that the door is open at p or closed at p, 
however, since neither 0 nor C contain p. Thus it may appear that there are 
truth gaps at time points (but not over intervals). In fact, we simply do not allow 
assertions at points in the normal sense. 

In order to satisfy these intuitions, the set of points must be totally ordered, 
and there should be a 1:1 mapping between points and meetings of intervals that 
respects the point ordering, so that p is before q just when there is an interval 
with p and q corresponding to its endpoints. There are several ways to formalize 
this, and we will develop two here. The first uses two functions, BEGIN and 
END, from intervals to points; the second uses a trinary relation MEETS-AT 
between two intervals and a point. These are equivalent, given suitable fairly 
weak assumptions. 
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From now on we will use the letters p, q, r, s, ... as variables over points, 
continuing to use i, j, k, ... as variables over intervals. This implicit typing 
convention could be replaced by annotating the axioms by suitable assumptions 
of the form INTERVAL(i) and POINT(p), where these are appropriate sortal 
predicates. We will ignore this complication in stating the axioms, but an 
automatic inference mechanism would of course need to be sensitive to the 
distinctions. 

First, let us give for reference the bare axioms for a totally ordered set of 
points. We will not take these as part of our theory, but use -them rather as a 
reference set of assumptions to be derived from the later constructions of points 
from intervals. 

Irreflexiue 

(PI) lJ p. -'(p < p) 

A ntisym metric 

(P2) lJ p,q.(p < q) ::l -'(q < p) 

Transitive 

(P3) lJ p,q,r. (p < q) & (q < r) ::l (p < r) 

Furthermore, we want < to be a total ordering: 

(P4) lJ p,q . tp < q) ffi (q < p) ffi (p = q) 

The exclusive-ors in (P4) are not strictly necessary, or equivalently, (PI) is 
redundant. We include both for convenience and familiarity. In the final axiom, 
we ensure that the domain is not bounded with respect to "<". 

(P5) lJ p 3 q,r. q < P < r 

Let us introduce two functions on intervals that produce the endpoints. 
Thus for an interval I, beginil) is the beginning point and endil) is the ending 
point. We now can assert that the only points that exist are the places where 
two intervals meet: 

(PBEl) lJ p 3 i.j . P = begin(j) & p = end(i) 

Next, coincidence of endpoints corresponds to intervals meeting. 

(PBE2) lJ i j . i.j == (endii) = begin(j)) 
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Notice the biconditional, which ensures that no points exist other than at places 
where intervals meet. 

And finally the relation between meeting and point ordering is given quite 
compactly by the following, which again uses the idea that there must be an 
interval separating two times in order for one to be earlier than the other: 

(PBE3) Vp,q. p < q =3 i . P = beginii) & q = end(i) 

This final axiom may be taken as a definition of <, and then it is fairly 
straightforward to derive PI-P5 from the interval axioms given earlier together 
withPBEI-PBE3. For example, the proof of transitivity follows from a couple of 
easy lemmas. 

Lemma PLl: V iJ . i.j :::l end(j) = endii +}) 

Proof: From M4.1 it follows that there is an interval k which both} and i +} 
meet: hence end(j) = beginik) = endii +}) by PBE2, used twice. QED. 

Similarly: V iJ . i.j :) begini i) = beginii +}) 

Transitivity now easily follows, since if p < q and q < r, then by PBE3 (used 
twice) there are intervals, say i and}, withp = beginii), r = endij), and i.j. But 
then by M4.1 and the above lemmas, p = beginii +}), and r = endii + i). hence 
byPBE3,p < r. QED. 

The totality axiom P4 follows in a similar way, using the linearity axiom M2, 
for example. Another important lemma that follows from the above axioms is 
that any interval's beginning strictly precedes its ending, i.e., 

Lemma PL2: Vi. beginii) < endii) 

Full proofs for axioms PI through P5 and lemma PL2 are given in the appendix. 

An alternative approach using the MEETS-AT relation is also 
straightforward. This time, let us use a more compact notation. We will write 
i;p;j to mean that the trinary relation MEETS-AT holds between the intervals i 
and} and the point p, rather than the more conventional but awkward MEETS­
AT(iJ,p). The axioms corresponding to PBEI-PBE3 are now: 

(PMAl) V p 3 iJ . i;p;j 

(PMA2) V i.j . i.j == 3 p . i;p;j 

(In fact only half ofPMAl is strictly needed, e.g., (V p . 3 i . i;p), since the other 
halfcan then be derived. Without some assumption such as this, however, there 
could be "loose" points not associated with any intervals. If we wanted to allow 
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such things, PMAI could be omitted, but several later lemmas would then fail. 
In general, it would be difficult to establish any general properties of points, 
since many of them derive from their associations with intervals. It seems 
intuitive, in any case, that if a point can be identified, then intervals which end 
and begin at it should also be defined. A completely isolated point which is not 
the endpoint of any interval would seem to be an unintuitive idea.) 

