Computational Intelligence, Volume 21, Number 3, 2005

USING REINFORCEMENT LEARNING TO COORDINATE BETTER

CORA B. EXCELENTE-TOLEDO*

National Laboratory of Advanced Computer Science, LANIA, Rébsamen No. 80, Col. Isleta, C.P 91090 Xalapa,
Veracruz, Mexico

NICHOLAS R. JENNINGS

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ,
United Kingdom

This paper examines the potential and the impact of introducing learning capabilities into autonomous agents
that make decisions at run-time about which mechanism to exploit to coordinate their activities. Specifically, our
motivating hypothesis is that to deal with dynamic and unpredictable environments it is important to have agents
that learn the right situations in which to attempt coordination, and the right coordination method to use in those
situations. In particular, the efficacy of learning is evaluated when agents have varying types and amounts of
information when those coordinating decisions are taken. This hypothesis is evaluated empirically, in a grid-world
scenario in which (a) an agent’s predictions about the other agents in the environment are approximately correct and
(b) an agent cannot correctly predict the others’ behavior. The results presented show when, where and why learning
is effective when it comes to making a decision about selecting a coordination mechanism.

Key words: coordination, agent interaction, collaborative agents, reinforcement learning.

1. INTRODUCTION

Effective coordination is essential if autonomous agents are to achieve their goals in
a multiagent system (MAS). Such coordination is required to manage the various forms of
dependency that naturally occur when the agents have interlinked objectives, when they share
a common environment, or when they share resources. To this end, a variety of protocols
and structures have been developed to address the coordination problem. These range from
long-term social laws (Shoham and Tennenholtz 1992), through medium-term mechanisms
such as Partial Global Planning (Durfee and Lesser 1991), organizational structuring (Fox
1981), and market protocols (Malone 1987), to one-shot (short-term) mechanisms such as
the Contract-Net Protocol (Smith and Davis 1981).

All of these coordination mechanisms have different properties and characteristics and
are suited to different types of tasks and environments. They vary in the degree to which
coordination is prescribed at design time, the amount of time and effort they require to
set up a given coordination episode at run-time, and the degree to which they are likely
to be successful and produce coordinated behavior in a given situation. In the majority
of cases, these dimensions act as forces in opposing directions; coordination mechanisms
that are highly likely to succeed typically have high set up and maintenance costs, whereas
mechanisms that have lower set up costs are also more likely to fail. Moreover, a coordination
mechanism that works well in a reasonably static environment will often perform poorly in a
dynamic and fast changing one. In short, there is no universally best coordination mechanism
(Galbraith 1973).

Given this situation, we believe it is important for the agents to have a variety of coor-
dination mechanisms, with varying properties, at their disposal so that they can select the
particular mechanism that is most appropriate for the task at hand. Thus, for particularly
important tasks, the agents may choose to adopt a coordination mechanism that is highly
likely to succeed, but which will invariably have a correspondingly large set up cost. Whereas

*This work was carried out while the first author was a member of the Intelligence, Agents, Multimedia Group at the
University of Southampton.

© 2005 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford 0X4 2DQ, UK.

218 COMPUTATIONAL INTELLIGENCE

for less important tasks, a mechanism that is less likely to succeed, but which has lower
set up costs, may be more appropriate. However, to date, the choice of which coordination
mechanism to use in a given situation is something that the designer typically imposes upon
the system at design time (e.g., in a given application a particular social law will be used or it
will be decided that all coordination activities will be handled by the contract net protocol).
This means that in many cases the coordination mechanism that is employed is not ideally
suited to the agents’ prevailing circumstances. This inflexibility means that the performance
of both individual agents and the overall system may be compromised. This is especially the
case in open and dynamic environments in which agent-based solutions are often deployed
(Jennings 2000).

To rectify this situation, our aim is to develop agents that can reason about the process
of coordination and then select mechanisms that are appropriate to their current situation.
That is, the choice of coordination mechanism is made at run-time by the agents that need
to coordinate. We claim that fixing on a single coordination mechanism at design time is
inappropriate, especially in dynamic and open contexts, because there is no scope for changing
or modifying the mechanism to ensure there is a good fit with the prevailing circumstances
(Bourne, Excelente-Toledo, and Jennings 2000; Excelente-Toledo 2003; Excelente-Toledo
and Jennings 2004). To circumvent this problem and to achieve the necessary degree of
flexibility in coordination requires an agent to make decisions about when to coordinate and
which coordination mechanism to use. To this end, we have previously developed, evaluated
and shown the effectiveness of an agent reasoning framework to achieve this (Bourne et al.
2000; Excelente-Toledo 2003; Excelente-Toledo and Jennings 2004). However, this work
also highlighted the importance (as well as the difficulty) of making good approximations
about the behavior of other agents. This is especially true as the environment becomes more
dynamic. Given this, a natural extension of the framework is to enable the agents to acquire
knowledge through run-time adaptation. Thus, the agents need to be capable of learning to
make the right decisions about their coordination problem.

More specifically, here, we deal with the problem of allowing agents to learn the right
situation in which to apply an appropriate coordination mechanism (that has previously been
effective in similar circumstances). In particular, we explore the use of a number of Q-learning
algorithms in which the amount of information represented in the state varies. We show how
this representation impacts upon the process of making run-time choices about the selection
of coordination mechanisms in a number of different scenarios. The reason for this changing
state representation is because it models the key determining factors of the agent’s reason-
ing framework (i.e., the environmental factors and the responses of the other agents in the
group).

This work advances the state of the art in the following ways. Firstly, it introduces learning
into that part of the agent’s decision-making process that is concerned with when and how to
coordinate (agents learn the right situations in which to attempt coordination and the right
coordination method to use in those situations). Secondly, it explores different state represen-
tations in Q-learning implementation and, more importantly, it analyzes the efficiency of each
in different scenarios regarding coordination decisions. Finally, it empirically demonstrates
where the benefits of learning can be obtained and where learning is not beneficial in this
decision-making context.

The remainder of this paper is structured as follows. Section 2 details our specific coordi-
nation scenario. Section 3 introduces the decision procedures that enable autonomous agents
to dynamically select coordination mechanisms. Section 4 explains how learning is applied
to these decision-making procedures. Section 5 introduces the experimental methodology
used to perform a systematic empirical evaluation of the main hypotheses of this paper.
Section 6 reports on the experimental work to evaluate the effect of introducing learning

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 219

extensions into the agent’s decision-making and examines their impact. Section 7 deals with
related work and, finally, Section 8 concludes and presents the areas of further work.

2. THE COORDINATION TESTBED

The testbed domain is described in more detail in (Bourne et al. 2000; Excelente-Toledo
2003) (this includes a detailed justification for the choice of this scenario and the various
design decisions within it). Here we just recount the basics that are necessary to understand
the subsequent experiments. Our testbed consists of a grid world in which a number of
autonomous agents (A;) perform tasks for which they receive units of reward (R;). Each
agent has a specific task (ST;) which only it can perform; there are other tasks which require
several agents to perform them, called cooperative tasks (CTs). Each task has a reward
associated with it, the rewards for the CTs are higher than those for STs because they must
be divided among the m coordinating agents.

The agents move around the grid one step at a time, up, down, left or right, or stay still. At
any one time, each agent has a single goal, either its ST or a CT over which coordination needs
to be achieved. On arrival at a square containing its goal, the agent receives the associated
reward. In the case of STs, a new one appears, randomly, somewhere in the grid, visible
only to the appropriate agent. In the case of CTs, a new one appears, randomly, somewhere
in the grid, but this is only visible to an agent who subsequently arrives at that square. If
an agent encounters a CT, while pursuing its current goal (i.e., its ST), it takes charge of
the CT' and must decide on both whether to initiate coordination with other agents over
this task, and which coordination mechanism (CM) it should use or continue working on
its ST. In this context, each agent has a predefined range of CMs at its disposal. Each CM
is parameterized by two types of meta-data (see Excelente-Toledo 2003) for a mapping of
several coordination mechanisms into this framework): set up cost (in terms of time-steps)
and chance of success. For example, a CM may take ¢ time-steps to set up (modeled by the
agent waiting that number of time-steps before requesting bids from other agents) and have
a probability, p, of success (thus when the other agent(s) arrive at the CT square, the reward
will be allocated with probability p, with zero reward otherwise). An agent may well decide
that attempting to coordinate is not in its best interests, in which case it adopts the null CM
(i.e., the agent rejects adopting the CT as its goal).

The Agent-in-Charge (AiC) of the coordination selects a CM and, after waiting for the set
up period, broadcasts a request for other agents to engage in coordination. The other agents
respond with bids composed of the amount of reward they would require to participate in the
CT and how many time-steps away from the CT square they are situated. If an agent’s bid
is successful, then it is termed Agent-in-Cooperation (AiCoop) to denote the fact that it is
a participant (not AiC) for a CT task. If however, AiC initiates coordination but there is no
AiCoops, then, we say that the AiC failed while attempting coordination. The role Agent-
in-ST (AiS) is used to denote the situation where an agent is working towards a ST. Within
this broad framework, Figure 1 highlights the specific decisions which have to be made (see
Section 3 for more details) and gives the protocol the agents follow at each time-step.

Agents might receive more than one proposal at the same time-step, in which case they
reply with as many bids as the proposals they receive. However, they will only accept one
CT contract at a time. Agreements between AiCs and AiCoops to achieve a particular CT

!1f several agents arrive at a CT square at the same time, one of them is arbitrarily deemed to be in charge and, if an agent
finds more than one CT in a given cell, it randomly selects one of them for further analysis.

