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Abstract

The concept of an agent is increasingly used in contemporary software applications, particularly those involving
the Internet, autonomous systems, or cooperation. However, with dependability and safety in mind, it is vital that
the mechanisms for representing and implementing agents are clear and consistent. Hence there has been a strong
research effort directed at using formal logic as the basis for agent descriptions and agent implementation. Such a
logical basis not only presents the clarity and consistency required but also allows for important techniques such as
logical verification to be applied.

We present a roadmap of research into the use of computational logic in agent-based systems and survey much of
the recent work in these areas. Even though, with such a rapidly changing field, it is impossible to cover every devel-
opment, we aim to give the reader sufficient background to understand the current research problems and potential
future developments in this maturing area.

KEYWORDS: logic; autonomy; rational agents; multi-agent systems; agent specification; agent verification; logical
implementation

1 Introduction
Representing and manipulating systems comprising large numbers of evolving and interacting computational entities
is difficult. The concept of an agent was introduced as a useful abstraction for describing such computational entities,
with the larger structures forming multi-agent systems. Representing these computational elements as agents and agent
organisations provides a simple and intuitive metaphor for both individual and collective computation. However, it is
important that software designers have appropriate and semantically clear mechanisms available for representing not
only how individual agents adapt and evolve, but also how agents interact and combine to form new systems. Without
the ability to represent and control agents, the practical development of complex multi-agent systems remain difficult,
and agents will not be trusted for use in critical applications.

In this document, we describe the use of formal logic as the basis for both determining and representing the
behaviour of individual agents as well as agent organisations. The fact that formal logics have been used for this
purpose is not surprising since they provide a framework that is both unambiguous and well understood, and in which
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specific logics can be designed to suit different scenarios. In particular, when an appropriate logic is chosen, it can
provide a level of abstraction close to the key concepts of the software to be developed, as is the case with logics for
multi-agent systems. We provide a survey of how computational logic (i.e., formal logic applicable to computing, for
decision procedures, operational programming languages, etc.) can be used for agent-based systems. In particular, we
will address:

• agent description, through logical specification and semantic techniques;

• agent implementation, through the execution of logical statements; and

• agent analysis, through logic-based verification techniques.

The link between agents and logic is important to both sides: logic-based approaches to agents are likely to grow
in importance especially as verification becomes more necessary, while agents (particularly those that are required to
reason) represent a key challenge for computational logic developments and application. Thus, we aim to describe the
state of the art in key areas concerning logic and agents. In addition, we will also consider future trends in computing
where computational logic approaches to agents ought to be relevant — this will serve to identify key future research
issues and key requirements for wider use of these techniques.

2 Logic-Based Agent Description [Formal Specification]
Although we will not delve in detail into the “what is an agent” debate, we will briefly outline the variety of agents
we consider. While an object can be seen essentially as a structure encapsulating behaviour (e.g., state, methods, ...),
an agent is an autonomous object. Thus, the agent makes its own decisions about what to pursue. We are particularly
concerned with rational agents, which can be seen as agents that make their decisions in a rational and explainable
way. Thus, one of the key new aspects that the agent abstraction brings is that, for both design and verification, we
need to consider not just what they do but why they do it. Since agents are autonomous, understanding why an agent
chooses a course of action is vital. [194] describe a number of additional aspects of agents, in particular their pro-
active, reactive and social attributes. Although we do not see these as essential, most of the agents considered here do,
indeed, incorporate such notions.

A number of logical theories of (rational) agency have been developed, such as the BDI [146, 147] and KARO [173,
179] frameworks. One reason for using logic in agent-based systems is that a formal semantics comes (more or less)
for free. From this it follows that the semantics of logic-based agents is strongly dependent on their underlying logic.
The foundations of such agent description frameworks are usually represented as (often complex) non-classical logics.
In addition to their use in agent theories, where the basic representation of agency and rationality is explored, these
logics often form the basis of formal methods for agent systems.

The leading agent theories and formal methods in this area all share similar logical properties. In particular, the
logics used bring together:

• an informational component, so as to be able to represent the agent’s beliefs or knowledge;

• a motivational component, in order to representing the agent’s desires or goals; and

• a dynamic component, allowing the representation of the agent’s activity.

Thus, the predominant approaches use relevant logical combinations: the BDI approach combines dynamic aspects
via propositional temporal logic, informational aspects via modal logic KD45, and motivational aspects via modal
logic KD; the KARO approach combines dynamic aspects via propositional dynamic logic, informational aspects via
modal logics S5/KD45, and motivational aspects via modal logic KD. Unfortunately, these combinations can often be
complex, both in terms of understandability and reasoning [64, 22].

To give a flavour of the different approaches, we provide below brief overviews of some approaches to logic-based
agent description.
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• BDI
The BDI framework was developed by Rao and Georgeff over a number of years [146, 147] and actually com-
prises two aspects: an agent theory and a practical agent architecture. The former is a well-known agent logic,
or rather a framework for agent logics, based on Bratman’s theory of practical reasoning [33]. The latter is
a much-copied architecture for building agents that are able to reason about their environment and deliberate
about their actions.

The BDI theory describes agent behaviour using ‘mentalistic’ attributes, in particular Beliefs, Desires, and
Intentions, and uses these three components to form an agent’s mental state. Belief corresponds to the infor-
mation the agent has about its environment; desires (or goals) represent options available to the agent; and
Intentions are the goals the agent has chosen to tackle immediately. Rao and Georgeff use branching time tem-
poral logic [61] to incorporate the dynamic aspect (of action within an environment), and a Kripke structure
[109] to model the mentalistic notions. Thus, each Kripke world consists of a time tree in which the result of
executing (or failing to execute) each action is represented.

The basic BDI architectural model, for example exemplified within both the Distributed Multi-Agent Reasoning
System (dMARS) and the Procedural Reasoning System (PRS) [81, 137, 147] can be summarized as follows.
Essentially, such agents:

– observe the world and the agent’s internal state, and update the event queue to reflect the events that have
been observed;

– generate new possible desires (tasks), by finding plans whose trigger event matches an event in the event
queue;

– from this set of matching plans, select one for execution (an intended means);

– push the intended means onto an existing or new intention stack, according to whether or not the event is
a subgoal; and

– select an intention stack, take the topmost plan (the intended means), and execute the next step of this
current plan — if the step is an action, perform it, otherwise, if it is a subgoal, post this subgoal on the
event queue.