The definition of time ordering can now be given as 

(PMA3) 'tJ p,q . p < q == 3 ij,k . i;p,j &j;q;k 

Axiom PMA3 hypothesizes three intervals simply because it is a formal 
syntactic necessity: one cannot write just pJ or j;q in the language so far. This 
immediately suggests, however, an extension of the notation which does permit 
such expressions as ways of writing p = begin(j) and q = end(j), respectively. 
This notation directly displays the relations between an interval and its 
endpoints in much the same way as the infix notation for the MEETS relation 
did earlier. If the PBE axioms are rewritten in this notation, again allowing 
conjunctions to be compactly expressed as sequences, then PBEI and PBE2 
become identical respectively to PMAI and PMA2, and PBE3 becomes 

(PMA3.1) 'tJ p,q . 3 i . p;i;q 

from which PMA3 is easily derived. We now also need a uniqueness axiom, 
which was previously implicit in the use of functional notation. 

(PMA4) 'tJ p,q, i . «i;p & i;q) or (p;i & q;i)) :J P = q 

We will use this semicolon notation to mean BEGIN, END, and MEETS-AT as 
needed by context. 

To review, the notation so far allows expressions which have names of 
intervals separated by colons, and separated from names of poin ts by 
semicolons. We can write, for example, 

i.j;p;k;q;Z:m;r 

as an abbreviation of 

i:j & end(j) =p & begin(k) = p & end(k) =q
 
& beginil) = q & lim & endim) = r
 

Notice, however, that expressions of the forms p:q or i:p or p:i are not well 
formed, since points cannot meet anything. All that an expression of the form 
p:q could seem to be taken to mean would be p = q, since points are themselves 
meeting-places. However, as Van Benthem [1982] discusses, it is possible to 
construct mathematical structures which have such oddities as two-sided points. 
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Severallemrnas can be proven which establish intuitively sensible properties 
of points and relations between points and intervals. For example, in analogy to 
M5: 

Lemma PL3: V iJ,p,q . (p;i;q & pJ;q) ::J i =j 

or alternately, 

beginii) = begin(j) & end(i) = end(j) ::J i =j 

Lemma PL4: V i.j . i.j ::J (V p. i;p == pJ) 

Lemma PL5: Vi. 3 p,q . p;i;q 

Note that we cannot yet say that anything is true at a point, for the point is 
not yet the sort of entity at which things happen or are true. We can, however, 
claim indirectly that a proposition is true during a time which includes a point, 
as, for example, the light being on while the door is closing, for we can simply 
assert that it holds during an interval which overlaps the time the door is open. 
Less awkwardly, we will axiomatize the obvious notion of a point being in an 
interval. 

(PMA5) Vp,i .pEi = 3 k,l. i = k+l & k;p;l 

Note that by this definition, the endpoints of an interval are not in the interval. 

v. Set-Theoretic Derivations of Points 

So far, we have introduced points by simply hypothesizing their existence 
and adding axioms which describe them. The mathematical literature, however, 
contains several set-theoretic methods by which points may be explicitly 
constructed from intervals. The oldest of these, due in essentials to A.N. 
Whitehead, defines a point as a set of intervals which share a common 
intersection. (A famous alternative, due to Bolzano, defines a point as a set of 
pairs of intervals which bracket it from either side, forming successive 
approximations to the exact position. We will follow the former technique, but it 
can be shown that our interval axioms make them equivalent.) Our axioms Ml­
M5, together with a small amount of elementary set theory, will support such a 
construction and allow its essential properties to be derived. We call such a set 
of overlapping intervals, a variant of the usual mathematical idea of a filter, a 
"nest." 

In our case, since meeting of intervals is the basic relation, it is natural to 
group together all intervals which share or contain a meeting place. The 
beginning of an interval, for example, is defined to be the set of all intervals 
which intuitively touch or include the beginning in any way, and the end 
similarly. 
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*begin(l) = {j 13 b,c. b:I & b:c &
 
j = b +c V j = c V j = b}
 

I.e., I --b - - I ------I - - - - - - ­

I --c-- ? ------ ? -- ?
 

--J---------- ? ------ ? --?
 

or - -J - - ? - - - - - - ? - - ?
 

or - -J - ­

*end(l) = {j 13 a,b. I:b & a:b &
 
j = a+b V j = a V j = b},
 

I.e., I ---------- I - - - - - - - I --b - - I 
?--? ------- ?-- a------- I 
?--? ------- ?-- j---------------­

or ? - - ? - - - - - - - ? - - j - - - - - - ­

or - -J - ­

These sets, which are never empty in any model of the interval axioms, could 
also be defined using the 13-relation interval notation by: 

*begin(i) = {j Ij (0 s : fi di e si) i}
 
*end(i) = {jli(ofi:fdes)j}
 

For convenience, we can define a nest as a beginning or an ending: 

NEST(p) == 3 I. p = *begin(l) V p = *end(l) 

Suppose we have a model *MM of the interval axioms Ml through M5. Then we 
will show that adding all the nests to the universe and interpreting the symbols 
"begin" and "end" respectively as *begin and *end results in a model for the 
larger set of axioms including PBEI through PBE3. Thus our axiomatization is 
consistent with this mathematical construction of points from intervals. 