220 COMPUTATIONAL INTELLIGENCE

[1] Agents arrive at a square. If AiS arrives at its ST cell, its goal is attained, it
receives the reward and updates its goal. If AiCoop arrives at the CT cell, it
notifies the AiC that it has arrived. The CT is achieved and the rewards are paid
to AiCoops. Note that the reward is only given with probability p, the factor
associated with the CM used to coordinate over the CT.

[2] If AiS finds a CT it must decide if it wants to become AiC and, if so, which
CM= (t,p) it should use. If ¢ > 0 it must wait ¢ time-steps before broadcasting
a request for coordination. If AiC finds a new CT, it ignores it.

[3] If AiS receives a request for coordination, it decides whether and what to bid to
participate in the CT. The AiC then evaluates all bids. If AiS’s bid is accepted,
it adopts CT as its new goal. AiC does not respond to requests for coordination.

[4] Each agent decides on its next move according to its current goal and all agents
move simultaneously.

FIGURE 1. Basic protocol followed by agents.

are established via a contracting protocol. This Contract-Net-like protocol (Smith and Davis
1981) consists of three steps. In the first step, AiC broadcasts a proposal to all agents. It then
waits for the bids. The second step involves selecting the bids and contracts from AiCs and
AiS, respectively (evaluation phase). Finally, the third step consists of the commitment about
the terms of the contract and the time step at which AiCoops will arrive at the CT square.

This initial presentation involves several simplifying assumptions; in particular com-
mon knowledge, a deterministic environment and straightforward coordination mechanisms.
However, the framework is also intended to be flexible so that these and other assumptions
can be relaxed (see Excelente-Toledo, Bourne, and Jennings 2001) for an example dealing
with the dropping of contracts to better exploit new coordination opportunities). To model
dynamism, unpredictability and open features in this grid world, the elements in the environ-
ment change their values at execution time. Relevant examples include the changing of the
tasks’ rewards (both for STs and CTs), the frequency with which tasks appear and disappear
in the grid, the number of agents in the environment, and the number of agents needed to
achieve a CT. The main consequence of these variations is that they generate an environment
in which agents face difficulty in estimating the decisions of other agents. Thus, agents have
to make decisions based on factors that cannot be a priori predicted.

3. THE AGENT’S DECISION-MAKING PROCEDURES

In our previous work we have developed and evaluated a decision-making framework for
reasoning about whether and how to coordinate in this domain (Bourne et al. 2000; Excelente-
Toledo 2003; Excelente-Toledo and Jennings 2004) Because the main focus in this paper is
on the role and impact of learning on this framework, we do not discuss all the details of
the model here. Rather we concentrate on the decisions where learning could have a role to
play; that is, which CM to adopt, if any; how much to bid when a request for coordination is
received; and how to determine which bid to accept, if any.

In this context, the agents’ aims are to maximize their reward; in particular their average
reward per unit time. To this end, each agent keeps track of its own average reward, termed
its reward rate, and it uses this rate to decide how much to charge for its own services and,
occasionally, to approximate the expected rates of other agents (when it is not able to build
up a picture of them). Specifically, each agent uses its reward rate to evaluate and compare

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 221

the different actions available to it; if it can maintain or improve this rate, it chooses to do so.
Of course, this decision model approximates the true relative values of different actions.

3.1. Deciding Which CM to Select

An agent which, while pursuing its current goal, encounters a CT must decide whether
to initiate coordination with other agents to perform it. To do this, the agent must determine
whether there is any advantage in so doing. This depends not only on the reward that is being
offered, but also on the CMs available, as well as on various environmental factors which
effect the expected demands of the potential coordinating agents.

To model the expected demands of the other agents, the AiC assumes they are randomly
distributed throughout the grid, and that their current goals are similarly distributed. Thus,
some agents may be near the CT while others may be far away; likewise, for some agents
there would be a significant deviation from their ST to reach the CT, while others may be able
to coordinate over the CT en route to their own goals. The agent then assesses the possible
CMs on the basis of how long before the task can be performed and how much reward it is
likely to obtain after deducting the expected reward requirement of the other agents. In the
former case, it considers both the set up time and the average distance away each agent is
situated, whereas the latter value is based on the amount of time agents must spend deviating
to their path and the CM’s probability of success. This assessment determines the amount
of surplus reward the agent can expect, over and above what it expects to obtain during its
normal course of operation (i.e., its own average reward per time-step, 7). The agent then
selects the CM that maximizes this surplus.?

To formalize this decision procedure, consider an [M x N] grid with reward size S for
STs, and R for CTs, a coordination mechanism, CM; = (¢;, p,), which costs ¢ time-steps to
set up and has a probability of success p. In this grid world of known size, the agent can
calculate the expected average distance (ave_dist) away of any randomly situated agent from
the CT square as well as the likely average deviation (ave_dev) such agents would have to
make to get there.

Based on these figures, the agent can assess the average surplus reward from coordinating
over the CT at (x, y) using CM; = (¢;, p;). First, it must estimate its own cost in terms of
how long the CM will take to set up and how long it expects to wait for the other agents to
arrive. Because the AiC would usually expect to receive S reward units per time-step, the

average is calculated as » = m. The cost of CM; is then given by:

cost;(x, y) =r x (t; + ave_dist(x, y)).

Second, the AiC must estimate the average amount of reward the other m agents will
require. When AiC does not have any knowledge of the average reward of all the other agents
in the environment, it uses its own () average reward as an approximation.>

r x ave_dev(x, y)

ave_bid;(x, y) =m x
' pPj

(1

2Though this may not be a globally optimal criterion for deciding which CM to use, it makes sense from a self-interested
agent’s point of view.

3To estimate (1) it is assumed that the m is determined in advance or is part of the agent’s knowledge. However, this
assumption may not always be valid for cases in which the number of cooperative agents depends on the particulars of the
coordination’s objective. In such cases, the agents will need to predict this number based on previous experiences or some how
estimate this information (e.g., the straightforward solution is that agents maintain an average of the number of helpers each
time they accomplish coordination; more complex solutions might involve building a model for each agent each time there is
an interaction).

222 COMPUTATIONAL INTELLIGENCE

N
—

AiSy

CT

AiSy

STy

STy

icnuxc,ow»—t

FIGURE 2. Example of a coordination world grid.

Third, the AiC estimates the expected surplus (ave_payoff) of CM; from adopting the
CT by taking into account the probability of success of the task:

ave_payoff (x, y) = p; x R

Using these estimates, the AiC can evaluate the expected surplus reward of adopting
CM jI

ave_surplus;(x, y) = ave_payoff(x, y) — cost;(x, y) + ave_bid;(x,). 2

When deciding which of its CMs to adopt, the agent computes its expected surplus reward
from each of them and selects the one that maximizes this value. If the surplus associated
with all CMs is negative, the agent adopts the option of the null CM (which is defined to have
zero surplus).

To exemplify this decision procedure, consider the simple scenario of Figure 2 at one
instant in time with two agents (AiS; and AiS;), two STs, one CT and two CMs : CM;(3, 0.9)
and CM;(6, 1.0). AiS; occupies a [5S x 5] grid and finds a CT requiring one other agent with
R = 6 at square [3, 2]. The average distance of other agents from [3, 2] is 2.6. Because the
average distance between two random squares is 3.2, the average deviation of any agent from
[3, 2] is 2. Assugne that each ST has a reward S = 2, then the average reward per time-step

of all agents is 55 = 0.625. The expected surplus reward of adopting each CM is given by:

cost;(3,2) = (0.625 x 3+ 2.6)) =3.5
(0.625 x 1 x 2)

0.9
ave_payoff,(3,2) = (0.9 x 6) = 5.4

ave_surplus,(3,2) = 0.511

ave_bid;(3,2) = =1.389

costy(3,2) = (0.625 x (6 + 2.6)) = 5.375
(0.625 x 1 x 2)
1.0
ave_payoff,(3,2) = (1.0 x 6) =6

ave_surplus,(3, 2) = —0.625.

ave_bid,(3, 2) = =1.25

Under these circumstances, AiS, decides to attempt coordination with CM; (becoming
AiC) because it expects to obtain a profit. Note this is not the case with CM,, where the

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 223

negative result indicates there is not likely to be a surplus. Thus, in this case, if AiS; only
had CM; at its disposal it would choose the null CM (expected surplus zero) and it would
continue towards its ST.

3.2. Deciding What to Bid to Become an AiCoop

When agents receive a request to participate in a CT they submit a bid based on the amount
of reward that they would require to compensate them for deviating from their current goal.
Thus, an agent’s required reward is determined by the amount of time spent in deviating to
the CT square, its average reward per time-step and the probability of success of the CM
being proposed.*

To formalize this, consider an agent, A;, with average reward per time-step ;. The agent
calculates its deviation (i.e., the number of extra time-steps it requires to reach its ST if it
goes via the CT square). Note that if, for example, the CT square lies directly on a path to
the ST, the agent’s deviation would be zero. Clearly, such an agent will be in a position to
submit a very attractive bid, because the cost of coordinating is effectively zero.

Again by means of illustration consider the agents depicted in Figure 2. AiS; at [5, 3]
would take four time-steps to reach ST, at [2, 4] directly, but six steps going via the CT at
[3, 2], a deviation of two time-steps. However, AiS; at [1, 1] would take seven time-steps to
reach ST, at [4, 5] directly, and also seven steps going via the CT at [3, 2]; AiS,, therefore,
has a deviation of 0.

To compute the reward AiS; requires from engaging in coordination over the CT, it takes
into account the compensation both for its deviation and for the possibility that the CM might
fail. Thus, the estimation of bid by agent i to participate in coordination is given by:

bid; = r; X dematzon,. 3)
pj

The agent submits its bid to coordinate and its distance from the CT square. If an agent
is selected to coordinate, it adopts the CT as its current goal. Its ST is only readopted after
the CT has been accomplished.