This approach has been extremely influential and is the basis for several agent systems and programming lan-
guages such as the PRS [81, 137], dMARS [147, 51], and AgentSpeak(L) [145].

• KARO
The foundations of KARO [173, 179] originate in the work of Moore on knowledge and action [134]. Its name
represents the main ingredients of the theory: Knowledge, Abilities, Results, and Opportunity. The core logic
consists of dynamic logic [86], used to model abilities and opportunities, and the well-known S5 logic [64],
used to model knowledge. Abilities and opportunities are formalised as potentials using propositional dynamic
logic and logics of knowledge. Numerous extensions exist, augmenting the core language with formalisations
for commitments, wishes, and goals [180, 172, 181, 131, 171]. Proof methods have been investigated, as has
the influence of (non-)determinism [174, 132, 95].

• Temporal Logics
While some approaches use dynamic logics to represent the underlying dynamic activity of an agent, many
also use temporal logics [60, 84] for this purpose. A straightforward use of discrete, linear temporal logics in
specifying (and, as we will see later, verifying and executing) agents is given by [190, 66, 77, 71]; this approach
is in turn based upon work on temporal specifications of distributed and concurrent processes [17]. Much of
this work uses a separated normal form (SNF) [69], in which temporal formulæ describe what the agent must do
now, what it must do next, and what it guarantees to do at some point in the future. Temporal formulæ in SNF
form can be directly executed.

However, just as there is a wide variety of temporal logics, so there are numerous different uses of temporal
logics in agent-based systems. For example, approaches to temporal semantics of agent computation have been
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developed using techniques as disparate as Temporal Logic of Actions [130], dense temporal logics [67], and
Temporal Z [149]. In addition, temporal techniques have been developed for multi-agent systemas as well as
autonomous agents; see, for example, [163, 99]. In many cases the basic underlying temporal formalism has
been extended with other logical dimensions such as those for knowledge, belief, goals, and motivations (for
example [71]). Thus, this seemingly simple language is flexible enough to describe individual agents in terms
of their dynamic behaviour, how their knowledge/information evolves, and how their goals/motivations evolve.

• Deontic Logic
Deontic logic is a form of modal logic where operators concern aspects such as permission and obligation.
Deontic notions have been the basis of a number of agent descriptions, two of which are the IMPACT and
BOID systems. IMPACT is a framework for coordinating (using hierarchical planning) legacy systems which is
based on a logical foundation combining time, uncertainty, and deontic [56] operators (we will discuss IMPACT
further later).

An approach to agent programming that extends the BDI concepts with deontic notions, particularly obligations,
is the BOID architecture (Belief, Obligations, Intentions, Desires) [34, 35]. The argument here is that rational
agents need to take into consideration norms and obligations that are set by the (agent) society [49], and so
must reason about them. The BOID architecture is an extension of the BDP logic [169], which in turn is rooted
in Reiter’s default logic [150]. It is based on conflict resolution for conditional beliefs, desires, obligations,
and intentions. Instead of using modalities to model each attitude, the different notions are defined by sets of
rules described by propositional logic. Default rules for each set are iteratively applied to the current theory.
Whenever a conflict arises, a preference relation over the default rules is used to solve it.

• Alternating-Time Temporal Logic
Temporal logics [60] have been studied for many years and form the basis of much of the work on verification
of computational systems, as we will see later. Such logics come, traditionally, in two flavours: linear-time
or branching-time. A third, more general, alternative is Alternating-Time Temporal Logics (ATL), introduced
by [11] and extended by [10]. An interesting characteristic of this alternative to standard temporal logics is
that one can quantify, selectively, over paths that are seen as possible outcomes of game-theoretic interactions
(to represent, for example, the possible interactions of an agent and its environment). In ATL, the individual
sources of non-determinism (i.e., choices on “actions” that effect changes in the system or environment) can be
referred to explicitly, hence the interest in the use of such logics for describing and reasoning about multi-agent
systems. For example, [151] use ATL to define a refinement relation between agents, which is useful for agent
verification.

A combined logic of potential interest for multi-agent systems, introduced by van der Hoek and Wooldridge,
is ATEL [175]: an epistemic version of ATL which allows one to reason about what knowledge (or common
knowledge, etc.) a coalition can effectively bring about or, indeed, what knowledge is required from agents
so that they can effectively cooperate to bring about certain states of affairs. In combined logics, however, the
semantics of interactions among the various modalities can often lead to various difficulties and complexities.

• Situation Calculus
The Situation Calculus [126, 113] is a first order language with some second order features that was originally
developed to formalise dynamic aspects of the world, including concepts of ability and belief [114, 144]. The
logic itself is rather versatile, and has been expanded to include, among other things, concurrency [46], time
[143], non-monotonic reasoning [15], and events [111, 116].

Formulæ in the situation calculus are usually interpreted over a set of axioms. A situation can be seen as a
possible world history, i.e., a sequence of actions that led to the current state. Situations change by means of
fluents (functions that are applied to situations). Fluents have pre- and post-conditions in order to minimise the
amount of possible successor states. The situation calculus has been used to specify and implement agents, as
we will see when the Golog programming language is mentioned later in this paper.

• Z
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The formal specification language Z [167] is based on set theory and first order predicate calculus. It extends the
use of these languages by allowing an additional mathematical type known as schema type. Z schemas consist
of a declarative part that declares variables and their types, and a predicate part that relates and constrains those
variables.

A number of attempts have been made to create a theory in Z upon which agents can be based, with probably the
most successful being those languages that provide Z specifications for objects [122, 166]. However, capturing
an agent’s motivations as part of the core of Z appears problematic. Rather than creating an original agent
theory based on Z, several existing agent theories and languages have been modelled using the Z specification
language, for example AgentSpeak(L) [52] and dMARS [51].