We can define relations over the set of nests that gives them the properties of 
points. We shall say a nest N is before a nest M ifTthere is at least one interval 
in N that is before some interval in M. For any two NESTS, Nand M 

N < M == 3 n,m . n is in N & m is in M & n BEFORE m 
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Now we can show some important properties about nests. First, nests are rather 
like filters. In particular, we can show that nests are closed under intersection. 

Lemma NLl: I is in *beginil) and in *end(l) 

The proof trivially follows from the definitions of*begin and "end and axiom M3. 

Lemma NL2: Ifi andj are in a nestN, then either itj or ifj exists and is in N 

The main result is that, given any two nests and the ordering relationships 
between nests defined above, the nests must either be equal or one is before the 
other. Furthermore, these possibilities are mutually exclusive. 

Theorem Nl: For any two nests Nand M, either N < M, M < Nor N = M 

The proof of theorem Nl is given in the appendix. We can now show that 
nests have all the properties of points described in the last section by showing 
that the correlates of axioms PBEI through PBE3 all hold for nests. Once this is 
done, all the other results in the last section fall out. In particular, we can now 
prove the following (where p, q are now variables over nests): 

(PLl')	 'if ij . i.j :J *end(j) = "endi: +i) 
'if ij . i.j :J "beginii) = "beginii +j) 

(PBEl')	 'if p 3 ij. p = "beginii) & p = *end(j) 

(PBE2')	 'if ij . i.j == (*end(i) = *begin(j)) 

(PBE3')	 'if p,q . p < q == 3 i . p = "beginii) & q = "endii) 

VI. Moments 

Some points in time seem to be where intervals meet, but others also seem to 
have enough substance that events can happen in them. For example, a light 
bulb burns out with a flash, plunging the room into darkness, and in that 
instant one sees a face at the window, caught in the intensity of the flash. Or a 
bat hits a ball, and there is a loud "crack" and the bat breaks. Other examples 
can be given. All of these seem like real events which occupy points rather than 
intervals. We will introduce the idea of a very short interval, called a moment, 
to be the times which such events occupy. 

A moment is an interval with no internal structure. It therefore does not 
overlap any other interval, and contains no other intervals (Theorem MOl). 
One can sum it up by saying that there are no points inside it. Formally we can 
define: 
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'V i . TRUE-INTERVAL(i) == 3 a,b,c,d. a:i:d & a:b:c:d 

'V i . MOMENT(l) == ...,TRUE-INTERVAL(i) 

Thus, a true-interval has at least two sub-intervals (which might in turn be 
moments or true-intervals)--one that STARTS it and one that FINISHES it. 
Another way of stating the definition of a true-interval would be that it is the 
result of some union operation, i.e., 

'V i . TRUE-INTERVAL(i) == 3 a,b. i = a+b 

Before we continue, it is important to remember that all of the earlier 
theorems were proven before any distinction was made between moments and 
true-intervals, so they all hold for both classes; none of the proofs ever depended 
on the decomposability of an interval. These definitions allow us to prove that 
two moments cannot overlap in any sense of the term, yet they can meet each 
other. More precisely, 

(M02) 'V ij . MOMENT(i) & MOMENT(j) :J i « m = mi »j 

Moments are very simple intervals. While a moment may be a time of a 
change, nothing changes within that time (i.e., there are no subperiods). In a 
reasonably complicated dynamic world, probably the only way to achieve this is 
for a moment to be of very short duration. We say that a flash "freezes" time, for 
example: there can be no change, and hence no movement or event, during an 
interval that short. We might also take clock ticks to be moments. However, 
there is nothing in the formal theory that talks of the durations of moments, and 
no reason why they must be thought of as short, or as all having the same 
duration. Clearly, moments are different from points. They belong in different 
categories: things can be true or false during a moment, which is meaningless 
for points. But in many respects moments are pointlike entities. For example, 
they can be identified with the ends of the intervals they meet, since we have the 
following: 

(M03) 'V ij,k . tmomentii) & moment(j) & k:i & k.j ) :J i = j 

Proof: Suppose not; then endii) ~ end(j) , hence by M2 there is some k with 
either end(i);k;end(j), or symmetrically. But then) = i +k, so moment(j) is false. 
Similarly in the other case. QED. 

A similar lemma holds for the case where i:k and j:k. We cannot define 
functions begin-moment and end-moment, and other obvious variations such as 
last-moment and first-moment, since there is no guarantee that these moments 
in fact exist. It may be that there are no moments, that all intervals have 
subintervals, so that the set of points is a dense linear order. We will discuss 
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this in the next section. But if they exist, they are unique. We can in any case 
define relations such as just-after: 

V ij .just-afterii j) == (i.j & moment(j) 

and just-before similarly, and last-moment: 

V iJ" . last-momentii j) == 3 k . i:k &j:k & moment(j) 

and first-moment similarly. In the dense model, these are everywhere false, but 
when they are true we can derive point-like properties, for example: 

V ij . (3 m,n . first-momentii.m) & first-momentij.m)
 
& last-momentii.n) & last-momentij.n) :::> i <i
 

and a similar lemma holds with just-before and just-after. Thus moments can be 
thought of as sufficient to locate the endpoints of intervals, and each interval 
determines a pair of "end-moments." 