3.3. Deciding Which AiS Bids to Accept

Once the AiC has received bids from all agents, it selects the set that maximizes its
surplus reward, given the new (definite) information it has received (see the approximation in
Section 3.1). For each agent, A;, the AiC knows the amount of reward it will require (bid;;)
and the time it will take to arrive (7;).

The AiC’s selection bid process is based on the calculation of the cost of each bid received.
However, when more than two agents are required to achieve a CT, it is necessary to deal with
the fact that an AiCoop may have to wait in the CT cell while the remaining AiCoops arrive
(because agents have to travel different distances). There are many ways of dealing with
this situation (see discussion below). However, to simplify the estimates of expected reward
undertaken by the various agents, it is assumed the AiC pays an additional reward for the
time elapsed. Thus, AiC knows the number of time-steps that each AiCoop is likely to have to
wait (specified in the bid) and the amount it will pay for waiting time at a specific predefined
waiting rate (g). The CT is achieved only when the AiC has received the confirmation of all

#Note that the AiSs use the actual values of the concepts discussed, whereas the AiC’s task is to make a good approximation
of these components through equation (1).

224 COMPUTATIONAL INTELLIGENCE

m agents involved in the cooperation. When an AiCoop notifies the AiC of its arrival at the
CT cell, it either receives its share of the CT reward or the waiting rate followed by its share
of the CT reward.

Thus, to decide which bids to accept, the general idea is that AiC selects the m proposals
with least cost (from the total bids received B). It does this by considering the reward requested
in the bid and the waiting time cost (Cost_bid) and then it estimates its expected reward given
this cost and its investment. Formally, AiC calculates the cost of each subset b of B with m
elements of the form (bid,;, 7;). From each subset b, AiC selects the agent that will take the
longest time to arrive (i.e., max T, = maxpid,,7,)es[1:]), then it can determine the maximum
time that each agent will spend in the cell. Finally, it approximates the cost of each bid based
on the reward and the waiting time an AiC has to pay:

costbid, = > (bid;; + (maxT, — T) x q).
(bid;;, T;)
Bringing all this together, AiC estimates the surplus it expects to obtain by taking into

account the cost of the selected bids and its own investment to wait for the last AiCoop to
arrive. The bids selected belong to the subset b of 5 that maximizes the surplus given by:

surplus; = p; x R — cost.bid, —r x (t; + maxT,). €))

Now, it may be the case that no bids are received that give a positive surplus. Even though
the chosen CM had an expected surplus, by chance it may be that no agents are sufficiently
near to provide reasonable bids. In such a situation, the AiC abandons the CT and returns to
its ST.

In this paper, the main focus is on giving the agents the capability of learning to make
the right decisions about their coordination problem. That is, we wish to endow the agents
with the capability of learning the right situation in which to apply the right coordina-
tion mechanism. Specifically, the agent’s decision-making framework presented in this sec-
tion and, in particular, the decision procedure outlined in Section 3.1 (equation (2)), allows
agents to make decisions about when and which CM to select to achieve a CT. Thus, this
is the major one with respect to reasoning about coordination mechanisms (Bourne et al.
2000; Excelente-Toledo 2003; Excelente-Toledo and Jennings 2004) and it is, therefore, the
one we 5concentrate on in terms of evaluating the role of learning as described in the next
section.

4. THE ROLE OF LEARNING

Our investigation focuses on the use of reinforcement learning (RL) (Kaelbling, Littman,
and Moore 1996; Sutton and Barto 1998) in coordination. A reinforcement-based approach
is appropriate because we are concerned with agents pursuing goals and obtaining rewards
according to how effectively those goals are accomplished. Within this class, Q-learning
(Watkins and Dayan 1992) was chosen because it is an online algorithm that does not require
a model of the environment and, thus, it is well suited to our dynamic and unpredictable
scenario.

SThere are other places where learning could play a role; for example, an agent might learn the decision about how much
to bid to become an AiCoop (equation (3)) or which bids to accept (equation (4)). However, these options are out of the scope
of this paper.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 225

In this study, each RL agent uses a Q-learning algorithm. In general terms, an agent’s
objective is to learn a decision policy that is determined by the state/action value function.
The classical model of Q-learning consists of:

¢ A finite set S of states S of the world (s € S);
¢ A finite set A of actions a that can be performed (a € A);
e Areward function R: S x A — .

An agent’s goal consists of learning a policy 7 : S — A that maximizes the expected
sum of discounted rewards V:

o0
V[I’, F Y+ Y+] = VZVirtH’
i =0

where 0 < y < 1 is the discount factor. Formally speaking, the discount factor determines
the value of future rewards in the following way: a reward r received ¢ time-steps in the
future is worth only y’ times what it would be worth if it were received immediately. As
y approximates 1, the function takes future rewards into account more strongly. Thus, the
agent’s task is to learn the optimal policy 7 (i.e., arg max,, V7 (S), V(9)).

In more detail, assume that an agent always performs the cycle of being in a particular
state S, then selecting and performing an action a that causes the agent to enter a new state
s’ and receive an immediate payoff (reward r(s, a)). The Q-learning algorithm is based on
the estimated values of the agent’s state (S)-action (@) pairs, called Q(s, a) values. Based on
this experience, the agent updates its Q(S, a) values using the formula:

Q(s,a) < Q(s,a) + a[r+y x maxQ(s’, @) — Q(s, a)], (5)

where « is the learning rate which determines the rate of change of the estimation and,
max, Q(s', @) is the value of the action that maximizes the Q function at state s.

However, there is still the problem of how agents select their next action to execute.
They have to balance their decision between selecting an action that, when exploited in the
past, brought about a positive reward, and an action that has not yet been explored and that
consequently has an unknown reward (“exploitation versus exploration”) (Sutton and Barto
1998). In this work, we use a e-greedy function that selects the action with the highest Q(s, a)
value once all the actions have been explored a predetermined number of times. In particular,
we use f(Q(s, a), n) (Russell and Norvig 1995) which determines how greed (preference
for high values of Q(s, @)) is traded off against curiosity (preference for low values of n,
namely, actions that have not been tried before). Formally speaking, the exploration function
equates to:

RT ifn < N,
Q(s,a) otherwise,

f(Q(s, a),n) = { (6)

where 7 is the number of times Q(S, a) has been visited, R™ is the optimistic estimate of best
possible reward that an agent can obtain in a given state and N, corresponds to the number
of times that agents should try a particular action-state pair.

In summary, for experimental evaluation purposes, agents use a Q-learning algorithm
with the following values: y is assigned with value 0.01 which means that the agent is trying
to maximize immediate reward; « is decreasing with time by calculating it with the number

226 COMPUTATIONAL INTELLIGENCE

m; the Q(s, a) values are initialized with 0.
6

And equation (6) is used as the exploration function.
Thus, the main objective is then to evaluate the effect of learning on the agents’ decision
making about CMs. To do this, we will compare the performance of agents that use a Q-
learning algorithm (RL) with those that perform no learning (NL). Here the key difference
is how the agents select the CM with which they will attempt coordination (step [2] in the
protocol specified in Figure 1). For the remaining steps of the protocol, both RL and NL
agents employ the decision-making procedures outlined in Section 3 to make agreements
when surplus (equation (4)) is positive given the set of bids (equation (3)) it received.

This means then that when dealing with RL agents, the agent-state corresponds to the
abstraction of the particular situation that agents experience when a CT is found (e.g., the
agent role and the position in the grid); the agent-action represents the set of options an agent
has at its disposal (i.e., the set of coordination mechanisms it can select, including the null
CM) and the reinforcement is modeled as the reward obtained by selecting the particular CM
or not selecting a CM at all. Thus, the idea is that with Q-learning the agents will eventually
learn the policy (after exploring sufficient situations) that allows them to know which CM to
choose given a specific situation/state.

Now, for the purposes of this analysis, NL and RL agents experience one of the the
following outcomes: (i) a successful coordination (i.e., the AiC selects a CM, finds AiCoops
to coordinate with and the CT is successfully achieved using the CM selected); (ii) the AiC
initiates coordination with a selected CM but there are not enough successful bids to make
agreements (this means that attempting coordination with the CM was a failure); and (iii)
the AiC does not select any of the CMs at its disposal (i.e., the null CM is selected and the
agent continues with its individual problem solving activity).

On the basis of previous description, the learning agent’s main objective is then to select
the most suitable CM given its prevailing circumstances. To achieve this general goal, we
explore the use of two Q-learning algorithms: RL1 and RL2. The main difference between
them is in the way they model the state representation at the moment when the decision
about which CM to select is taken. In particular, our interest is in evaluating whether agents
can improve their performance by explicitly representing one of the key components of the
decision making of the CM, namely the ave_bid (equation (1)).” Thus, RL2 agents employ
a Q-learning algorithm that does estimate and use ave_bid when selecting the CM, whereas
RL1 does not model this information in its state representation.

Thus, in what follows, we first describe the general RL algorithm and then we detail
the differences between RL1 and RL2. Finally, we discuss the algorithm followed by the NL
agents.

of times a Q(S, a) value is visited @ =

RL: When a learning agent finds the CT, it performs the following basic cycle:

1. Itisin a particular state (represented by S)
It makes a decision about the next action (a) to execute using the exploitation and
exploration function of equation (6).

3. The agent executes the selected action (a) which will be one of accomplishing a CT (if
a CM is selected and successful), failing on a CT (if a CM is selected and unsuccessful),
or selecting no CM (if the null CM is selected) and reaches a new state S'.

It is well known that the convergence time is determined by the exploitation and exploration function, the size of the
look up table and the learning rate (Singh et al. 2000). Here, it was not our objective to hand tune all these parameters to reduce
the convergence time in particular cases. Rather, we fixed the values of all parameters and kept them constant in all Q-learning
implementations.

