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A scalable method to cluster datasets too large to fit in memory is presented. This method
does not depend on random subsampling, but does scan every individual data sample in a
deterministic way. The original data is represented in factored form by the product of two
matrices, one or both of which is very sparse. This factored form avoids the need to multiply
together these two matrices by using a variant of the PDDP algorithm which does not depend
on computing the distances between the individual samples. The resulting clustering algorithm
is Piecemeal PDDP (PMPDDP), in which the original data is broken up into sections which
will fit into memory and clustered. The cluster centers are used to create approximations to the
original data items, and each original data item is represented by a linear combination of these
centers. We evaluate the performance of PMPDDP on three real data sets, and observe that
the quality of the clusters of PMPDDP is comparable to PDDP for the datasets examined.

1 Introduction

There are many applications in which extremely large datasets need to be explored, but which are
much too large to be processed by traditional methods. Often it is desired to compute an unsuper-
vised clustering of the data in order to discover new patterns, anomalies, or other unanticipated
features buried within the dataset. We seek a method which is capable of clustering datasets too
large to fit in memory at once, but which scans through the entire dataset at least once. We do
not wish to depend on random subsampling which could miss anomalies or unusual artifacts.

To satisfy this wishlist, we would like to compute a compact representation of the entire dataset
which takes much less memory than the original, yet approximates the original dataset sufficiently
well to allow accurate clustering. Each data item would need a unique representative within the
compact representation, no sampling would be used, and the method would not be dependent on
the order in which the data are presented. All of the representatives for the entire data set would
have to be available in memory at once during clustering. If the clustering is to take place in a
reasonable amount of time, then the clustering method used should take advantage of the form of
the representations.
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To achieve these goals, we present a method based on building up a sparse product represen-
tation of the entire dataset, in which each data sample is represented by a linear combination of a
few sparse representative vectors. The entire dataset will be represented by the product of a matrix
of a few representative vectors and a matrix of coefficients defining the linear combination for the
corresponding original data vector. One or both of these matrices will be very sparse, so we leave
the representation in matrix product form taking little space. This factored form is called the Low
Memory Factored Representation (LMFR), introduced in [21]. To take full advantage of this prod-
uct form, it is necessary to avoid traditional methods that compute distances between individual
data vectors, such as agglomeration or k-means. Hence we use the fast, scalable clustering Principal
Direction Divisive Partitioning (PDDP) algorithm [5] to build this representation and generate the
final clustering, because it is uniquely able to take advantage of the matrix product representation
without calculating the product explicitly. The PDDP method uses a Lanczos-based solver which
requires only matrix vector products in which the matrix can be left in the given factored form,
and does not require the calculation of explicit distances between individual data samples. As such,
the data are never explicitly reconstructed during the clustering process.

The sparse product representation is constructed using the centers from clustering as a basis
[here we use the term “basis” in the colloquial sense of “starting collection”, not in the formal
sense of a set of linearly independent vectors]. The original data are broken into smaller pieces,
called sections, which will fit into memory. Each section is clustered separately using PDDP, and
the centers of the clusters are extracted. The centers are then used to compute a least-squares
approximation to the data comprising the section using a small fixed number of the centers closest
to each data item. This can be done in parallel if desired, since the representation of each section
is generated independent from all other sections. Once there is an approximate representation of
each section of data, the sparse product representations for all sections are collected and used to
perform one final clustering operation. This final clustering will be a approximate clustering of the
entire original data set. This method is called Piecemeal PDDP (PMPDDP) [22]. The piecemeal
approach is a framework used here to design an effective clustering algorithm, but the resulting
data representation (LMFR) can be used for many data mining tasks [21]. When used to design
a clustering algorithm, any clustering method could be applied to each section in principle, but
we made the specific choice here to use PDDP since it is an example of a scalable deterministic
clustering method. If an alternative scalable clustering algorithm is used to carry out the initial
partitioning of the data into sections, which would then represent some sort of affinity groups among
the data, then other annotations could be applied to the sections, as proposed in [28]. But in the
methods proposed here, the individual sections do not represent any kind of affinity group buried
within the data.

The approximations to the original data can be made as accurate as available memory allows.
The number of centroids calculated for each section of data, and the number of centroids used to
approximate each original data item, are completely user-determined. Generally, the more centroids
calculated for each section, and the more centers used to approximate each original data point, the
more accurate the final representation. However, more memory will be necessary to contain a more
accurate approximation as compared to a cruder approximation.