• Nonmonotonic Logics
Nonmonotonic logics are used to formalise plausible reasoning [136]. Reiter’s default logic [150], which we
have mentioned in relation with the BOID architecture, is a milestone in this area. Its key feature is the notion
of default rules, used to model what typically happens given some assumptions and under certain conditions.
Beside Reiter’s work, among nonmonotonic logics we count: Moore’s autoepistemic logic [135], relating non-
monotonicity with rational agent beliefs; McCarthy’s logic of circumscription [125], formalizing nonmonotonic-
ity by means of second-order axioms that limit the extension of certain “abnormal” predicates; and Alchourron
et al.’s work on Belief Revision [4]. Here, the authors propose a number of postulates, known in the literature
as AGM postulates, capturing the properties that a belief revision operator should satisfy in order to be con-
sidered rational. It is essentially a study of nonmonotonic reasoning from the dynamic point of view, and as
such it has been considered very suitable to model rational agents. The general principle that should govern
belief revision is indeed that of minimal change of information, while adapting to new input from the outside.
Among the nonmonotonic forms of reasoning that are very relevant in agent research, we particularly identify
hypothetical reasoning and abduction. Originally intended to model the reasoning process that leads from ob-
servations to plausible explanations (i.e. hypotheses [88]), abduction has been very much adopted as a general
modelling and reasoning framework to extend incomplete belief or knowledge bases. This is very appealing in
the agent domain, where knowledge incompleteness typically arises either because agents have to interact with
other agents based on limited information, or where agents are situated in dynamic environments, subject to
continuous change and evolution.

Because of the intrinsic complexity of such theories, the application of nonmonotonic reasoning in the agent
context is as yet limited, with a few exceptions. For this reason, belief revision for resource-bounded agents
has become an increasingly popular research area, leading to implementable logics for agent [6, 5]. On the
other hand, logic programming and extensions have provided efficient techniques to handle many types of
nonmonotonic and hypothetical reasoning (we elaborate on this later).

3 Logic-Based Agent Implementation [Programming Languages]
As we have seen in the previous section, there are many ways in which logic can be used to specify (and so provide
semantics for) agent-based systems. However, we are also interested in building agent-based systems using techniques
based upon logic. In other words, we are interested in the development and application of computational logic in
this area. Computational logic has been very successful in the past, particularly through languages such as Prolog, in
providing high-level abstractions for programming complex systems, while retaining a close link to formal semantics.
The transparent formal semantics of logic-based approaches allows the possibility of applying formal verification
techniques, thus enhancing the trustworthiness of the software.

In this section, we will survey languages that have the notions of agency and computational logic at their core.
There is a wide variety of such languages [23]; while it is impossible to cover all of them, we aim to highlight a
range of languages that use logical machinery to implement rational agents. It should be noted that this covers much
more than logic programming, which is but one approach to implementation using logic. For example, languages
such as AGENT-0 and Go! contain some elements of functional programming, while METATEM is based on forward
chaining model construction. In addition, while there is a wide range of logic-based languages that implement very
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basic forms of agency, these are often little more than extensions of logic programming that capture communication
and encapsulation. Thus, we will concentrate on a number of different mechanisms for using computational logic to
implement specifically rational agents.

• AGENT-0
One of the seminal works in this area was produced by [162] who proposed Agent-Oriented Programming
(AOP) as a new paradigm for implementing (rational) agents. This framework consists of a logical system,
called AGENT-0, for defining the mental state of agents, together with an interpreted language for programming
those agents [168]. The logical component of AGENT-0 is a quantified multi-modal logic, with three modalities:
belief, commitment, and ability. An example of an acceptable formula of AGENT-0 is as follows:

CAN4
pelepass(ball)9 ⇒ B4

maradonaCAN10
maradonascore(goal)11

The intended meaning of this statements is

if at time 4 pele can ensure that he will pass the ball at time 9, then at time 4 maradona believes that
at time 10 he (maradona) can ensure a goal is scored at time 11.

As can be seen from the example above, the logical basis of AOP contains notions of time, as well as other
modalities, and the programming language provides syntactic support for such concepts (though it is not clear
what the formal link between the programming language and the logic is [194]). Rather than being widely used
itself, it is the idea of a language for developing agents based upon multi-modal logics that has been taken up by
other researchers. AGENT-0 has been the inspiration for many subsequent agent programming languages.

• METATEM and Concurrent METATEM
While most agent specifications are based on a combination of temporal or dynamic and modal logics, METATEM
[18] was initially based on temporal logic alone. Temporal formulæ in a particular normal form (called SNF
[69]) describe what the agent must do now, what it must do next, and what it guarantees to do at some point
in the future. Most importantly, temporal formulæ in SNF form can be directly executed in order to imple-
ment the behaviour of an agent. This basis was extended for increasingly sophisticated forms of agency [66],
involving belief, deliberation [68], resource-bounded reasoning [73] and confidence [74]. In parallel, the lan-
guage was developed into a concurrent version, for multi-agent systems [65, 70] and, more recently, work on
this has moved towards flexible group organisation [75], multi-agent collaboration [76], and applications in
pervasive/ubiquitous computing [91]. For an overview of these developments, see [70].

• Golog and ConGolog
Golog [115] is a high-level specification language, based on the situation calculus, extending it with control
structures such as sequencing, test actions, non-deterministic choice (of both actions and programs), and pro-
cedures (essentially macros). The execution of a Golog program involves proving the theorem expressed by
the program with respect to some background theory (expressed by its axioms). As a byproduct, variables are
instantiated and so provide an execution trace. In this, it is reminiscent of Prolog and, not surprisingly, a Golog
interpreter can easily be described in Prolog.

As with the situation calculus, the basic Golog programming language can be extended considerably, for ex-
ample with sensing actions relevant to robotics [111]. One of the most prominent extensions is ConGolog, a
concurrent variety of Golog [46]. The concurrency described is not true concurrency but rather an interleaving
of processes. (Of course, on a one-processor machine this is always the case, but “truly” concurrent programs let
the operating system take care of the actual interleaving, setting only their priority.) However, since ConGolog
incorporates thread priorities and interrupts, either coarse-grained or fine-grained interleaving can be described.
In the extreme case, it is possible to interleave whole programs rather than program steps.

Golog has been particularly applied in the (cognitive) robotics area, but is also being developed for use in the
semantic web [128, 129].
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• AgentSpeak
While BDI architectures have been used in many practical agent systems, there are few high-level programming
languages based systematically on the principles of BDI theory. AgentSpeak(L) is such a language, defined
to be an extension of logic programming incorporating beliefs, events, goals, actions, plans, intentions [145];
its reasoning cycle is very similar to the dMARS cycle described above. The behaviour of the agent (i.e., its
interaction with the environment) is dictated by the plans written in AgentSpeak. Although the beliefs, desires,
and intentions of the agent are not explicitly represented as modal formulæ, such mental attitudes can be formally
ascribed or checked given a representation of an agent’s current state.

The practial use of AgentSpeak is being facilitated by a new interpreter and multi-agent platform called Jason
[29]. The interpreter implements, in Java, the operational semantics of an extended version of AgentSpeak [30].
Jason is available open source (see http://jason.sourceforge.net).