"Recall that ave_bid represents the prediction of other agents’ bids with which agents attempt coordination.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 227

4. It obtains a reinforcement reward as a result of the execution of action a. In particular,
the reinforcement varies with the following outcomes:

e The CT is accomplished using the CM selected. In this case, a positive reinforcement
is obtained that is based on the reward gained by achieving the CT after the payment
to the AiCoops and the time invested in pursuing the task.

e The CT failed given the CM chosen. This situation occurs because no one replies
to the request for coordination or because the reward requested to participate in the
cooperative action by the AiCoops is too high for the AiC to accept it (i.e., the surplus
(equation (4)) is negative). In either case, a negative reinforcement is calculated based
on the average reward () lost in the time invested in the CM (¢).

e The null CM is explored or exploited. Here, the reinforcement corresponds to the
reward (CT reward) the agent might have obtained by investing an average time in a
CT (modeled by average distance ave_dist).

It updates the Q(s, a) value (equation (5)).
6. It goesto[l].

hdl

Turning now to the differences between the learning agents and taking previous descrip-
tions of RL we have two variations: RL1 and RL2 agents. Each of them will be dealt in
turn.

e RL1: An agent learns to select a CM by exactly following the RL algorithm and, in
particular, it uses its role and position in the grid when the CT is found as the representation
of s.

e RL2: An agent learns to select a CM using ave_bid. An agent of this type follows RL but
has a modified state representation S and a different means of updating to s’ in step [4].
Specifically, s is modeled with the agent’s role, its position in the grid and the expected
ave_bid.® The initial estimation of ave_bid in step [1] corresponds to:

ave_bid;(x, y) =m x r x ave_dev(x, y).

Note that the only difference between this formulation and equation (1), is that p; (the
probability of success of a given CM) is unknown at this stage.

When RL2 agent reaches a new state S, the state is updated with the ave_bid using
equation (1) where p; refers to the probability of success of the CM chosen.

NL: A nonlearning agent makes decisions entirely based on the decision-making procedures
detailed in Section 3 and follows the protocol specified in Figure 1. Being precise, when an
agent finds a CT, it calculates the expected average surplus (equation (2)) of each CM at its
disposal. It then simply chooses the one with the best ave_surplus. For the next stages of
the protocol, it uses equations (4) to decide which bids to accept and (3) to become AiCoop.
Note that the NL agent uses equation (1) to calculate ave_bid to evaluate ave_surplus for
each of the CMs.

To finish the discussion on the role of learning in this model, it is necessary to specify the
features of the environment in which the algorithms will be tested. Two scenarios have been
designed: scenariol in which all AiSs in the environment become AiCoop by submitting

8To simplify the state representation, ave_bid is in fact associated with a range of values. Given the values of the simulation
variables (see Section 5.1), the ranges of the ave_bid are the following: 1 < ave_bid < 1.84, 1.84 > ave_bid < 2.64 and
ave_bid > 2.64.

228 COMPUTATIONAL INTELLIGENCE

a bid which is calculated by equation (3) and scenario2 in which AiSs calculate their bids
in the same way but they vary the result by a random factor. The reason for this change is
that, in the general case, AiCs face a great deal of uncertainty in predicting this value. Thus,
the random element mirrors environments in which predictions are less accurate. Together,
these two scenarios constitute a reasonably static environment in which good predictions can
be made and a more dynamic one in which predictions are inherently less accurate.

Bringing this all together, the agents’ performance will be analyzed using the following
algorithms:

RL1 agents learn to select a particular CM according to the profit gained by accomplishing
CTs with a particular CM.

RL2 agents learn to select a particular CM according to the accuracy with which they
calculate the ave_bid.

NL agents select a particular CM using equation (2).

5. EVALUATION METHODOLOGY

The main hypothesis we seek to evaluate is whether agents coordinate more effectively
in our scenario using the reinforcement-based algorithms. To measure such benefits in our
model, a set of experiments have been designed as a formal methodology to provide infor-
mation about the experimental variables. To test and to verify the hypothesis questions we
employ statistical inference methods; in particular analysis of variance (ANOVA) is used
to test hypotheses about differences between the means collected. The null hypothesis (HO)
of equal means can be rejected when the procedure reveals for all experiments that the
differences among means are significant (p < 0.05) or might be accepted in the contrary
case (Cohen 1995). In other words, ANOVA tests the significance of the observations by
accepting or rejecting the hypothesis formulated. The observations are the set of values for
the experimental variables as the result of the execution of a particular algorithm in a given
environment.

ANOVA explains the relationships between groups by analyzing all possible interactions
among them. However, though it provides an answer to the hypothetical questions by indi-
cating if the mean of the groups are equal or not, it does not indicate the relations between
them (e.g., which mean of which groups are the highest). Thus, in most cases, it is neces-
sary to go a step further (postanalysis) to determine where the exact differences among the
means occur between groups. This procedure consists of running a posttest to explore the
data collected on a case by case basis (this is termed pairwise analysis) because it tests the
difference between each pair of means.” This pairwise analysis is particularly important in
those cases where more than two procedures are being tested (or one procedure is tested in
more than two scenarios). In concrete terms, the posttest makes a comparison between the
data collected and builds groups (as many as necessary) that have statistically homogeneous
values. Each group is generated with an associated value (the p value) that indicates the
degree of confidence from which each group was built.

For the purposes of the experimental evaluation presented in Section 6, all the hypotheses
are evaluated with ANOVA and only the cases that involve more than two experimental
variables are subject to a post evaluation. When we test two variables and ANOVA rejects

9Several statistical tests exist to perform this analysis. The one used here is called Tukey’s honestly significant difference
(HSD). This was chosen because it lies in the middle of the spectrum of alternatives; between LSD (which stands for least
significant differences) and Scheffé tests, which are the extreme in the conservative methods (Cohen 1995; Lane 2001).

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 229

the equality of means, the data collected is used to indicate the relationship between the two
variables. We are also interested in determining which of the groups obtains the highest mean
(from now on referred to as the winner group) because it represents the agents with the best
performance.

5.1. Experimental and Simulation Variables

The following simulation variables were fixed for all learning experiments: size of the grid
([10 x 10]), duration (500,000 time units),'? number of CTs in the grid at any one time (3),
number of agents in the environment (5), ST reward (1), CT reward (20), maximum number of
agents needed to achieve a CT (3), coordination mechanisms considered by an agent (CM; =
(1, 0.6), CM, = (15, 0.7), CM3 = (30, 0.8), CM, = (45, 0.9) and CMs = (60, 1.0))."!

The experimental variables on which the analysis is based are: total agent reward obtained
from its ST and CT tasks (AU), total agent reward obtained by agents in the Agent-in-ST
role (AiS), total agent reward obtained by agents in the Agent-in-Charge role (AiC), total
agent reward obtained by agents in the Agent-in-Cooperation role (AiCoop) and, the total
number of CTs accomplished (TCT). The experiments described collect the results of the
experimental variables averaged over 10 simulation runs.

5.2. Evaluating Hypotheses

To accept our main hypothesis, the hypotheses presented below must be rejected (meaning
that the hypothesis of equal means is false) and the values of the experimental variables of a
particular learning algorithm should produce significantly better results than those obtained
with NL. Therefore, the following hypotheses must be tested in scenariol and scenario2:

H1: The AU obtained by performing a reinforcement-based algorithm (RL) is the same as
that obtained by agents which use the NL algorithm.

H2: The number of CTs (TCT) achieved by agents by means of either RL algorithm is
identical to that of agents using NL.

H3: The AU obtained by RL1 is the same as that of RL2 (evaluated in the case where H1
rejected).

H4: The number of CTs accomplished by RL1 is identical to that of RL2 (evaluated in the
case where H2 is rejected).

6. EXPERIMENTAL EVALUATION

The experimental evaluation undertaken in this section follows the methodology de-
scribed previously and is organised in the following way. Firstly, the four hypotheses of
Section 5.2 are tested in a static environment (Section 6.1) and secondly the same evaluation
procedure is followed but in a dynamic environment (Section 6.2).

10We decided to evaluate over a fixed duration because in this scenario time counts and agents win reward at each time-step.
Thus, it is reasonable to compare the behavior of all algorithms under the same parameters. The duration selected is sufficient
for the learning algorithms to converge to optimal values.

I'These CMs were selected because previous results have indicated that these are the main ones that are selected by the
agents in this setting (Bourne et al. 2000; Excelente-Toledo and Jennings 2002; Excelente-Toledo 2003).

230 COMPUTATIONAL INTELLIGENCE

TABLE 1. Agent’s AU and TCT in Scenariol

Hypothesis to Evaluate p Outcome Winner
H1: AUR | = AURr = AUnL 0.000 Rejected NL, RL2®)
H2: TCTg = TCTr, = TCTnL 0.000 Rejected RL2()
H3: AUg = AURg» 0.000 Rejected RL2

H4: TCTgry = TCTRL2 0.000 Rejected RL2

()See Table 2 and () Table 3 for details.

=3 Agent Utility

—&—Total CTs
100,000 [2500

90,000

80,000 + 2000

70000 |-

60,000 1

1500

50,000 | -

Agent Utility (AU)

40,000 - L 1000

Total CTs accomplished (TCT)

30,000 |

20000 |- | 500

10,000 —|;

0 0

FIGURE 3. Contrasting agent’s abilities in scenariol.