Reducing the original data to its approximate representation allows PDDP to process the dataset
in a reasonable amount of time using relatively modest amounts of memory. The method examines
every data item during the process of creating the classification, and will not miss or ignore the
presence of outliers. It can do the most expensive work without having to examine the entire data
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set at once. In [23] we showed how it is easy to update this factored representation by replacing
old data with more recent data, turning just about any algorithm into one suitable for streaming
data applications. The amount of memory required by the low memory representation can be set
by the user, and the only tradeoff is the accuracy of the approximation and, to a lesser extent,
the accuracy of the clustering. There are no parameters which need to be selected or tuned. The
ultimate objective of this work is to develop a method that will scale well to very large data sets
while retaining a small memory footprint.

2 Previous Work

The problem of clustering large data sets has been addressed often in the past. Hierarchical
agglomeration [16] and k-means [13, p201] are two popular starting points for developing scalable
clustering methods. Hierarchical agglomeration assembles clusters by recursively joining the two
closest clusters, where the distance is computed with respect to all points in all clusters. K-means
starts with a fixed set of cluster centers, and goes through an iterative process of assigning the data
to the closest center and then using the data in a given cluster to calculate a new center.

Random sampling is a very scalable alternative, as proposed in [19, 12, 1, 11], but the results
are not deterministic, and in some cases the subsampling could miss outliers. Hence these methods
might not be suitable in situations where it is required to sample every data item in a consistent
and deterministic manner.

Two methods based on hierarchical agglomeration are Scatter/Gather [9] and CURE [17]. Scat-
ter/Gather reduces the running time by only applying agglomeration to smaller sets of the data,
and then by agglomerating the centers resulting from the previous operation. The method is O(p2),
where p is the number of data points agglomerated at any given time, and careful choice of pa-
rameters is necessary to insure that the overall running time does not change from rectangular to
quadratic. CURE reduces the running time by measuring the inter-cluster distance using a small
fixed number of well-scattered points, and by sampling the data. This reduces the overall running
time to O(p2 log p), where p is the total number of well-scattered points chosen to represent the
data.

CLARANS [25] is a k-centers algorithm which finds a set of k cluster medoids, which are like
the centroids in k-means except they are members of the data set. Various clusterings are examined
by replacing one existing medoid by a randomly chosen medoid. Only a small number of alternate
clusterings are examined in order to keep the running time rectangular.

The ordinary k-means algorithm often terminates with configurations which are not a global
optimum, and the resulting issues, including the need to restart the algorithm, is explored in [8].
This method is designed to find good initial centers for large data sets, such that the k-means
algorithm will not have to be repeated. It does this by clustering independent samples of the data,
and then clustering the resulting centroids. The final set of centroids becomes the starting centers
for k-means. The applicability to large data sets can be further enhanced by the method outlined
in [7]. The method applies k-means to as much data as can fit into memory and uses the cluster
centers to represent the data. The cluster centroids are used to represent the data which has been
clustered, new data is loaded into memory, and the process continues. Both solutions to scaling
k-means to large data sets retain the same O(kn) running time that k-means needs.

BIRCH [30] is a method which is used to pre-cluster large data sets. BIRCH incrementally
groups the data as tightly as possible based on similarity in their attributes, and in the process
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constructs as many representatives of the original data as the available memory will contain. If
the amount of space taken by the data runs out during the BIRCH process, the tightness of
the groupings is relaxed, the groupings are internally re-assigned, and the processing of the data
continues. Since BIRCH examines every data point, it runs in O(n) time. Another algorithm must
be applied to obtain the actual clustering of the data.

The most common methods of clustering large data sets appear to be using one point to represent
each original data item, as in BIRCH [30] and in the method in [7], or using sampling, as in CURE
[17] and [8]. A given representative point is usually associated with many original data points,
and once so associated all the original individual data points are no longer distinguishable from
one another. In the method outlined in this work, we associate more than one representative with
each data point, and the relationship between each data point and its representative(s) is uniquely
determined for each data point. Hence each data point still has a unique representation in the
resulting low memory factored representation. We also examine every data point when constructing
our representation. We believe this method may have some advantages when compared with the
clustering algorithms previously proposed for large data sets.

3 Clustering

Since clustering is performed in this work using the vector space model, the vector space model
is described. Then, a more formal mathematical definition of clustering is given, followed by the
description of a few measurements appropriate to clustering.