• Logic Programming and Non-Monotonic Reasoning
Following Kowalski and Sadri’s work on the observe-think-act agent cycle and architecture to reconcile rational-
ity with reactivity [106], a conspicuous body of literature introduced agent theories based on Logic Programming
[117]. This choice is often justified by the aim to link declarative semantic agent descriptions to execution mod-
els. Therefore, even when not as expressive as other formalisms, logic programming languages and variations
become appealing when they come together with formal results that link declarative and operation semantics.

Among the various logic programming frameworks and languages, the most commonly used for agent theories
are: Answer Set Programming [16], Abductive Logic Programming [100] for hypothetical and temporal reason-
ing, Dynamic Logic Programming [7] for knowledge and program updates, and Logic Programming without
Negation as Failure [50] for agent deliberation.

• 3APL [http://www.cs.uu.nl/3apl]

3APL is a programming language for implementing cognitive agents [89]. It provides programming constructs
for implementing an agent’s beliefs, goals, basic capabilities such as belief updates or motor actions, and a set
of practical reasoning rules through which the agent’s goals can be updated or revised [45]. 3APL programs are
executed by an interpreter that implements an deliberation cycle using such constructs.

The 3APL language is a combination of imperative and logic programming. From the imperative programming
viewpoint, 3APL inherits the full range of regular programming constructs, including recursive procedures and
state-based computation. States of agents in 3APL, however, are belief (or knowledge) bases, which are different
from the usual variable assignments of imperative programming. From the computational logic perspective,
answers to belief-base queries of a 3APL agent are proofs in the logic programming sense.

The authors of 3APL have also examined a number of related agent languages, including Dribble [183] and
GOAL [90].

• IMPACT [http://www.cs.umd.edu/projects/impact]

IMPACT [13] evolved through an international research project led by the University of Maryland. The main
aim of the IMPACT project was to “develop both a theory as well as a software implementation facilitating the
creation, deployment, interaction, and collaborative aspects of software agents in a heterogeneous, distributed
environment” [58, 57, 59, 55]. Although IMPACT is only partially based on logic, providing a “thin” logic
component on top of traditional data structures, the logic component involves time, uncertainty and deontic
logics [56]. It also makes use of stable models [80] for implementing agent rationality.

On the practical side, IMPACT provides a set of servers (yellow pages, thesaurus, registration, type and in-
terface) that facilitate agent interoperability in an application independent manner. It also provides an Agent
Development Environment for creating, testing, and deploying agents. Thus, IMPACT provides techniques
and tools to build agents on top of existing legacy code, and algorithms supporting a variety of applications
(command and control, logistics, e-commerce, data mining, etc.).
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• JIAC IV [http://www.jiac.de]

JIAC is an agent based service-ware framework geared towards telematics and telecommunication services. It
has three major elements: it employs a flexible component structure which allows agents to quickly create and
dynamically adapt their capabilities; it is knowledge based, as the agent architecture follows a BDI approach,
based on three-valued predicate logic; and its communication model is structured around the service concept.
Agents are programmed using JADL (JIAC Agent Description Language), which comprises ontology defini-
tions, declarative plan elements, and procedural script-like elements. Java objects can be invoked from JADL
using AgentBeans. Due to its strong connection with industry the framework features advanced security as well
as management facilities.

• SOCS [http://lia.deis.unibo.it/research/socs]

SOCS (standing for Societies Of ComputeeS) was an European project aimed at defining a computational logic
model for the description, analysis and verification of global and open societies of heterogeneous computees,
i.e., agents in computational logic [170]. The main outcomes of the project are definitions of the agent and
society models and the proof-procedures implementing the operational models. The computee model is based
on the KGP (Knowledge, Goals, Plans) agent architecture [101, 153, 152], whereas the SOCS social model is
based on Social Integrity Constraints (ICS) [1, 36]. The proof-procedures to implement the operational models
are the SCIFF [3] for interaction verification and CIFF [62] for temporal reasoning and planning, both of
them extensions of Fung and Kowalski’s IFF abductive proof-procedure [78], and Gorgias [103] for preference
reasoning and deliberation, based on LPwNF [50]. A prototype of societies of computees is implemented in the
PROSOCS architecture [32, 2].

The distinguishing features of the KGP model are: a modular architecture, where reasoning capabilities can be
implemented independently of each other, and a flexible agent cycle that can be programmed using preference
rules. The SOCS social model is mainly oriented towards specification and verification of agent interaction,
and ICS , its main component, can be used to express commitment-based semantics for agent communication
languages and to define agent protocols, as well as for run-time verification of whether agents comply such
specifications.

• Agent reasoning and coordination based on Abductive Logic Programming
Kowalski et al. were the first authors to propose an agent architecture based on Abductive Logic Programming
[100], to reconcile reactivity with rationality. KS agents adopt an observe-think-act cycle, where think is a
(fixed) number of computational steps that the IFF proof-procedure [78] uses to compute actions to perform,
based on the agent’s current beliefs, goals, and inputs. The agent goals are a conjunction of Prolog terms and
integrity constraints, i.e., forward rules that must be true at all times during the operation of the agent.

The KS agent architecture has been extended by Dell’Acqua and colleagues [48] to accommodate updates, i.e.,
dynamic changes to the agent programs. KS agents have also been used by Sadri et al. to implement agents that
engage in negotiation dialogues in the context of resource allocation [154, 155, 156]. A more elaborate agent
model which can be considered as a descendant of KS agents is the KGP model mentioned above.

Agent deliberation is the main focus of work done by Kakas et al. based on Logic Programming without Nega-
tion as Failure (LPwNF) [102, 103, 104]. The agent decision making process is specified by a number of pref-
erence rules structured in a multi-layered program. LPwNF is used to implement an argumentation framework
where policies are combined with context rules. Argumentation is used to solve conflicts arising, for instance,
from an agent policy giving directives that are incompatible with those given by the context rules.

Orthogonal interest has been devoted by several authors to the issue of coordination of multi-agent reasoning
activity. Two noteworthy bodies of work are the research conducted by Ciampolini et al. on ALIAS [37, 38]
and that by Satoh et al. on speculative computation [158, 157, 159]. ALIAS is a multi-agent architecture
where agents can reason hypothetically, making assumptions about missing pieces of information (as for KS
agents), and where they can form groups (“bunches”) to coordinate their reasoning activity so as to ensure that
their beliefs about unknown information are consistent with one another’s integrity constraints. This kind of
interaction is kept at a separate level from that of reasoning, and is described by a language called LAILA
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[38]. Speculative computation is another form of collective and coordinated hypothetical reasoning, based on
abductive logic programming. Its main purpose is to enable agents to continue their execution while waiting for
pieces of information from the outside, based on default assumptions, and to switch to a different operation in
case some incoming information contradicts their defaults.