It seems promising to try to use moments as points, to make the similarity 
more compelling. However, it is easy to show that if just-beforeii.m) and first­
momentiin), then m:n, and so m ~ n, so that these two kinds of end-moment 
must be distinct from one another, so we do not have the uniqueness which 
characterizes points. And if we decide to choose one and stick to it, then 
difficulties arise which are reminiscent of those discussed in the introduction. 
For example, suppose we decide to use the just-after/just-before vocabulary as a 
way of treating moments as points. We would want the "beginning" of an 
interval j to be identical with the "end" of i just when i meets}, but this 
immediately fails, since if i.j then just-afterii.m) is true exactly when first­
moment(j,m) is, so we are obliged to use the other way of talking about the next 
interval. This is reminiscent of the problems over open and closed intervals with 
which we began, since this distinction is precisely between the "ends" of an 
interval which are included in it and those which are not. 

The most obvious structural difference between points and moments is that 
moments can meet other intervals, and hence stand between them. Thus if i;p;j, 
then i and} meet: there is nothing between them. But if i:m.j for a moment m, 
then it follows immediately that i does not meet}. It is interesting to see what 
happens if we try to ignore this. Suppose we define a relation ALMOST-MEETS, 
written as an infix double colon, to mean that two intervals are separated, if at 
all, by only a moment. Consider the axiom MI, with ALMOST-MEETs instead of 
MEETS, and suppose that i:.j, i::k, and l:.j. We might have i.j, i:m:k, and l.n.j, 
so that I:n:m:k. Now I and k are separated by the sum of two moments, which is 
itself of course more than a moment. The "small errors" can add up, as it were, 
and produce larger errors. This sort of exercise emphasizes the essential 
difference between points and intervals, even the smallest possible intervals. 
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To emphasize this furthur, while moments have no points inside them, they 
do have endpoints, and these are different: the beginning and end of a moment 
are distinct, just as they are for other intervals. This is one of the less intuitive 
aspects of our theory, for it distinguishes between, for example, the beginning 
and the end of a flash of lightning. A fully comprehensive account of this aspect 
of temporal intuition would probably involve thinking about changes of scale, so 
that a moment at one scale would "shrink" to a point at a coarser scale. We have 
not gone into this in detail, however. 

VII. Discussion 

It is interesting to interpret these axioms in various possible models. The 
simplest one is discrete time: intervals are pairs of integers <n,m> with n < 
m, and <n,m>:<m,k>. Then a moment is a nondecomposable interval 
<n,n +1>, and nests pick out integers, the places "between" moments. In this 
model there is a clear distinction between moments and points. We can also 
define several models based on the real line. For example, time intervals can be 
mapped into open or closed real intervals: however, then times can never 
MEET. A simpler continuous model, based on the integer model above, defines 
time intervals as pairs of reaIs <a.b>, with <a,b> :<b,c>. Following through 
the axiomatic definitions with this as a basis makes nests define points on the 
real line, as expected, but now there are no moments at all, since even the 
smallest interval is decomposable. We might try to extend the model to allow 
intervals of the form <a,a>, which would qualify as moments, but now consider 
<a,b>, <b,b> and <b,c>. By our definitions, the first MEETs the last, yet 
they have the second between them, so the first is BEFORE the last, violating 
the ordering axiom. We have tried to fit real, substantial--though very small-­
time intervals into merely mathematical "places," and they don't fit. 

However, another possible model is one which mixes these, using the same 
definitions of interval and MEET (from which all else follows) but allowing parts 
of the time line to be discrete and parts to be continuous. Intuitively, if we have 
only coarse time measuring tools available, then we can treat time as discrete, 
but the possibility always remains of turning up the temporal magnification 
arbitrarily far, if we have access to events which can make the finer distinctions, 
distinctions which can split "moments" into smaller and smaller parts. 

Our axiomatic theory allows all of these models and others; it is uncommitted 
as to continuity or discreteness of the sequence of times, yet is powerful enough 
to support a great deal of the temporal reasoning of common sense. 
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Appendix: Proofs
 

The proofs in this section follow the development of the paper, and the 
numbering between the two is consistent. The proofs are presented here with 
only a minimum of motivation and assume the paper is used for this purpose. 

I. The Properties of Intersection 

Def'n: I!J is the interval that exists if there exists a subinterval common to 
both I and J, i.e., 

(11) 3 i . (i IN 1) & (i IN J) :J (I!J IN 1) & (l!J IN J) 

and it is the largest common subinterval, i.e., 

(12) 'fI i . (i IN 1) & (iIN J) :J i IN I!J 

Lemma ILl: I!J is unique ifit exists. 