3.1 Vector Space Model

In the vector space model, an individual data item is represented by a column vector of its attributes.
Each attribute must have a numerical value and is assigned a unique row in the vector. If we have
a data set containing the attribute vectors xi, then we can define

M
def

= [x1 x2 . . . xn], (1)

where M is an n×m matrix, m is the number of attributes in each vector xi, and n is the number
of items in the data set. Since the clustering and representation methods outlined in this paper
use linear algebraic techniques, this representation is very convenient.

3.2 Clustering Model

Clustering is a re-arrangement of data such that the data is grouped using some measure of simi-
larity. Let M = {x1x2 . . .xn}, which is just the set of attribute vectors from the matrix M in (1).
Then clustering can be interpreted as the result of the partition of the set M into subsets such that

M =
K
⋃

i=1

Mi, Mi ∩Mj = ∅, i 6= j (2)

where K is the total number of clusters. The partitioning takes place using only internal information
and without any prior knowledge of the data. The goal of a clustering method is to maximize the
similarity among the elements of each subset Mi and minimize the similarity of the elements in
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Mi with respect to any other subset Mj . The vectors in the set Mi can used to define the matrix
Mi such that

Mi
def

= [xj ], xj ∈ Mi. (3)

3.3 Measurements

One common way to delineate a cluster is to refer to its centroid. The centroid wC of a cluster MC

is defined as:

wC

def

=
1

kC

∑

j∈C

xj (4)

where kC is the number of items in cluster MC and xj is the jth column of MC. The centroid
represents the contents of a cluster in a compact way.

One commonly used intrinsic measure of the quality of a cluster is the ScatterValue . The
ScatterValue is a measure of the cohesiveness of the data items in a cluster with respect to the
centroid of the cluster The ScatterValue of a cluster MC is defined as:

ScatterValueC
def

=
∑

j∈C

(xj − wC)
2 = ‖MC − wCe

T ‖2

F , (5)

where e is the m-dimensional vector [1 1 . . . 1]T and ‖ ‖F is the Frobenius norm. The Frobenius
norm is the square-root of the sum of the squares of every entry in the matrix. When comparing
two clusterings, the one with the smaller ScatterValue has the better clustering quality.

Another useful clustering performance measure is entropy. The entropy measures the coherence
of a cluster with respect to how a cluster is labeled. An entropy calculation assumes that the
labeling is perfect, which is not a good assumption in every case since any labeling performed by a
human can be subjective. Since the data must be labeled, entropy cannot be used when the data
have not been classified prior to clustering.

The total entropy of a given set of clusters is defined by:

etotal
def

=
1

m

∑

j

ej · kj , where ej
def

= −
∑

i

(

c(i, j)
∑

i c(i, j)

)

· log

(

c(i, j)
∑

i c(i, j)

)

, (6)

where c(i, j) is the number of samples with label i in cluster j, and kj =
∑

i c(i, j) is the total
number of samples in cluster j. If all of the labels of the items in a given cluster are the same, then
the entropy of that cluster is zero. Otherwise, the entropy of that cluster is positive. The lower the
entropy, the better the quality of the clustering.

4 The PDDP Algorithm

PDDP [5] is a clustering algorithm developed using techniques from numerical linear algebra.
PDDP is a top-down method which recursively divides the data into smaller and smaller clusters,
assembling all the clusters into a binary tree. Starting with the root node representing the entire
dataset, PDDP computes the hyperplane which best divides the data. All the data on one side of
the hyperplane is associated with one branch, and the data on the other side of the hyperplane is
associated with the other branch. The process continues on each branch in turn until some stopping
criteria is met, which can be based on intrinsic measures of the data in the nodes or on a final
desired number of leaf nodes (clusters).

5



This method was originally developed as part of the WebACE Project [6] in the context of text
documents where each document is represented by a scaled vector of word counts. However, this
algorithm is not restricted to text domains and here it is described in general terms.

The clustering via PDDP is a recursive process that operates directly on the matrix M. PDDP
starts with a single “cluster” encompassing the entire data set and divides this cluster into sub-
clusters recursively using a two step process. At each stage, PDDP (a) selects a cluster to split,
and (b) splits that cluster into two subclusters which become children of the original cluster. The
result is a binary tree hierarchy imposed on the data collection. At every stage, the leaf nodes in
the tree form a partition of the entire data collection. In the process of going to the next stage, one
of those leaf nodes is selected and split in two. The behavior of the algorithm is controlled by the
methods used to accomplish steps (a) and (b), and these methods are independent of one another.
For step (a), PDDP usually selects the cluster with the largest ScatterValue , though any suitable
criterion can be used.