6.1. Selecting CMs in Static Environments (scenariol)

To start with, Table 1 and Figure 3 present a summary of the results obtained by per-
forming ANOVA on the data collected by each of the algorithms in scenariol. Let us
first analyze the agent utility hypothesis. H1 is rejected, meaning that the performance
of the algorithms does have a significant effect on the AU obtained. To understand the
relationship between the algorithms a postanalysis of H1 is conducted (Table 2). The
conclusion is that the performance of NL and RL2 is better by a statistically significant
amount (AUnL = 88,018.64, AUgrLo = 87,570.24) than RL1(AURL1 = 81,064.28). Further-
more, comparing the performance of RL1 and RL2 in H3 (Rejected), it is concluded that the
different mechanisms used for learning do effect the AU obtained by agents. Figure 3 graphi-
cally shows that the reward gained by RL2 agents is better than that for RL1 agents. Moreover,
it can also be concluded that an agent which learns to select the CM (RL2) performs the same
as one which does not learn at all (NL).

H2 and H4 evaluate the effectiveness of achieving CTs. Both hypotheses are rejected
which means that the total of CTs achieved does depend on the algorithm executed. In this
case, the more CTs that are accomplished, the better the AU that is obtained. Here NL and
RL2 agents accomplish more CTs than RL1 and, consequently, they gain more reward (see
axis Y of Figure 3 and the result of the postanalysis regarding TCT in Table 3). However,

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 231

TABLE 2. HI in scenariol: Postanalysis

Agent AU

1 2
RL1 81,064.28
RL2 87,570.24
NL 88,018.64
)4 1.000 0.791

TABLE 3. H2 in scenariol: Postanalysis

Agent TCT

1 2 3
RL1 1465.62
NL 1805.90
RL2 1922.20
D 1.000 1.000 1.000

TABLE 4. Contrasting RL2 and NL Agents in scenariol

Hypothesis to Evaluate P Outcome Winner

H5: AURL = AUNL 0.594 Accepted None
H6: TCTre = TCT\L 0.000 Rejected RL2

this is an important result to analyze in detail, because a high number of CTs achieved, does
not necessarily mean that an agent performs better. This argument can be seen by observing
Tables 2 and 3 (Figure 3 graphically shows the same information). Here, despite the fact that
RL2 agents achieved statistically the highest number of TCT (three groups were formed in
the postanalysis), their AU gained is not higher than that obtained by NL agents (RL2 and
NL agents belong to the same group in Table 2). Actually, the results of applying ANOVA
to the TCT achieved and AU gained by NL and RL2 corroborate this explanation and are
shown in Table 4. Specifically, H5 shows that the total reward obtained by RL2 is the same
as that obtained by agents using the NL algorithm (HS5 is accepted, there is no statistically
significant effect on the AU), whereas H6 demonstrates that the total number of CTs achieved
by NL agents is identical to the TCTs accomplished by RL2 agents (H6 is rejected, the TCT
obtained by each algorithm is significantly different).

From the results obtained in the previous experiment it can be seen that in this scenario,
the agent’s optimal behavior is achieved by firstly taking the correct decision about when to
attempt coordination. And, secondly, by selecting the CM whose time to set up is balanced
by the amount of reward obtained. Moreover, RL2 and NL are the ones that make decisions
which maximize their AU. Thus, to better understand the differences or similarities between
RL2 and NL, Table 5 tests ANOVA by agent role with the following hypotheses:

232 COMPUTATIONAL INTELLIGENCE

TABLE 5. Contrasting RL2 and NL Agent’s role AU in scenariol

Hypothesis to Evaluate P Outcome Winner
H7: AiSrLo = AiSnL 0.009 Rejected NL
HS8: AiCgro = AiCnL 0.000 Rejected RL2
H9: AiCoopg, » = AiCoopy, 0.546 Accepted None
[AiCoop
CIAC
100,000 ==L r 2500
—m— Total CTs
90,000
80,000 | || 000
70,000 Ny / %
E 60,000 \¢— 1500 é_
§’ 50,000 8
5 w0 1000 =
30,000 "
20,000 500
10,000
0 0
NL AL1 AL2

FIGURE 4. Contrasting agent’s roles abilities in scenariol.

H7: The AU obtained by Agents-in-ST role, which perform a reinforcement-based algo-
rithm (RL2) is the same as that obtained by AiS agents which use the NL algorithm.

H8: The total reward obtained by RL2 agents in the AiC is the same as that obtained by NL
AiC agents.

H9: The AU obtained by RL2 Agents-in-Cooperation role (AiCoop) is identical to the total
reward obtained by NL agents in the AiCoop role.

Figure 4 illustrates these results. They indicates that while RL2 AiC is significantly
better than the corresponding NL agent role (H8 rejected), NL AiS is better than RL2 AiS
(H7 rejected). H9 is accepted which means that the two agents accomplish similar rewards in
their AiCoop role. As can be seen, both agent types achieve (statistically speaking) the same
AU (recall that H5 was accepted) but from different sources. In this experiment, the best
AiC (as a result of accomplishing more CTs) does not mean more reward is obtained. This
is because high AU might have originated from fewer and more profitable CTs (in the case
of NL) or a high number of less rewarding tasks (in the case of RL2). In terms of selection
of the CMs, this means that NL selected those with higher probability of success and higher
time to set up (less time to achieve CTs), while RL2 agents choose those CMs with less time
to set up but less probability of success.

Whereas the previous discussion only compared RL2 and NL agents, in what follows,
we undertake a similar analysis but considering all three algorithms. To this end, Table 6 and

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 233

TABLE 6. Agent’s Role AU in scenariol

Hypothesis to Evaluate p Outcome Winner
HI10: AiSg 1 = AiSgi> = AiSnL 0.000 Rejected NL(A)
HI11: AiCgrL1 = AiCrL2 = AiCnL 0.000 Rejected RL2¢)

H12: AiCoopg, 1 = AiCoopg , = AiCoopy, 0.000 Rejected NL, RL2¢)

()See Table 7, ()Table 8, and () Table 9 for details.

TABLE 7. HI10 in scenariol: Postanalysis

Role to Analyze: AiS

AU
Agent 1 2
RL1 60,475.28
RL2 62,136.72
NL 64,899.00
P 0.124 1.000

TABLE 8. HI1 in scenariol: Postanalysis

Role to analyze: AiC

AU
Agent 1 2
NL 10,192.50
RL1 10,615.21
RL2 12,641.40
)/ 0.346 1.000

Figure 4 show the result of the data collected and Tables 7, 8, and 9 present the postanalysis
performed to H10, H11 and H12, respectively.

H10: The AU obtained by Agents-in-ST role which perform a reinforcement-based algo-
rithm (either RL1 or RL2) is the same as that obtained by AiS agents which use the
NL algorithm.

H11: The total reward obtained by RL1 and RL2 agents in AiC role is the same as that
obtained by NL AiC agents.

H12: The AU obtained by RLs Agents-in-Cooperation role (AiCoop) is identical to the
total reward obtained by NL agents in the AiCoop role.

As expected, the first thing to notice is that the results are consistent with those described
in Table 5. This is because NL and RL2 agents have superior performance in all three roles
when compared against RL1 (H10, H11, and H12 are rejected). This means, the performance
of RL1 agents do not have a significant effect on the experimental variables. NL still performs
better than the others in terms of taking advantage of pursuing STs (i.e., by not attempting a

234 COMPUTATIONAL INTELLIGENCE

TABLE 9. HI2 in scenariol: Postanalysis

Role to analyze: AiCoop

AU
Agent 1 2
RL1 9973.79
RL2 12,792.12
NL 12,927.13
P 1.000 0.746

cooperative activity (H10 rejected)). Turning to the analysis of the cooperative behavior, here
the results of Table 5 show that RL2 is the agent which performs the best as an AiC (H11 is
rejected) and (RL2 and NL) obtain the same as an AiCoop (H12 is rejected as both agents
have statistically speaking the same results). Generally speaking, it can be seen that RL2 and
NL better balance their decision of when to go for the CT with the CM, which allows them
to gain more reward.

When considering the two learning-based algorithms, it is clear that those agents that take
into account the ave_bid of other agents (RL2) perform better than those that do not (RL1).
Thus, H3 and H4 are rejected in Table 1 and RL2 is the winner in both cases. Moreover,
the information provided by the policies learnt by RL2 is more informative. For example,
both agents learn that the optimal action when agents are in the corner of the grid (position
[1,10]) is to select CM . However, with RL2, agents additionally learn that this is the action to
execute if and only if the ave_bid is higher than 2.64. Generally speaking, the optimal policy
with RL2 might vary for each of the different values of the ave_bid, whereas with RL1 this
information cannot be extracted from the policies because it is not explicitly represented.

Contrary to our intuitions, neither of the learning agents perform better than NL. One
reason for this conclusion is that an NL agent performs well because it uses a decision-making
process that models reasonably well the various actions that take place in a static environment.
In other words, NL agents use equation (1) to predict the possible bids the other agents will
make to participate in a CT. And, as it turns out, this estimate is not far from the real bid
they eventually make. The second reason is that the results for the learning-based algorithms
were obtained considering a fixed period that included the exploitation and exploration phase,
not once the learning agents had converged to the optimal policy (equation (6)). Recall that
agents in the learning process need to try the CMs (exploration) even though some of them
are not necessarily worth it (because this is a necessary step in the task of learning). To this
end, it could be argued that if we allow RL agents to compete with NL agents once they
know in which situation they should select which CMs, their performance would improve.
Actually, it turns out to be the case (we have verified that when agents are initiated with the
policies they have learnt from the past experiment, they perform significantly better than the
corresponding NL agents (these issues have been thoroughly explored in Excelente-Toledo
and Jennings 2003)). Speaking more generally, NL agents require knowing a priori what the
regularities of the domain will be, whereas the learning agents can perform successfully as
long as regularity exists. However, despite this improvement, we consider it very unlikely
that agents will be able to take advantage of the knowledge learnt when the environment is
in a constant state of flux. In such cases, it is not valid to assume that agents will continue
behaving in similar ways or that the interaction will take place with the same agents they
encountered before. In such scenarios, it will be more difficult to find NL agents that can

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 235

TABLE 10. Agent’s AU and TCT in scenario2

Hypothesis to Evaluate P Outcome Winner
H1: AUg 1 = AURLo = AUnL 0.000 Rejected RL2O)
H2: TCTR 1 = TCTR2 = TCThL 0.000 Rejected NL®)
H3: AUg | = AUgrp 0.000 Rejected RL2
H4: TCTry = TCTRL2 0.200 Accepted None

()See Table 11 and () Table 12 for details.