Proof: Assume A and B are both intersections of I and J, then by axiom 11 
above, A IN I and A IN J, then by axiom 12 above we can conclude that A IN B. 
Using the same argument, we can show that B IN A, thus A must be equal to B. 

Lemma IL2: If two intervals overlap in any way, then their intersection exists. 
The intersection is constructed from the definitions of each of the possible 
relationships between two intervals I and J. 

Proof that intersection exists in various cases: 

Case 1: Assume that I IN J, i.e., 

I STARTS J, I FINISHES J, I DURING J or I EQUAL J 

then we can see that I!J = I by showing that 11 and 12 hold: Since 
I IN I by definition, we have I IN I and I IN J satifying 11. But since 
I!J must be in I, any i IN I!J is in I, thus I satisfies 12. 

Case 2: Assume I OVERLAPS J, then 3 a,b,c,d,e 

s.t. a	 I I d e 
b	 I C I 

I J 

We will now prove thatI!J = c, by showing that it satisfies 11 and 12: 

1) Since C IN I and c IN J, axiom 11 is trivially satisfied by c = I!J 
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2) Assume i IN I and i IN J, for any i, then 

iIN I & I FINISHED-BY c ::J i(b m 0 ffi s d)c 
iIN J & cSTARTS J ::J i(s si = mi oi dfJc 

Intersecting these constraints, we have i(s = f drc, which 
implies by definition ofIN that i IN c and hence 12 holds. 

So, every subinterval of I!J is in c, thus c = I!J. 

Case 3: IfI:J or I BEFORE J, then there is no intersection. 

This is a trivial proofby contradiction. QED 

Lemma IL3: A) If i = a +b and}:b, then if} exists and is equal to al] 

B) If i =a +band a:j, then if} exists and is equal to blj, 

Proof (of A; B is similar): We show that if} exists, as follows. By M3, we know 
there are a k and 1 such that k:i and l.j. Applying M2, there are three
 
possibilities:
 

Case 1: k.j, in which case, given k:a (since) = a +b) we have} = a, hence i =
 
} +b. It is easily shown that} satisfies the definition of if}. 

Case 2: 3 m . k:m.j, which means that a = m +} (since k:a:b and k:m.j:b), 
hence i = m +}+ b. Again, if} =}. 

Case 3: 3 m. l:m:i, which means that} = m +a and i = a + b. It can be easily 
shown that a satisfies the definition of if}. 

So if} exists. To show it is equal to alj, consider alj in each of the three cases: 

Case 1: a <i. so alj =} 

Case 2: a = m+},soaf} =} 

Case 3: } = m +a, so alj = a 

Hence if} = alj in all cases. QED. 

II. Properties of the Temporal Reasoner 

The proof of the transitivity relationships is tedious and will not be presented in 
full here. Rather we present a representation sample of the proofs, which all 
follow the same pattern. 

Consider deriving the transitivity table for BEFORE from first principles: 
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Assume A BEFORE B, i.e., 3 i such thatA:i:B 

1) IfB BEFORE C, then 3j . B.j:C, 
thus A BEFORE C since A:(i +B +jJ:C; 

2) If B:C, 
then A BEFORE C since A:(i +BJ:C; 

3) IfB OVERLAPS C, then 3j,k .j:B &j:k:C 
thus A BEFORE C since A:(i+kJ:C; 

4) IfB STARTS C, then 3j .j:B &j:C, 
hence by axiom Ml, i.C, thus A:i:c and thus A BEFORE C 

5) IfB FINISHES C, then 3j,k,Z . j:C &j:k:B & B:Z & C:Z 

Applying axiom M3 to A:i andj.·C, we get either 

(1) A:C, or 
(2) 3 m . A:m:C (i.e., (2) A BEFORE C) or 
(3) 3 n .j:n:i 

Looking at this last case we have: 

? A B Z 

I C
 
J I n
 

I k
 

The only uncertainty now concerns the beginning of A. We know by axiom 
M4 that there exists an 0 such that o:A. Using axiom M3 to combine this 
with the fact thatj:C we get either 

o:C, (hence A STARTS C), or
 
3 m. o:m:C (hence A OVERLAPS C), or
 
3 n .j:n:A (hence A DURING C)
 

Hence, by applying M3 repeatedly on the definitions of the interval 
relationships, we have derived that 

A (: b sod) C 

6) IfB DURING C, we get essentially the same proof as in the above case, 
deriving A (. b sod) C. 

7) IfB EQUALS C, then we prove A BEFORE C 
by a simple application of axiom MI. 
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8) IfB AFTER C, then there existsj. C.j:B. 

We end up applying axiom M3 six times in this proof, each time except the 
last produces two possible relationships between A and C, and a third 
possibility that is further developed. The last application produces the final 
three possible relationships that could hold between A and C. Thus, these 
two facts produce no information about the relationship between A and C. 

9) IfB MET-BY C, (i.e., C:B). 