• Dynamic Logic Programming and Updates
An increasingly popular logic programming based formalism for modelling multi-agent reasoning is Answer
Set Programming, and extensions of Dynamic Logic Programming to accommodate adaptation and changes.
Leite et al. developed an agent architecture, called MINERVA, based on Multi-Dimensional Dynamic Logic
Programming (MDLP) [112] and on the update command language LUPS [8], where several specialised,
possibly concurrent, sub-agents perform various tasks while reading and manipulating a common knowledge
base. Related to MINERVA is the work on DALI [44], an agent programming language encompassing basic
patterns for reactivity, pro-activity, internal thinking, and memory. The semantics of a DALI program is defined
in terms of another program, where reactive and proactive rules are reinterpreted in terms of standard Horn
Clause rules.

• April and Go!
April [123] combines logic and functional programming. Although a high-level language, it offers a simple
interface to native code in languages such as C. As the authors put it: “April is more an object based concurrent
language with objects as processes”. Go! [124] is a descendant of April that is multi-threaded, strongly typed,
and higher order. Agents in Go! contain both reactive and deliberative aspects, and coordinate using BDI
structures.

• Qu-Prolog
Finally, Qu-Prolog [40] is a multi-threaded and distributed version of Prolog with support for high-level com-
munication between the threads. Agents can communicate using thread-to-thread messages, a publish-and-
subscribe event notification system, or via the shared Prolog dynamic database. The first two alternatives allow
threads in different Qu-Prolog processes anywhere on the internet to communicate; the last communication
alternative is restricted to threads in the same process [41].

Agent Communication Languages and Ontologies
An important aspect of multi-agent systems development is agent interaction. For this, Agent Communication Lan-
guages (ACL) with appropriate formal semantics are required, as is the use of ontologies so that agents agree on the
semantics of the vocabulary used in communication. In this section, we briefly mention the most prominent work on
ACL and ontologies, discussing also their logical basis.

• KQML [http://www.cs.umbc.edu/kqml]

The Knowledge Query and Manipulation Language (KQML) is a language and protocol for knowledge exchange
[110]. It was developed as part of a larger effort, the ARPA Knowledge Sharing Effort which was aimed at
developing techniques and methodologies for building large-scale, sharable, reusable knowledge bases. KQML
is both a message format and a message-handling protocol to support run-time knowledge sharing among agents.
It can be used as a language for an application program to interact with an intelligent system or for two or more
intelligent systems to share knowledge in support of cooperative problem solving.

KQML focuses on an extensible set of performatives, which define the permissible operations that agents may
attempt on each other’s knowledge and goal stores. The performatives comprise a substrate on which to develop
higher-level models of inter-agent interaction such as the contract net protocol and negotiation techniques. In
addition, KQML provides a basic architecture for knowledge sharing through a special class of agents called
“communication facilitators”, which coordinate the interactions of other agents. The ideas underlying the design
of KQML have been explored through experimental prototype systems which were used to support several
testbeds in areas such as concurrent engineering, intelligent design, and intelligent planning and scheduling.
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Even though FIPA (see below) is becoming the standard ACL, it took most of its ideas from KQML, which also
has a historical importance in being the first ACL to achieve widespread use.

• FIPA [http://www.fipa.org/activities/semantics.html]

The Foundation for Intelligent Physical Agents (FIPA) was formed in 1996 to produce software standards for
heterogeneous and interacting agents and agent-based systems. In the development of these standards, FIPA
obtained input and collaboration from its membership and from the agent’s field in general to build specifications
that can be used to achieve interoperability between agent-based systems developed by different companies and
organisations.

FIPA is currently working on a new semantic framework to reflect the needs of verifiability and conformance.
In particular, the objective is to adopt or define a semantic framework that can give an account of FIPA’s existing
aspects as well as a number of additional constructs such as contracts, agreements, policies, and trust.

• OWL [http://www.w3.org/2004/OWL/]

It is increasingly clear and widely recognised that in order to provide true interoperability, it is not enough to
standardise on agent communication languages. The actual content of the messages also has to be interpreted
in a semantically compatible way. Interpretation of information by computing systems is at the centre of the
semantic web vision. In that area, the aim is to augment the syntactic description of web pages with semantic
information.

While HTML allows us to display the information available on the web, it does not provide much capability
for describing the information in ways that facilitate the use of software programs to find or interpret it. As an
example, the word ‘agent’ on a web site might represent an aspect of Computer Science, an aspect of Chemistry,
or a participant of an espionage plot.

OWL [127], the successor of the DAML+OIL [178, 93] language, provides a rich set of constructs with which to
create ontologies and to markup information so that it is machine readable and understandable. A key approach
here is the use of Description Logics [14], which allows reasoning about semantic information. There are three
variants of the OWL language: OWL-light, OWL-DL (description logic), and OWL-Full. While OWL-Light
allows for easy and efficient implementations, OWL-DL makes use of the expressive power of description logic
while still being computable. OWL-Full violates some constraints of description logic [19]. OWL is a W3C
Recommendation since February 2004.

4 Logic-Based Agent Verification [Agent Analysis]
Agents appear to be an appropriate abstraction for many systems that operate in complex, dynamic, and unpredictable
environments. These include application areas such as air-traffic control, autonomous spacecraft control, health care,
and industrial systems control, to name just a few. These are areas of application that clearly require dependable
computational systems and, in particular, that such systems should be verifiable. In this section we address this issue,
providing an overview of several approaches that aim to develop techniques for the (automatic or semi-automatic)
verification of agent-based systems.

When using logical techniques, there are two common approaches to the verification of computational systems:
model checking [42] and theorem proving. Model checking essentially requires a finite-state description of the possible
behaviours of the system, together with a property to be checked. A model checker then carries out an exhaustive
search through the finite-state description attempting to find a way where the property can be falsified. If the model
checker is unable to find such a counter-example, then the property is satisfied on all possible executions of the
system. Model checking has become very popular over recent years, with theoretical advances in the use of model
checking combined with significant efficiency improvements in model checking tools leading to a marked increase in
the practical use of model checkers. Alternatively, theorem proving requires a logical formula that captures all the
behaviours of the system (whether finite or not) and a property, expressed as a logical formula. Then a proof must be
carried out, showing that the formula describing the property is a logical consequence of the formula describing the
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system. While model checking is usually automatic, theorem-proving usually involves human intervention. Between
these two extremes are proof problems that can be solved automatically, yet involve infinite-state behaviours.