1 Agent Utility

—&—Total CTs
80,000 - 1000

70,000 - S00

- 800

60,000 —
I 700

50,000 —

I 600

40,000+ - 500

Agent Utility (AU)

30,000 |- 400

Total CTs accomplished (TCT)

- 300

20,000 —
I 200

10,000 100

FIGURE 5. Contrasting agent’s abilities in scenario2.

accurately predict the other’s behavior and it is very unlikely that agents can successfully
use the same decision-making framework. Thus, for these reasons, we believe our agents
should be capable of adapting their decision making as a result of what is occurring in the
environment, that is, during acting in more demanding scenarios. Therefore, our objective
is to design agents that inhabit open and dynamic environments and we require the learning
agents to show a superior performance when considering both the exploring and the exploiting
phases. Thus, in what follows, the use of learning is further explored in situations in which
one of the fundamental actions associated with cooperative activity is more challenging to
predict (scenario2).

6.2. Selecting CMs in Dynamic Environments (scenario2)

Turning now to the more dynamic environment of scenario2. We tested the same basic
set of hypotheses (H1, H2, H3, and H4) and the results are summarized in Table 10 and
Figure 5. First, we analyzed the hypotheses related with AU. Similar to the results obtained
in Table 1, we conclude that applying RL s and NL produces distinctive results. However,
conversely to Table 1, RL2 agents get significantly better results (AUgrL2 = 75,952.66) than
RL1 agents (AUgL1 = 73,690.06) and RL1 agents get a significantly higher AU than NL
agents (AUnL = 68,333.94). These results are clear in Figure 5 and the relationship between

236 COMPUTATIONAL INTELLIGENCE

TABLE 11. HI in scenario2: Postanalysis

Agent AU
1 2 3
NL 68,333.94
RL1 73,690.06
RL2 75,952.66
4 1.000 1.000 1.000

TABLE 12. H2 in scenario2: Postanalysis

Agent TCT

1 2
RL1 686.54
RL2 697.46
NL 889.46
P 0.392 1.000

TABLE 13. Agent’s Role AU in scenario2.

Hypothesis to Evaluate p Outcome Winner
HI10: AiSgr 1 = AiSgL> = AiSnL 0.000 Rejected RL20)
HI1: AiCri1 = AiCRi2 = AiCnL 0.000 Rejected NL®

H12: AiCoopg,; = AiCoopg , = AiCoopy, 0.000 Rejected ~ NL”
()See Table 16, ()See Table 14, and) Table 15 for details.

the groups is shown in Table 11. What is more, regarding the differences in the agents’
performances shown by the learning algorithms (H3), the results are once again that the AU
of RL2 agents are significantly higher than those accomplished by RL1 agents.

With reference to the TCT accomplished, the hypotheses of equal means of H2 and H4
are rejected. Figure 5 shows on its Y axis the total CTs accomplished by agent type. As can
be seen, there is a significant impact on the TCT achieved when performing RL or NL; the
results obtained by RLs are in the range of 30% less than those obtained by NL (Table 12
illustrates that after the postanalysis, RL agents accomplish (statistically speaking) the same
number of CTs). The relevant aspect to discuss now, though, is that in contrast to previous
experiments, NL obtains a lower AU despite achieving more CTs. This corroborates our
previous explanation about the correct selection of the CM and its repercussions for the
agent’s performance. To this end, Table 13 and Figure 6 show the results of testing ANOVA
for the next hypotheses, as we did in scenariol:

H10: The total reward obtained by Agents-in-ST role which perform a RL algorithm (either
RL1 or RL2) is the same as that obtained by AiS agents which use the NL algorithm.

H11: The AU obtained by RL1 and RL2 agents in AiC role is the same as that obtained by
NL AiC agents.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 237

[0 AiCacp
AL
B0 - | =as [1000
—8—Total CTs
owo| a (]
i 800
60,000 5
~a__ 1l = o0 =
= 50000 - g
: :
5 0000 0 g
E [
< 30000 L E
300
20,000 —
200
10,000 100
0]
NL ALt AL2
FIGURE 6. Contrasting agent’s roles abilities in scenario2.
TABLE 14. HI11 in scenario2: Postanalysis
Role to Analyze: AiC
AU
Agent 1 2 3
RL2 3796.33
RL1 3999.72
NL 12,295.16
P 1.000 1.000 1.000

H12: The AU obtained by RL s Agents-in-Cooperation role (AiCoop) is similat to the total
reward obtained by NL agents in the AiCoop role.

The results are as follows. The reward gained by achieving CTs by the cooperative
roles NL-AiC and NL-AiCoop are higher than those gained by the corresponding RL roles
because they achieve more CTs (H11 and H12 are rejected and Tables 14 and 15 show
how the agents compare with one other). However, the time invested in the CTs and the
reward gained from them was not sufficient to match the reward gained by RL AiSs (RL-
AiSs obtained approximately 88% of the total reward by accomplishing STs and NL-AiSs
achieved 74%). Accordingly, the reward gained by achieving ST tasks is the largest part of the
total reward and NL accomplishes much fewer ST tasks than RLs. Thus, regarding the test of
individual performance, H10 is rejected and RL2 is the agent type winner (Table 16 presents
the distribution of the data collected regarding AiS roles). The reason for this result is that
agents might invest a significant amount of time on the CM and, in the end, the AiCoops often
request higher bids than those in scenariol (meaning the AiCs’ profit is reduced). With NL,
it seems that the AiCs cannot make good enough predictions of ave_bid. Therefore, they

238 COMPUTATIONAL INTELLIGENCE

TABLE 15. HI2 in scenario2: Postanalysis

Role to Analyze: AiCoop

AU
Agent 1 2
RL1 5,142.44
RL2 5,244.35
NL 5,439.59
P 0.060 1.000

TABLE 16. HI10 in scenario2: Postanalysis

Role to Analyze: AiS

AU
Agent 1 2 3
NL 50,599.18
RL1 64,547.90
RL2 66,911.98
P 1.000 1.000 1.000

attempt coordination (or the AiC might even fail after the evaluation phase) even though the
profit obtained after achieving the CT was not as high as the reward that was being gained by
RL-AiSs. However, it is important to observe that the solution is not to avoid the CT tasks
and only pursue STs in scenario2. Rather, the answer is to find the right balance between the
two because in this scenario CTs always provide better rewards than STs. Thus, RL agents
perform better because they are more certain about when to invest time in a CT with the
correct CM and, more importantly, when not to do it (because it is not worth it). They then
use this time to take advantage of pursuing STs.

As this set of experiments shows, learning agents can take advantage of knowing which
CM to apply in this more demanding environment. However, it is also important to evaluate
how agents which employ the various reinforcement-based algorithms compare with one
another. To start with, the type of learning algorithms followed by the agents do not have a
significant effect on the TCT (i.e., no matter how they learn to select the CM, agents still
accomplish the same number of CTs (H4 is accepted and both algorithms formed one group
in the postanalysis of Table 12)). However, RL2 performs better when evaluating AU (H3
is rejected). This is because the reward obtained per agent role indicates that RL2 agents
perform better than RL1 in this environment. To this end, Table 17 shows the results of
testing H13, H14, and H15 which read as follows:

H13: The total reward obtained by RL1 AiS agents is the same as that obtained by AiS
agents which use the RL2 algorithm.

H14: The AU obtained by RL1 and RL2 agents in AiC role is the same.

H15: The total reward obtained by RL s Agents-in-Cooperation role (AiCoop) is identical.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 239

TABLE 17. Agent’s Role AU in scenario2

Hypothesis to Evaluate)2 Outcome Winner
H13: AiSgL1 = AiSgL2 0.000 Rejected RL2
H14: AiCgrL1 = AiCgr2 0.000 Rejected RL1
H15: AiCoopg ; = AiCoopg, 5 0.400 Accepted None

From the results of Table 17 it can be seen that the roles that have a significant effect
on the AU are AiC and AiS (H13 and H14 are rejected), whereas the AiCoop role does not
make a significant difference to the final AU obtained (H15 is accepted). The explanation
for this result is that RL2 agents are able to better balance their decision making about when
to attempt coordination even though there is a significant degree of uncertainty about the
outcome. This is achieved when an agent makes decisions about the CM based on the others’
cooperative behavior (which is exactly what is being modeled by RL2). Thus, although at
first it might seem a bad performance to accomplish more STs than any other agent type,
when these results are combined with the results of the other roles, it is clear that RL2 agents
show a better performance than RL1. This is supported with the evidence that the biggest
reward is gained by AiS agents and the reward gained by cooperative roles is the smallest
amount.

In conclusion, it is not difficult to see that while in scenariol the NL agents could
accurately predict the amount requested from others for engaging in a CT, this was not the
case for the more unpredictable environment of scenario2. As a result, agents might not only
select an inappropriate CM, but they may also attempt coordination when this is not the best
thing to do. Therefore, the optimal policy varies from attempting coordination less frequently
than in a static environment to not attempting coordination at all. This is supported by the
fact that the TCT gained by all agent types in scenario2 is considerably lower (TCT has a
mean of 757.82) than the amount accomplished in scenariol (TCT mean of 1738.24). Being
more concrete, if the NL agents’ predictions of ave_surplus are too low (being optimistic
about the possible future cooperative agents), they will always initiate coordination even in
situations where it not the best decision to make. However, if their predictions are too high
(being pessimist) they will never attempt coordination. Thus, we can conclude that having
learning agents that exploit and explore the CMs is the most reasonable thing to do in dynamic
environments because agents cannot be certain about the others’ actions.