We know from axiom M5 that there exists aj .j:C. Using axiom M3 on A:i 
andj:C we get either 

(1) A:C, or 
(2) 3	 m . A:m:C (i.e, (2) A BEFORE C), or 
(3) 3 n .j:n:i, i.e., 

J	 I C B
 

I n I
 
??	 A I 

We know by axiom M5 that there exists a k such that k:A. Combining k:A 
andj:C using axiom M3 we get either 

k:C (hence A STARTS C), or
 
3 m. k:m:C (hence A OVERLAPS C), or
 
3 n .j:n:A (hence A DURING C).
 

Thus we have 

A (m b sod) C 

10) IfB OVERLAPPED-BY C, we get the same results as in (9), 
by the same proof, thus A (m b sod) C. 

11) IfB STARTED-BY C, then 3j .j:B &j:C 
Now by axiom Ml, we have i.C, thus A BEFORE C. 

12) IfB FINISHED-BY C, then 3j,k .j:B &j:k:C 
thus we have A:(i +k):C, hence A BEFORE C 

13) IfB CONTAINS C, then we have the same proofas in (12). 

This completes the entries for the transitivity table for the BEGIN relation. The 
proofs for the remaining entries introduce no new complexities. 
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III. Time Points 

The proofs of PI through P5 and Lemma PL2 are given here, assuming axioms
 
PBEI-PBE3 and MI-M5.
 

Theorem PI: Vp. '(p < p)
 

Proof: By PBE3, p < P == 3 i . p = begin(i) & p = endii), But then by PBE2,
 
this entails i:i, contradicting Lemma MLl. QED.
 

Theorem P2: Vp,q . (p < q) :J <« < p)
 

Proof: Assume p < q, then by PBE3, 3 i . p = beginii) & q = endii). Assume q
 
< p, then by PBE3, 3j. q = begin(j) & p = end(j). Thus begin(i) =p = end(j)
 
and endii) = q = begin(j); thus i.j andj:i, contradicting Lemma ML2. QED.
 

Theorem P3: Vp,q,r. (p < q) & (p < r) :J (p < r)
 

Proof is in main paper.
 

Theorem P4: Vp,q . (p < q) ED (q < p) ED (p = q)
 

Proof: Given p,q, by PBEI we know 3 ij . p = end(i) and q = begin(j). By
 
axiom M2, exactly one of the following holds:
 

Case 1: i.j, then by PBE2, end(i) = beginij); thus p = q
 

Case 2: 3 m. i:m.j, then by PBE2, p = end(i) = beginim), and q = begin(j) =
 
endim). Thus by definition PBE3,p < q. 

Case 3: As in Case 2, but q < p. QED. 

Lemma PL2: Vi. beginii) < endii), 

Proof: We show this by disproving the other two cases in Theorem P4. Assume 
beginii) = endii); then i:i, contradicting MLl. Assume endii) < beginii); then 
by PBE3, 3 m . beginim) = end(i) and endim) = beginii). Thus m:i and i:m, 
contradicting ML2. Using P4, we conclude beginii) < endii). QED. 

Theorem P5: V p. 3 q,r. q < P < r 

Proof by Construction: Using PBEl, 3 ij . p = beginii) andp = end(j). Let q =
 
beginij) and r = endii). Using Lemma PL2, we can show q < P andp < r. QED.
 

Lemma PL3: V ij,p,q . (p;i;q & p,j;q) :J i =j
 

Proof: Translating the notation, we have p = beginii) & end(i) = q & p =
 
begin(j) and end(j) = q. Using PBEl, there exists an interval k such that end(k) 
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= p = begini i) = beginij). Hence k:i and k.j. Similarly, there is an interval I 
such that i.l andj:I. hence by M5, i = j. QED. 

Lemma PL4: V ij . i.j :J (VP . i;p == p,j)
 

Proof: Assume i.j, thus endii) = begin(j); thus endii) = p. Then p must equal
 
beginij), and vice versa. QED.
 

Lemma PL5: Vi. 3 p,q . p;i;q
 

Proof: Trivial, asp = beginii) and q = endii). QED.
 

IV. Proofs About Nests 

Dero:	 "beginiI) ={pI 3 b,c. b:I & b:c & 
p=b+cORp=cORp=b}, i.e., 

b I 1 
c ? ? ? 

p ? ? ? 
or p ? ? ? 

or p 

Der'n: *end(l) = {p13 a,b. I:b & a:b & 
p =a+bORp =aORp = b},	 i.e., 

I	 b1 
?? ? a 

? ? ? p 
or ? ? ? p 
or p 

These sets are always non-null. These could also be defined by the following: 

"beginiL) = {plp(o smfidiesi)I} 
*end(l) = {p Ip (oi fmi fi di e si) I} 

For convenience, we can define a nest as a beginning or an ending: 

NEST(p) == 3 I. p = BEGIN(l) OR p = END(l) 

Dero: for any two NESTS, Nand M 

N < M == 3 n,m. n is in N & m is in M & n < m 

Lemma NLl: lis in *begin(l) and *end(l) 
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Proof: This is trivial, because I satisfies the definition of both. That is, if we let) 
= e = lin the definition of*begin(i), we get 3 b. b:I & b:I & (j = b +IV I = IV) 
= b). This is trivially true. The proof for *end(I) is similar. QED. 