Typically, autonomous agents in a multi-agent system need to share and/or compete for resources. The usual
approach is that resources are owned by specific agents and the allocation mechanism is based on some form of
negotiation technique. Usually, the communication and allocation protocols used need themselves be verified as they
could incur in well known faults (e.g., starvation). Indeed, any such protocols can be independently checked for
properties that guarantee no such faults can occur. Ideally, we will have, in the near future, libraries of such high-level
agent coordination mechanisms associated with properties that have already been verified. Developers of multi-agent
systems could then use these “off the shelf”, while being aware of their properties (as well as the requirements with
which agents should comply in order to ensure appropriate interaction).

Although still at an early stage, this points to the use of compositional reasoning for the formal verification of
multi-agent systems. In addition, verification must take into account the use of legacy code, something which is often
used in multi-agent systems. Further, it is important to note that verification of multi-agent systems can work on
several levels of abstraction: the level of social interactions and social organisations; the individual level where the
agent’s internal reasoning is targeted; and also an even lower level concerning specific algorithms or legacy code used
internally to an agent.

While most of this research aims to reason on agent specifications or models with an a-priori approach, a differ-
ent aspect of verification in multi-agent systems is run-time verification. This accounts to monitoring and checking
whether a particular implemented, running agent does indeed operate according to its specification. There exist logic-
based tools that reason upon the externally observable behaviour of interacting agents and verify whether it complies
to predefined norms or protocols. In particular, the SOCS-SI tool [2] (already mentioned in the previous section in
relation with SOCS), uses the abductive logic programming SCIFF proof-procedure to consider messages exchanged
by agents plus other events and carry out such a run-time interaction verification task. Though comparatively less
studied, this is also an important aspect of developing dependable agent systems.

However, while model checking techniques can be seen as appropriate solutions to many of the above problems,
they are less satisfactory when we consider issues such as openness (i.e., an arbitrary number of autonomous agents
may be involved) and emergence (i.e., coping with evolving agent behaviours). Here, theorem-proving appears to have
advantages over model-checking. Although it is early days, our view is that combining deductive [71] and algorithmic
techniques (i.e., the various approaches based on model-checking discussed below) will have an important role in the
verification of multi-agent systems in the future.

Regardless of how long it takes to achieve these more ambitious objective, in the short term we expect to see an
increase in the number of researchers interested in formal verification of multi-agent systems, mainly because of the
adequacy of such systems for many areas of application that demand large-scale dependable systems. In particular,
we expect to see both theorem-proving and model-checking techniques, and hopefully combinations of both, being
developed for the many logics of interest for multi-agent systems. Various examples are given below in this section,
showing which are the logics of interest, and also the kinds of combined logics that are required, as most of those
logics that appear in the literature so far cover only a part of the features that multi-agent systems normally have (such
as epistemic properties, temporal properties, motivational properties, coalitional power, etc.).

4.1 Model Checking
Model checking essentially takes a finite state model of a program and a temporal property and then checks that the
temporal property is satisfied on all possible executions of the program [42]. In the case of agent verification, we again
need a finite state agent description (often a program) and a property to be checked on all possible executions of the
agent. In using model checking to verify properties of agent-based systems, we are often using properties based on
some combination of modal and temporal logics, such as BDI logics, ATL, or temporal logics of knowledge. As in the
standard case, problems of space requirements and of handling essentially infinite-state programs, are the key issues
in agent verification. A further complication is that, once multi-agent systems are tackled, the complex interactions
between such agents often mean the potential state space of the whole system is very large.

• Model Checking Algorithms for BDI-like Logics
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[21] presented a model-checking algorithm for a BDI logic (using CTL as underlying temporal logic) (see [148,
192, 165] for details on BDI-like logics). The approach formalises the BDI modalities using a variation of multi-
language hierarchical logics [83, 82]; the idea is to have a tree hierarchy of related theories, representing the
nesting of modalities (that is, the mental model an agent has, possibly about another agent). In [20], the approach
was extended to consider symbolic model-checking [42] in particular (previous work had given algorithms for
explicit-state model checking). One drawback of the approach is that it is not clear how the types of models
they require are to be generated from actual systems, therefore their techniques might not be easily applicable
to practical verification of multi-agent systems.

• Model Checking AgentSpeak Programs
In a series of papers, Bordini et al. have developed model-checking techniques that apply directly to multi-
agent programs written in AgentSpeak. The approach is to translate AgentSpeak multi-agent systems into either
Promela [24] or Java [27] models, then using, respectively, SPIN [92] or JPF [185] as model checkers. The
property specification language is a much simplified BDI logic which is suitable for AgentSpeak programs.
The tools that have been developed to automate the translation process were briefly described in [31]. [26]
introduced a slicing algorithm for AgentSpeak, and initial experimental results shown in that paper indicate that
the technique can have a significant impact in reducing the state-space that needs to be considered in practical
model-checking for AgentSpeak programs. The whole approach was summarised by [25, 28].

• Bounded Model Checking for Epistemic Temporal Logics
Penczek and Lomuscio have defined bounded semantics of CTLK [142], a combined logic of knowledge and
time. Based on that semantics, they define a bounded model-checking algorithm for that logic. The approach is
to translate the (bounded) model of the system (given as an interpreted system) and a formula φ — the (negation
of the) property to be verified — to sets of propositional formulæ in such as way that they can only be satisfied if,
and only if, the system satisfies φ. This means that, in their approach, a model checking exercise can be carried
out by existing SAT-solvers (which can at times, they argue, turn out to be rather efficient). More recently [184],
they have defined similar translations to OBDDs, the approach used for symbolic model checking [42].

Experimental results on the “attacking generals” problem, which has applications for agent coordination, were
reported in [118]. It remains to be seen if the performance of both SAT- and OBDD-based model-checking (and
the associated translations) for practical verification of multi-agent systems will be satisfactory.