Generally speaking, in dynamic and unpredictable environments RL agents perform
better than NL agents because they are more certain about when to invest time in a CT and,
more importantly, when not to do it (because it is not worth it). RL agents then use this time to
take advantage of pursuing STs. Moreover, incorporating the ave_bid in the learning process
helps RL2 agents to have a more precise model of what is occurring in the environment and,
consequently, their decision making is improved. This, in turn, means the agents are more
effective at maximizing their profits.

7. RELATED WORK

There are two broad strands of work that are primarily related to our model and each will
now be dealt with in turn:

e Work on reasoning about coordination and
e Work on multiagent learning.

240 COMPUTATIONAL INTELLIGENCE

In terms of coordination, most existing work assumes it is a design time problem (e.g.,
Shoham and Tennenholtz 1992; Smith and Davis 1981; Durfee and Lesser 1991; Rosenschein
and Zlotkin 1994). Thus, comparatively little work addresses run-time reasoning about the
selection of particular coordination protocols. Among those that do deal with this issue, a
variety of research positions have been investigated related to how flexibility can be introduced
in different aspects and at different levels of coordination. However, from the perspective
of this work, these can all be classified as introducing flexibility into particular cases of
coordination mechanisms or in a somewhat restricted manner.

In more detail, Durfee (1999) has argued that agents need the flexibility to coordinate
at different levels of abstraction, depending upon their particular needs at a given moment
in time. To date, however, this work has focused on building such flexibility into the basic
planning mechanisms of the individual agents. As yet, there are no mechanisms for explic-
itly reasoning about which level to coordinate at in a given situation. Such flexibility was
also built into cooperative problem solving agents by Jennings (1993). Here, agents could
choose to cooperate according to various conventions which dictated how they should be-
have in a particular team problem solving context. These conventions varied in terms of the
time they took to establish and the communication overhead they imposed upon the agents.
However, again, there was no reasoning mechanism for determining which convention was
appropriate for a given situation. Barber, Han, and Liu (2000) present a software engineer-
ing framework that enables agents to vary their coordination mechanisms according to their
prevailing circumstances. They also identify criteria for determining when particular mecha-
nisms are appropriate. However, the decision procedures for actually trading-off these criteria
are not well developed. Boutilier (1999) presents a decision-making framework, based on
multi-agent Markov decision processes, that does reason about the state of a coordination
mechanism. However, his work is concerned with optimal reasoning within the context of
a given coordination mechanism, rather than actually reasoning about which mechanism to
employ in a particular situation.

In terms of the work on learning, a vast literature has been produced in recent years
concerning the use of learning techniques (particularly Q-learning) in MAS (Sen and Weiss
1999; Stone and Veloso 2000). The focus has been mainly on two aspects. In the first one, an
agent’s goal is to learn about the other agents or their environment to predict their behavior
or to produce a model of them (Nagayuki, Ishii, and Doya 2000; Hu and Wellman 1998;
Claus and Boutilier 1998). Generally speaking, this strand of work deals with creating an
explicit representation of other agents to predict their actions so that an agent can take more
informed decisions in the future. In the second case, Q-learning has been applied to learn how
to coordinate or cooperate to achieve common goals by using specific strategies (Tan 1993;
Sen, Sekaran, and Hale 1994). The success in these two lines of research has mainly been
to improve the cooperation or coordination between the agents in the environment. While
this is clearly an important issue to address, we are more concerned with learning to select
particular coordination mechanisms. To date, however, there has been comparatively little
work concerned with learning which CM to select in a given context.

The most relevant work to our own -regarding coordinarion is the COLLAGE (Prasad
and Lesser 1999) and LODES (Sugawara and Lesser 1998) systems. The objective in both
systems is to improve coordination by learning to select a coordination strategy in appropriate
situations. However, the aspects each system addresses are different and their findings are
complementary. LODES is more interested in having agents capable of learning the key
information that is necessary to improve coordination in specific situations. In COLLAGE
agents learn how to choose the most appropriate coordination strategy given a particular
situation. Thus, LODES focuses on “what information to learn” and COLLAGE on “learning

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 241

the situation where to use a coordination strategy.” It is important to notice that both systems
are concerned with the detailed activities of coordination as part of the learning process. For
agents to solve a particular coordination problem, they have to solve all the interrelations
and dependencies between their actions. Thus, agents first plan the actions to perform and
then execute them. To solve this, both systems have to handle deep knowledge: about the
domain in the case of LODES and about coordination strategies with COLLAGE. In our
case, however, the research aim is broadly similar, but our assumptions are different and we
deal with the problem using alternative solutions.

In our framework, agents are endowed with a set of decision-making procedures to select
adequate coordination mechanisms. By dealing with an abstract set of such mechanisms,
we consider it more important to have agents that have the capacity to make decisions
about coordination, rather than dealing with all problems might occur among the interactions
specific interaction. We leave the latter to the details of the subsequent tasks of the associated
protocol. Furthermore, we believe that as agents are increasingly being required to deal
with more dynamic issues then online learning will become more important. COLLAGE,
by contrast, uses instance-based learning techniques in which there is a phase of recovery of
examples and one of training. Consequently, the system has well defined moments in which
these phases are performed which gives the additional problem of determining when each
phase should finish.

In more recent research, Garland and Alterman (2001, 2004) propose the use case-based
planning and learning probability estimates to allow agents to better coordinate. In particular,
agents do learn on-line from past experience so that they take more informed decisions
about which plan is “the” appropriate to execute in a particular coordination problem. In
this work however, the learning outcome is to improve the decision making about planning,
communication and adaptation of plans. This point of view is different from ours where it is
assumed that planning is one instance of a CM and then the question to answer is whether
planning should be selected in a specific circumstance.

In our previous research work we have shown that autonomous agents that make run-
time decisions about the most appropriate mechanism to coordinate their activities exhibit
better performance than those that do not (Excelente-Toledo 2003; Excelente-Toledo and
Jennings 2004). However, although the agents’ coordination decisions are more effective and
efficient, as the environment becomes more dynamic and unpredictable, there is a greater
need to exhibit behavior that is tailored to the agents’ prevailing problem solving context.
Thus, (Excelente-Toledo and Jennings 2002) and (Excelente-Toledo and Jennings 2003)
present a preliminary evaluation of how such flexibility can be achieved through learning and
adaptation (specifically using Q-learning). However, this work does not deal with modelling
others’ bids in the state representation and, moreover, it does not explore the effects of taking
into account this key component of the agent’s decision making.

8. CONCLUSIONS AND FUTURE WORK

This paper analyzed the use and the efficacy of agents learning to make better decisions
about how to coordinate more effectively. We showed that learning does indeed improve the
decision making when agents are uncertain about the other agents’ actions. This improvement
occurs because the agents learn to recognize the situations where the most profitable actions
must be selected. We build upon (Excelente-Toledo and Jennings 2002) to demonstrate that
the more informed the decision making about the possible agents to coordinate with, the
better the cooperative outcome. We also showed that learning was less effective when agents

242 COMPUTATIONAL INTELLIGENCE

operate in more static environments in which they can make reasonably accurate predictions
about their environment and other agents.

To focus on the learning issue, some knowledge is assumed in the framework about the
agents and the scenario. However, one of the assumptions in this work is that the environment
in which the decision making takes place is dynamic, open, and heterogeneous and agents face
great difficulty when taking coordinating decisions. This is because in such environments it is
impossible to enumerate in advance the wide variety of contexts in which coordination is likely
to be needed. In fact, agents face a significant challenge even to know what agents are present
at any given moment; because agents can enter and leave the system at any time (openness),
because the system and its components are in a continuous state of change (dynamism), or
because the agents themselves exhibit different behavior, have different capabilities and have
their own agenda (heterogeneity). In these cases, it is especially important to have agents
that are capable of automatically tailoring their coordination decisions to respond to the
prevailing context. Examples of such systems are Web applications, e-commerce systems
and grid computing application.

Speaking more generally, we believe it is important to develop techniques that enable
agents to coordinate flexibly in dynamic and unpredictable environments. Although sev-
eral of the detailed aspects of the decision procedures are specific to our grid-world sce-
nario, we believe that the general processes and structures we developed are suitable for
reasoning about coordination mechanisms in more general domains (see (Excelente-Toledo
2003) for several examples of how the scenario can be mapped into a variety of real world
problems including transportation problems and coordinated information retrieval).!? In par-
ticular the issues of how to exploit learning techniques to allow agents to make decisions
based on their experience is a key aspect that needs broader investigation. We believe that
the results presented here among others can be viewed as an important first step in that
direction.

For the future, the aim is to extend the use of learning to cover other aspects of the agent’s
decision framework; such as to learn the decision about how much to bid in a request for
coordination (Section 3.2), when to become an AiCoop (Section 3.1), and which bids to accept
(Section 3.3). Itis also intended to allow agents to construct models of one another and to have
the ability to vary the details of this modelling according to the agent’s coordination context.
In particular, it is believed that to accomplish more effective learning objectives, agents
should model the others as /-/evel agents (using the terminology of Vidal and Durfee (1997))
by explicitly representing knowledge about others or about the effect of their interactions. In

12In (Excelente-Toledo 2003) we mapped our grid world scenario into a package delivery problem (Rosenschein and
Zlotkin 1994) where trucks are the agents that move around the grid with parcels to deliver at specific locations. The final
destinations for their parcels correspond to the agents’ ST. There are special packages (a package being a group of parcels)
that have to be delivered by more than one truck (because of their size) and these correspond to CTs. The truck’s goal is to
deliver a number of parcels to specific locations. The more parcels delivered by a truck, the more profit it receives. Similarly, the
coordinated information retrieval domain consists of having a number of agents with the task of downloading documents from
specific locations in the Internet (Huhns and Stephens 1999). The action of downloading has an associated cost that represents
the price paid for the use of the server. The agent’s objective is to reduce, as far as possible, the cost of downloading. Each time
an agent has a document to retrieve, it might download it by itself or it could minimize the cost by coordinating its activities
with those of other agents that are also interested in the same document.