Lemma NL2: If i and) are in a nestN, then either i.j,):i, or ilj exists and is in 
N. 

Proof: Let N = "beginil) (the proof for N = *end(l) is similar) and assume that 
i and) are in "beginil). We know there are a, b such that a:I, a:b, and either i = 
a+b, i = a, or i = b. We know there are c, d such that e:I, e:d, and either) = 
e+d,) = c, or) = d. Given all the above, it is simple to show using MI that e:b 
(since a:I, e:I, and a:b) and a:d (since a:I, e:I, and e:d). We can now examine each 
case one at a time, showing that either i!j exists, or i.j, or j.i. The results are 
shown in Table 1. For example, if i = a and) = e +d, then since we know a:d 
(hence i:d), Lemma IL3 shows that ilj exists and equals eli (which is cla). 

£ 

) a+b a b 

e +d 

e 

d 

? ilj = e!a i!j = bId 

i!j = e!a ilj = cia ):£ 

i!j = bId ):£ i!j = bld 

Table 1 

To prove the lemma, we now only need (1) to show that ale and bld are in 
*begin(l) when they exist, and (2) to deal with the one case where i = a +band) 
= e+d. 

Part I: Consider ale. We know a:I and e:I, and since ale is the largest interval in 
both a and e, it is not hard to show that (alcl.I, Since both meet I, it is either the 
case that there is an x such that a = x +e, and then ale = e, which meets I, or 
there is an x such that e = x-i-a, and then ale = a, which meets I. Thus ale E 
"beginil) by definition. Similarly bld E*begin(I) by definition. 

Part 2: The last case is where i =a+b and) = e+d. To summarize, we know 
a:I, a:b, e:I, e:d, e:b, and a:d. By M3, we know that there exists te such that f:i, 
hence f:a and g:b, and hence g:e. Using M3 we get three posibilities: 

f:e, in which case a = e
 
3 m . f:m:e, in which case a = m +e
 
3 n . g:n:a, in which case e = g +a
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Similarly, there are intervals h and I such that either 

b=d
 
b = d+h
 
d = b+l
 

Considering each of these possibilities, we find the values for ilj shown in Table 
2. In each case, it is easy to show that if) is in "beginiI), QED. 

a==c a = m+c c =g+a 

b= d 

b = d+ h 

d = b+ I 

ilj =i <i ilj =c+d ilj == a+d 

ifj==a+d if) =c+d it] =a+d 

if) == a+b ifj==c+b if) == a+b 

Table 2 

Theorem N1: For any two nests Nand M: then either N < M, M < Nor N == 
M. 

Proof: Assume N < M, then by definition there exists an n in N and an min M 
such that n < m. By definition we know that N is not equal to M. We can show 
thatN is not greater than M by contradiction: assume there exists an a in Nand 
bin M such that a > b, then we know by Lemma NL2 that 

either a:n, n:a, or afn exists and is in N, and 
either b:m, m:b, or bfm exists and is in M. Now 

IF b!m exists, then 
b!mIN b & bfmIN m & n < m & b < a 

::J n < b!m < a, but if this is the case then aln does not exist 
and a does not MEET n. A contradiction 

So we are left with the possibility that b:m or m:b, and a:n or n:a. But given a > 
band n < m, each possible pairing of relations is inconsistent. QED. 

Thus we have shown that <, >, and = are mutually exclusive. To show that 
one must hold between any two nests we show that if it is not the case that N < 
MorM < N, thenM == N. 

Assume that N is not less than M and vice versa. Then pick an arbitrary n in N. 
We will prove that n must be in M. 
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Case 1:	 Assume M = BEGIN(l) 

then there is an m' in M such that m'iI, 
Furthermore, by the hypothesis we know that n 

cannot be < or > m', i.e., 

n (0 oi d di m mi s si ffi e) m' 

By applying the transitivity axioms, it is simple to show that n « 0 do fi s si = 
m) I. If n < I, then N < M, a contradiction. Hence n (0 di fi s si = m) I, which 
means, by definition, that n is in BEGIN(l). 

Case 2:	 Assume M = END(l). The same proof 
goes through using m' such that I:n. 

We will prove PBEI through PBE2 for the nest constructs "begin and "end. 
With this, all the previous theorems about points will automatically be valid for 
nests. PBE2 will be proven first, as it is useful for showing PBE 1. 

(PBE2)	 \J iJ . i.j == "endii) = *begin(j) 

Proof: Assume I:J. Then we can show any interval k E *end(I) is also in 
"begini-I) and vice versa. Assume k E "endil). Then by definition there exists 
a,b such thatI:b and a:b. By MI, a:J since I:J. We know that either k = a +b, k 
= a, or k = b. 