• Model Checking for (variations of) ATL
The emphasis in ATL verification is usually on model checking techniques even though, with complete ATL
axiomatizations [85, 186], there is potential for deductive approaches. Another logic with a game-theoretic
basis that has been used for reasoning about teams, coalitions, etc., is Coalition Logic [140], which can be seen
as a generalisation of the modal base of Game Logic [139, 141] (itself an extension of Propositional Dynamic
Logic [87]). Practical model checking techniques for ATEL [175], a version of ATL with added epistemic
modalities, were presented by [182] (by reduction to ATL); the paper includes an exercise in model checking
the Russian cards scenario using Mocha [9], an ATL model checker.

Further work based on ATL for agent verification has been carried out by [151]. They define a refinement
relation between agents in a multi-agent system based on ATL. This allows the assume-guarantee paradigm
(a well-known form of compositional reasoning [42]) to be used in combination with model checking, thus
extending (in principle) the use of formal verification methods to much larger systems, despite the state-space
explosion problem.

• Deontic Interpreted Systems
Interpreted systems have arguably a more clear correspondence with states of distributed computational systems
than Kripke structures, the preferred semantic formalism in philosophical logic. [120] have extended interpreted
systems with deontic notions [12]; in particular, this allows one to reason about correct and incorrect behaviour
of individual agents and of the multi-agent system. [119] extended the framework so as to combine it with stan-
dard epistemic notions [64], thus allowing the expression of properties such as the knowledge that agents have,
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or require, when they function properly (with regards to a certain protocol). See also [121] for an extended pa-
per on the subject. Regarding actual verification, Penczek and Lomuscio have applied bounded model-checking
techniques to deontic interpreted systems [195].

• Checking Communication Protocols within Electronic Institutions
[43] introduced a language that is suitable for modelling communication protocols in the context of Electronic
Institutions [63]. The language used to write the models of communication protocols provides a Prolog-like
notation for defining a transition system, which is then translated into the input language of NuSMV [39], a
well-known symbolic model checker (model checking is then carried out by NuSMV). It is not yet clear how
applicable the approach will be in general.

• Model Checking Knowledge-Based Programs
[176] examined the model checking problem for epistemic logic (with common knowledge formulæ) and sys-
tems of multiple agents (with perfect recall) situated in finite state environments. Model checking techniques for
a logic combining knowledge and temporal modalities are described in [177]. This is the underlying theory for
the MCK model checker [79], available at http://www.cse.unsw.edu.au/˜mck/. MCK is a symbolic
model checker implemented in Haskell, but relying on David Long’s BDD package which is implemented in C
(http://www.cs.cmu.edu/˜modelcheck/bdd.html).

• Model Checking Agent Dialogues
A language for describing agent dialogues, called MAP and based on CCS, was defined by [188]. The language
is particularly targeted at modelling dialogues in the context of Electronic Institutions [63] (the same application
area as work by Cliffe & Padget described earlier). As in the work on model checking for AgentSpeak described
above, the approach here is to translate MAP protocols into Promela and use SPIN as model checker. Another
use of the MAP language, for verifying agent communication in interaction with web services, is mentioned by
[187].

• Verifying Commitments
Both Singh and Wooldridge have argued about the difficulty of checking compliance of agents to communica-
tion protocols because of the mentalistic approach used in giving semantics to agent communication languages
[164, 191]. An alternative to the mentalistic approach is to use social commitments as the basis for speech-act
semantics [164]. [197, 196] present an approach to representing and reasoning about commitment protocols,
based on the Event Calculus [107]. They use an event calculus planner to allow agents to choose flexibly a
course of action that is compliant with given protocols. Another approach to commitment protocols is presented
by [189]. The idea there is to map Dooley graphs (often used for designing multi-agent interaction protocols)
and commitment causal relations to the π-calculus [133], which can then be used to check consistency of multi-
agent systems.

4.2 Theorem Proving
In contrast to model checking, the deductive approach to agent verification uses a logical formula to describe all
possible executions of the agent system, and then attempts to prove the required property from this logical formula.
Again, in considering rational agents, the properties required are often captured using combinations of modal and
temporal logics, therefore the deduction problem can be quite difficult. As usual with theorem proving, there are two
main varieties: those that involve decidable problems, where the deduction is guaranteed to terminate, and much more
complex problems, where human interaction is required.

• Temporal Logics
In situations where agent descriptions are solely given using temporal logics (e.g., METATEM above), then
temporal proof may be carried out. In general, first order temporal problems are very complex, but there are
automatic methods for both propositional [72, 97] and significant fragments of first-order [47, 105, 98] temporal
logics. While individual modal, temporal, or description logics have been studied extensively in the past, much
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less is known about combinations of modal logics and, in particular, about practical proof methods for such com-
binations [22]. However, both resolution- and tableau-based proof methods for combinations of propositional
(linear or branching time) temporal logics with modal logics [54, 53, 193, 94] have been studied. For exam-
ple, the combination of modal and temporal logics and translations into fragments of classical first-order logics
have been used to reason about the KARO agent framework [96], and about extensions of the basic METATEM
framework [71].

• CASL
[161] introduced the Cognitive Agent Specification Language (CASL), which is based on the situation calculus,
knowledge and goal operators (for representing an agent’s mental states), and uses ConGolog (see above) for
describing an agent’s behaviour. They also defined CASLve, a verification environment for CASL that consists
of representing a CASL specification within the framework of the PVS verification system [138].

• BDI and Logics of Concurrency [160] provides a mapping from Rao and Georgeff’s BDI logic [148] to µ-
calculus [108]. The BDI model of Rao and Georgeff is based on a combination of the branching time logic CTL∗

[61] and modal operators for belief, desire, and intention. While it had been shown that CTL∗ is subsumed by
the µ-calculus [60], it was much less clear how to deal with the orthogonality that Rao and Georgeff’s logic
exhibits. Schild tackles this by collapsing the two dimensions of time and modalities onto a one dimensional
structure. The translation into µ-calculus provides a full axiomatisation of Rao and Georgeff’s BDI logic.

Schild proves that, for CTLn (containing formulae with at most n nested branching operators), the translation is
decidable and succinct. Some axiom schemata (such as weak realism) can also be decided, while others (such
as strong realism) might yield non-succinct translations, and are therefore less usable for automatic verification.

5 Concluding Remarks

5.1 Related Work
While this paper focusses on the use of computational logic within research on agents, there are many non-logical
approaches to programming agents. Without claiming to cover all (important) frameworks, we briefly review some of
the most prominent ones.