In both exemplar applications, all the concepts and constituent factors of the decision-making framework discussed in
Section 3 were mapped into the formulations with only minor changes. This endeavor highlights the fact that the scenario
and framework portrays and describes the key coordinating processes that can be found in concrete applications domains (as
well as the more generic testbed) meaning that the framework does indeed have a broader applicability. And most probably,
depending on the domain, some additional concepts (the truck space for example in the transportation domain) will need to be
incorporated or modeled more precisely (in the coordinated information retrieval domain, the use of real time could have been
employed instead of the routing connection). However, those concepts that have already introduced represent the major ones in
which many examples can be mapped and tested, and are not specific to the grid world scenario outlined in this work.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 243

this paper, we are addressing only part of the problem by assuming that the actions performed
by other agents alter the environment that the agent is perceiving and sensing. Thus, agents
do not explicitly model the behavior of others. It is important to address this aspect because
most of the agent’s decisions take into consideration predictions about the other agents and
to refine these predictions an agent needs to represent in a more precise way the behavior of
the others in the scenario. In a broader context, a final aspect to discuss is that learning can
also be employed to learn the meta-data parameters of the CM (i.e., the CM’s parameters
could be refined given the efficiency of the CMs actual execution).

ACKNOWLEDGMENTS

The first author acknowledges the funding of Mexico’s National Council of Science
and Technology, CONACyT and the National Laboratory of Advanced Computer Science,
LANIA A. C.

REFERENCES

BARBER, K. S., D. C. HAN, and T. H. Liu. 2000. Coordinating distributed decision making using reusable
interaction specifications. /n Design and Applications of Intelligent Agents: Third Pacific Rim International
Workshop on Multi-Agents (PRIMA 2000). Melbourne, Australia, pp. 1-15.

BOURNE, R. A., C. B. EXCELENTE-TOLEDO, and N. R. JENNINGS. 2000. Run-time selection of coordination mech-
anisms in multi-agent systems. /n Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI-2000), pp. 348-352.

BOUTILIER, C. 1999. Sequential optimality and coordination in multiagent systems. /n Proceedings of the sixteenth
International Joint Conference on Artificial Intelligence (IJCAI-99). Stockholm, Sweden, pp. 478—485.

CLAUS, C., and C. BOUTILIER. 1998. The dynamics of reinforcement learning in cooperative multiagent systems.
In Proceedings of fifteenth National Conference on Artificial Intelligence (AAAI-98). Madison, MI, pp.
746-752.

COHEN, P. R. 1995. Empirical Methods for Artificial Intelligence. The MIT Press: Cambridge, MA.

DURFEE, E. H. 1999. Practically coordinating. AI Magazine, 20(1): 99-116.

DURFEE, E. H., and V. R. LESSER. 1991. Partial global planning: A coordination framework for distributed
hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5): 1167-1183.

EXCELENTE-TOLEDO, C. B. 2003. The dynamic selection of coordination mechanisms. Ph.D. Thesis, De-

partment of Electronics and Computer Science, University of Southampton. Available at http:/eprints.
ecs.soton.ac.uk/7814/.

EXCELENTE-TOLEDO, C. B., R. A. BOURNE, and N. R. JENNINGS. 2001. Reasoning about commitments and
penalties for coordination between autonomous agents. /n Proceedings of the fifth International Conference
on Autonomous Agents (AGENTS’01). Montreal, Quebec, Canada, pp. 131-138.

EXCELENTE-TOLEDO, C. B., and N. R. JENNINGS. 2002. Learning to select a coordination mechanism. /n
Proceedings of the first International Joint Conference on Autonomous Agents & Multi-Agent Systems
(AAMAS’02). Bologna, Italy, pp. 1106—1113.

EXCELENTE-TOLEDO, C. B., and N. R. JENNINGS. 2003. Learning when and how to coordinate. Web Intelligence
and Agent Systems: An International Journal, 1(3—4): 203-218.

EXCELENTE-TOLEDO, C. B., and N. R. JENNINGS. 2004. The dynamic selection of coordination mechanisms.
Journal of Autonomous Agents and Multi-Agent Systems, 9(1-2): 55-85.

Fox, M. S. 1981. An organizational view of distributed systems. IEEE Transactions on Systems, Man, and
Cybernetics, 11(1): 70-80.

244 COMPUTATIONAL INTELLIGENCE

GALBRAITH, J. 1973. Designing Complex Organizations. Addison-Wesley Publishing Company, Inc. Reading,
MA.

GARLAND, A., and R. ALTERMAN. 2001. Learning procedural knowledge to better coordinate. /n Proceedings
of Seventeenth International Joint Conference on Artificial Intelligence ([ICAI-01). Edited by B. NEBEL.
AAALI Press, Seattle, Washington, Menlo Park, CA, pp. 1073-1083.

GARLAND, A., and R. ALTERMAN. 2004. Autonomous agents that learn to better coordinate. Autonomous Agents
and Multi-Agent Systems, 8(3): 267-301.

Hu, J., and M. P. WELLMAN. 1998. Online learning about other agents in a dynamic multiagent system. /n
Proceedings of second International Conference on Autonomous Agents (AGENTS’98). Minneapolis, MN,
pp. 239-246.

HuHNS, M. N, and L. M. STEPHENS. 1999. Multiagent systems and society of agents. /n Multiagent Systems:
A Modern Approach To Distributed Artificial Intelligence, Chapter 2. Edited by G. WEISS. The MIT Press,
Cambridge, MA, pp. 79-120.

JENNINGS, N. R. 1993. Commitments and conventions: The foundation of coordination in multi-agent systems.
The Knowledge Engineering Review, 8(3): 223-250.

JENNINGS, N. R. 2000. On agent-based software engineering. Artificial Intelligence, 117(2): 277-296.

KAELBLING, L. P, M. L. LITTMAN, and A. W. MOORE. 1996. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4(4): 237-285.

LANE, D. M. 2001. Hyperstat online textbook. http://davidmlane.com/ hyperstat/.January/2003.

MALONE, T. W. 1987. Modeling coordination in organizations and markets. Management Science, 33(10): 1317—
1332.

NAGAYUKL, Y., S. IsHII, and K. DOYA. 2000. Multi-agent reinforcement learning: An approach based on the
other agent’s internal model. /n Proceedings on the fourth International Conference on Multi-Agent Systems
(ICMAS-00). Boston, MA, pp. 215-221.

PRASAD, M. V. N, and V. R. LESSER. 1999. Learning situation-specific coordination in cooperative multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 2(2): 173-207.

ROSENSCHEIN, J. S., and G. ZLOTKIN. 1994. Rules of Encounter: Designing Conventions for Automated Negoti-
ation among Computers. The MIT Press: Cambridge, MA.

RUSSELL, S. J., and P. NORVIG. 1995. Reinforcement learning. /n Artificial Intelligence: A Modern Approach,
Learning, Chapter 20, pp. 598-624. Prentice Hall: Upple Saddle River, NJ.

SEN, S., M. SEKARAN, and J. HALE. 1994. Learning to cooperate without sharing information. /n Proceedings of
the twelfth National Conference on Artificial Intelligence (AAAI-94). Amherst, MA, pp. 426—431.

SEN, S., and G. WEISS. 1999. Learning in multiagent systems. /n Multiagent Systems: A Modern Approach To
Distributed Artificial Intelligence, Chapter 6. Edited by G. WEISS. The MIT Press, Cambridge, MA, pp.
259-298.

SHOHAM, Y., and M. TENNENHOLTZ. 1992. On the synthesis of useful social laws for artificial agent societies. In
Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92). San Jose, California,
pp. 276-281.

SINGH, S. P, T. JAAKKOLA, M. L. LITTMAN, and C. SZEPESVARI. 2000. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine Learning, 38(3): 287-308.

SMITH, R. G., and R. DAVIS. 1981. Frameworks for cooperation in distributed problem solving. IEEE Transactions
on Systems, Man, and Cybernetics, 11(1): 61-70.

STONE, P, and M. VEL0SO0. 2000. Multiagent systems: A survey from a machine learning perspective. Autonomous
Robots, 3(8): 345-383.

SUGAWARA, T., and V. R. LESSER. 1998. Learning to improve coordinated actions in cooperative distributed
problem-solving environments. Machine Learning, 33(2/3): 129-153.

SUTTON, R. S., and G. A. BARTO. 1998. Reinforcement Learning: An introduction. The MIT Press: Cambridge,
MA.

USING REINFORCEMENT LEARNING TO COORDINATE BETTER 245

TAN, M. 1993. Multi-agent reinforcement learning: Independent vs cooperative agents. /n Proceedings of the
tenth International Conference on Machine Learning. Amherst, MA, pp. 330-337.

VIDAL, J. M., and E. H. DURFEE. 1997. Agents learning about agents: A framework and analysis. /n Collected
papers from the AAAI-97 workshop on Multiagent Learning Providence, Rhode Island.

WATKINS, C. J. C. H,, and P. DAYAN. 1992. Technical note: Q-learning. Machine Learning, 8: 279-292.