Once selected in step (a), the node is split in step (b), and this splitting process is the single
most expensive step in the whole computation. The key to the computational efficiency of the
entire approach is the efficient computation of the vectors needed in this step. Suppose PDDP
were to split cluster C consisting of k data samples of attribute values. It places each data sample
x in the left or right child of cluster C according to the sign of the linear discriminant function

gC(x) = uT
C
(x − wC) =

∑

i∈C

ui(xi − wi), (7)

where uC, wC are vectors associated with C to be determined. If gC(x) ≤ 0, the data sample x is
placed in the new left child, otherwise x is placed in the new right child. Thus the behavior of
the algorithm at each node in the binary tree is determined entirely by the two vectors uC, wC

associated with the cluster C.
The vector wC is the mean or centroid vector, as defined in (4). The vector uC is the direction

of maximal variance, also known as the leading left singular vector for the matrix MC − wCe
T .

This direction corresponds to the largest eigenvalue of the sample covariance matrix for the cluster.
Here MC is the matrix of columns of data samples in cluster C. The computation of uC is the most
costly part of this step. It can be performed quickly using a Lanczos-based solver for the singular
values of the data matrix (see [5]). This algorithm is very efficient, especially since low accuracy is
all that is required, and can take full advantage of any sparsity present in the data.

The overall method is summarized in Fig. 1. As the method is “divisive” in nature, splitting
each cluster into exactly two pieces at each step, the result is a binary tree whose leaf nodes are
the sought-after clusters.

5 Matrix Representation Using Cluster Centers

An approximation or representation to a matrix A can be thought of as a system which captures
the most “important” information in A. Obtaining the representation usually involves a tradeoff
among accuracy, the memory space occupied by the representation, and the time required to obtain
the representation. These three aspects of the representation are usually in conflict, and must
be tailored to fit the desired application. Unlike the recent low-rank representation methods in
[2, 3, 20, 31], this representation is not used to extract directly the essential concepts that pervade
an entire dataset, in which each new “concept vector” is forced to be independent (orthogonal in
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Algorithm PDDP.
0. Start with n × m matrix M of vectors, one for each data sample,

and a desired number of clusters kf .
1. Initialize Binary Tree with a single Root Node.
2. For c = 2, 3, . . . , kf do

3. Select leaf node C with largest ScatterValue (5),
and L & R := left & right children of C [step (a) in the text].

4. Compute vC = gC(MC) ≡ uT
C
(MC − wCe

T )
5. For i ∈ C, if vi ≤ 0, then assign data sample i to L,

else assign it to R [step (b) in the text].
6. Result: A binary tree with kf leaf nodes forming a partitioning

of the entire data set.

Figure 1: PDDP. MC is the matrix of data vectors for the data samples in cluster C, and wC,uC are the
centroid and principal direction vectors, respectively for C.

some cases) of the preceding “concept vectors.” Rather, we are interested in using it only as a
low-memory representation which can be used in place of the original data in the matrix vector
products needed by the PDDP algorithm. Hence we can afford to use a faster method to generate
the approximate representation.

One basis for approximation which has proven to be useful is the collection of centroids resulting
from a clustering operation. The following description was taken from [10] and has been slightly
modified. Say that you have a clustering of a data set with k clusters. The centroids of the clusters
can be gathered into a n × k matrix C such that:

C = [c1 c2 . . . ck]. (8)

Given the original matrix M representing the data, it is possible to construct an approximation to
M:

M ≈ CZ, (9)

where Z is a k × m matrix such that, for a given column zi of Z,

zi = arg min
z

‖xi − Cz‖2, (10)

where xi is the ith column of M. The direct way to solve for each zi is to use a least-squares
approximation. In the context of [10] Z was dense, and this was called a concept decomposition. The
concept decomposition was designed to be a low-cost alternative to the singular value decomposition
as used in e.g. citeBoleyPDDP98. One finds similar approaches proposed in the literature. One
used centroids and least squares approximation formulated as a rank reduction problem [26], which
was also shown to be useful in text classification. Another approach has been to use the left singular
vectors in place of the centroids to represent the data space [4, 29].