• FIPA-OS [http://fipa-os.sourceforge.net]

FIPA-OS is a component-based toolkit enabling rapid development of FIPA compliant agents. FIPA-OS supports
the majority of the FIPA experimental specifications and is being continuously improved as a managed Open
Source community project, making it a suitable choice on which to base FIPA-compliant agent development
activity. FIPA-OS was first released in August 1999 as the first publicly available implementation of FIPA
technology.

• PlanGent [http://www.toshiba.co.jp/plangent]

PlanGent is an intelligent agent system that performs tasks for human users. An agent in the PlanGent system
has movement and planning capabilities; it can move around the network, determine its best course of action in
various situations, and act autonomously.

• JACK [http://www.agent-software.com]

JACK Intelligent Agents is an environment for building, running, and integrating commercial-grade multi-agent
systems using a component-based approach. This approach is based heavily on the BDI architecture and ap-
propriate Java classes for agent programming are provided. The JACK Agent Language is the programming
language that extends Java with agent-oriented concepts, such as agents, capabilities, events, plans, agent knowl-
edge bases (databases), and resource and concurrency management.
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• Jade [http://jade.tilab.com/]

JADE (Java Agent DEvelopment Framework) is a software framework implemented in Java. It supports FIPA-
based communication and provides a set of graphical tools that aid the programmer during multi-agent systems
development. In recent years, JADE has become one of the most used agent platforms within the research com-
munity, and its middleware is quickly becoming a de facto standard. An extension to JADE called Jadex extends
the basic framework with a BDI-like architecture (http://vsis-www.informatik.uni-hamburg.
de/projects/jadex/).

• Aglets [http://aglets.sourceforge.net/]

Aglets have been developed by the IBM Tokio Research Laboratory, and provide an applet-like approach to
building agents using Java. It consists of a daemon application which serves as a basic framework, and mobile
agents which can communicate using the framework. Through the use of Java security mechanisms, aglets
support advanced security features.

• Cougaar [http://www.cougaar.org/]

Cougaar is a Java-based framework for the creation of large-scale distributed applications. Originally conceived
as part of a DARPA project, it has since become an open-source project. Special concern has been “survivability”
in case of failures in parts of the system, as well as security. Based on a flexible component model, it implements
various communication approaches, such as blackboard, and various protocols, such as CORBA, RMI, HTTP,
and UDP.

5.2 Frequently Asked Questions
Q: Why should we use logical approaches to agents?
A: Two reasons. The first is clarity – logical descriptions are unambiguous and often concise, thus providing a
basis for detailed analysis and verification. The second is that, when using logical approaches, there is a vast number
of different logics (or combinations) to choose from. This gives the system designer a very wide range of possible
approaches. Choosing the best logic can give very intuitive and useful abstractions for programming complex systems.

Q: Have the “right” logics been used?
A: Unfortunately, there is no “right” logic! In most cases, particular logical mechanisms have been developed for
the application area being considered. Even the BDI approach, which is probably the most widespread in this area,
has been modified, or even avoided, for certain applications.

Q: Logics are is complex, so isn’t using them likely to be inefficient?
A: Yes and no! Reasoning with expressive logics requires, in general, computationally expensive manipulation
and so, typically, one has to trade efficiency for generality and expressiveness. However, in many cases specific
logical fragments have been devised to shift the balance toward efficiency, while (possibly) reducing generality. Some
examples: simplified BDI logics are adopted to translate AgentSpeak specifications into models that can be efficiently
processed by off-the-shelf model checkers like SPIN or JPF; Constraint Logic Programming techniques have been
used to implement forms of hypothetical reasoning in agents in an efficient way; and implementable agent logics have
been proposed under the assumption of resource-boundedness.

Q: What about “the market?”
A: It is true that logical approaches to multi-agent systems are not widely used in “the market” (yet). However,
we witness a growing interest of the stakeholders in technologies such as autonomic computing, service oriented
architectures, mobile robotics and e-trade. These are all domains very much related to the research being carried out
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in the MAS community. As concerns increase over the reliability and security of such systems and over the public’s
trust in these systems, so the use of logical approaches is likely to increase. Moreover, domains such as Semantic Web
services have a huge market potential and enjoy extensive input from (specifically) computational logic-based agent
systems research (see below).

Q: Is there a killer application?
A: Agent research is a broad domain! Many, equally good, understandings of agency have co-existed in the literature
since its early days. It is hard to imagine, at this stage, that one killer application will suit to all (computational logic-
based) agent research. However, There are areas where computational approaches to agency may become dominant
(see below).

5.3 Future Directions
Below is a subjective and, to some extent, speculative view about the future of computational logics and agents.

Agent Programming We have yet to see a truly successful agent programming language. Often agents are still
programmed just using Java. Thus, there is an opportunity for a computational logic approach to programming agents
to take a lead here.

Agent Analysis Agent verification will surely increase. When unknown agents are sent to you (e.g., in the form of
Java bytecodes) and your agents are expected to negotiate (sometimes sensitive) information with unknown agents,
then verification will be increasingly required for questions of security and trust.

Agent Applications We conclude the paper by suggesting four areas where computational logic approaches to
agency may be particularly influential.

1. Ubiquitous Computing

With the mobility, openness, and organisational aspects, both programming and analysing ubiquitous computing
applications can be problematic. By providing a logical basis for programming both individual agents (through
key aspects such as deliberation) and multi-agent systems (through groups and teams), computational logic can
help the principled development of reliable ubiquitous computing applications. In addition, logical verification
techniques can be used to analyse the behaviour of such potentially complex applications.

2. Autonomous Control

Control systems are highly developed. However, the requirement for systems to act autonomously and rationally
does not necessarily sit well with traditional control systems. As we move from systems where we need to know
what the system does, to those where we need to know why it did something, we believe that logical approaches
to the control and analysis of complex systems will come into their own.

3. Semantic Web

While we have said very little about the Semantic Web in this report, web services are complimentary to agent
technology. Consequently, many techniques for agent-based systems can be transferred to the Semantic Web.
In terms of computational logic, this is even more evident when we see that description logics are at the core of
Web ontologies. Thus, computational logic has a key role to play both in programming web-service description
and discovery, and in analysing web-service collections.

4. Distribution

This covers a wide variety of aspects, from negotiation, through resource allocation/balancing and stock markets,
to e-commerce and financial applications. In many of these cases, varieties of economic games are used. How-
ever, there is growing indication that computational logic might take a more central role in this area, possibly
through combined logics/economics approaches.
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