Case 1:	 k = a +b; then k E "begini-I) by definition (since a:J and k = a +b). 

Case 2:	 k = a; then k E "beginiJ) since a:J and k = a. 

Case 3:	 k = b; then k E "beginuI) since a:J, a:b, and k = b. 

The other direction is similar (i.e., if k E *begin(l) then k E *end(l). 

For the other direction of the biconditional, assume "endii) = *begin(j). Let i:k, 
thus k E "endii). Now k E "beginij), since *begin(j) = "endii). Thus there are 
intervals b,c such that b.j and b:c, and either k = b +c, k = b, or k = c. Consider 
the cases k = b+c or k =b: i:k => i:b and b.j => i BEFORE j. But then i E 
*end(i) andj E *begin(j) implies *end(i) < "beginij), a contradiction of Theorem 
Nl. Thus it must be the case that k = c. Hence i:k, b.j, b:k imply by MI that i:j. 
QED. 

(PBEI)	 \J p 3 iJ.p = *begin(i) &p = *end(j) 

Proof: Nests are defined to be either of form "beginil) for some I, or *end(J) for 
some J. All that is left to show is that for each nest of form "beginil), there is a J 
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such that "beginil) = "endi-I). But MI says such a J exists. For any I, there is a 
J such thatI:J, and the proofofPBE2 above shows "beginiL) = "endid). 

Lemma PLl:	 V ij . itj :J "endij) = "endii +i) 
V ij . it] :J "beginii) = "beginii +i) 

Proof: This follows from PBE2 just as in the text. If izj, then there is a k such 
that j:k and (i + j):k. Hence *end(j) = *begin(k) = "endii +i). The other 
direction is similar. 

(PBE3)	 Vp,q . p < q == 3 i . p = "beginii) & q = "endii) 

Proof: One direction is trivial. Assume 3 i ., p = "beginii), and q = "endii). 
Then we know by M3 that 3j,k such thatj:i:k. Furthermore,j E "beginii) and k 
E "endii) by definition. Since j BEFORE k, p < q by definition. The other 
direction is as follows. Assume p < q. Then by definition there are two 
intervals nand m such that n Ep and m E q and n BEFORE m. 

By PBEI, there are intervals I and J such that p = "beginil) and q = "endiJ). 
Furthermore, the definition of BEFORE gives an interval a such that n:a:m. We 
can construct an interval k with the desired properties by considering the six 
possible ways m and n might relate to I and J. By definition, there are intervals 
b,c such that b:I and b:c where n = b + cor n = b or n = c. Likewise, there are 
intervals d,e such that J:e and d:e where m = d +e or m = d or m = e. 

Case 1:	 Let n = b +c or n = c. Let m = d +e or m = d. Remember n:a:m. Let 
k = c + a + d. We know k is well-formed since n:a implies c:a and a:m 
implies a:d. By Lemma PLI, PBE2 using b:c and b:I, "begin/h) = 
"begin/c) = "endib) = *begin(l) = p. Similarly, *end(k) = "endid) = 
"begirde) = "endlJ) = q. Thus k is the desired interval. 

Case 2:	 Let n = b, m = e. Then k = a is the solution: *begin(k) = "begirda) = 
"endin) = *end(b) = "beginil) = p; and "endih) = "end!a) ­
"beginim) ="beginie) = "endiJ) =q. 

Case 3: Let n	 = b, m = d+e or m = d. Then k = a +d is the solution. 

Case 4:	 Letm = e,n = b+corn = c. Thenk =c+aisthesolution. 

v. Discrete Time and Time Points 

Def'n: TRUE-INTERVAL(I) == 3 a,b,c,d. a:I:d & a:b:c:d 

Def'n: MOMENT(l) == -,TRUE-INTERVAL(l) 

As a consequence of these definitions,we see that for every true interval I, there 
is an interval S that STARTS I, and an interval F that FINISHES I. Except in 
the case where Sand F are both moments, we can also see that there will exist 
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an interval D that is DURING I as well. We can prove that moments have no 
subintervals, which is equivelent to saying that nothing ever starts, finishes, is 
during, overlaps or is overlapped by a moment. 

Theorem MOl: MOMENT(i) :J --,3j .j (0 oi starts finishes during) i 

Proof: By contradiction, each one of these relations contradicts the exclusive-or 
in (M3) above. For example: assume J overlaps D &
 MOMENT(D). By 
definition of overlaps: 3 a,b,c,d,e such that 

a J I
I 

D
 

d e 
b C 

mapping b - j, C - k, d - l, e -. m, we satisfy two disjuncts in axiom (M3), a 
contradiction. 

Theorem M02: For all I,J . MOMENT(l) & MOMENT(J) :J 
1{< m = mi »J 

Proof: Using Lemma 4-1 wehavethat1{< m =
 mi > sifidi)J(bytakingall 
m =the alternatives not eliminated by Lemma 4-1). Similarly, we have J « 

mi > si [i di) I. Combining these two, we get 1« m =
 mi » J. as desired. 
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