The amount of memory occupied by the representation is variable. Assuming a reasonably
small number of centroids in C and a dense M, the bulk of the memory will be taken up by Z. If
Z is allowed to be dense, then the memory savings will be minimal. The solution is to enforce a
sparsity condition on Z, so that each column of the original matrix M is represented by a linear
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combination of small fixed number kz of columns of C instead of all kc of them. We will propose
one way to select which kz columns to choose for each original column of M.

This representation is designed to take up as little memory space as possible while reproducing
the columns of M with enough accuracy to allow good clustering. It will probably not satisfy any
requirements which might normally be imposed on a matrix approximation used in a traditional
linear algebraic application, such as the linear independence of the basis vectors.

6 Clustering Large Data Sets with Approximate Representations

Recall that our problem is to cluster data sets that are too large to fit into memory. One solution to
this problem is to divide the original data set into smaller pieces which will fit into memory, cluster
them, and obtain an approximation to each piece of data. Once this is done, the approximations
can be gathered into one system and then clustered. A more formal description of the method
follows.

A matrix M can be divided into ks disjoint sections such that:

M = [M1 M2 . . . Mks
], (11)

where each section Mj is n× kd. The partitioning of M is assumed to be virtual or arbitrary (e.g.
only the data for one section is in memory at a given time), and the ordering of the columns of
M is assumed to be unimportant, as illustrated by the experiments in section 9.3 below. Once a
section Mj is available, an approximation to Mj can be constructed:

Mj ≈ CjZj, (12)

where Cj is an n × kc matrix of the form (8) and Zj is has the form (9, 10) with kc rows. Each
column of Zj has at most kz nonzeroes. The centroids in each Cj are obtained through some kind
of clustering algorithm.

Once an approximate representation is available for each section of data, they can be assembled
into the approximate low memory factored representation of the entire data set M:

M ≈ CMZM , (13)

where
CM = [C1 C2 . . . Cks

] (an n × kskc matrix) (14)

and

ZM =













Z1

Z2

. . .

Zks













, (15)

(a kskc ×m matrix with kz nonzeroes per column). Now that an approximate representation of M

is available, and will fit into memory (because it was designed to fit into memory through judicious
choice of the total number of centroids in each Cj and the number of nonzero elements in each Zj),
it can be used to cluster the entire original data set. The algorithm for the method described in
(11-15) is shown in Fig. 2.
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Algorithm PMPDDP.
0. Start with a n × m matrix M of vectors, one vector for each data sample, and a

desired number of final clusters kf . Set the values for ks (the desired number of
sections), kc (the number of clusters produced for each section), and kz

(the number of centroids used to approximate each data point).
1. Partition M into ks disjoint sections, |M1 M2 , . . . , Mks

|.
2. For j = 1, 2, . . . , ks do

3. Compute the PDDP tree for the section Mj with kc clusters.
4. Assemble the kc centroids from the leaf clusters into an n × kc matrix Cj .
5. Compute the kc × m matrix Zj minimizing the quantity ‖Mj − CjZj‖F

subject to the constraint on the number of nonzero elements kz in each
column of Zj.

6. Assemble the matrices CM and ZM as in (14, 15) in the text, using all the
matrices Cj and Zj from all passes through steps 2-5.

7. Compute the PDDP tree for the system CMZM with kf clusters.
8. Result: A binary tree with kf leaf nodes forming a partitioning of the entire data set.

Figure 2: PMPDDP algorithm.

PDDP is an ideal choice of algorithm to cluster the data using this representation. Central to
PDDP is the calculation of the principal direction of the data to determine the splitting hyperplane.
The principal direction is calculated using the iterative procedure developed by Lanczos, and this
iterative procedure is based on the formation of the matrix-vector product Mv. For any given split,
the matrix M can be replaced by the quantity CMZM , resulting in the formation of the product
CM (ZMv). Note that by calculating the matrix-matrix-vector product in this order, the product
of CMZM never needs to be formed explicitly. The increase in the computational cost shouldn’t be
severe, and there won’t be any increase in the memory requirements with respect to PDDP when
performed on the original matrix.

Many other clustering algorithms would not be able to take full advantage of the memory savings
given by CMZM . Any method which requires a similarity measure between two data points in order
to make a clustering decision would require either that CMZM be formed explicitly (most likely
negating much of the memory savings), or that individual columns of CMZM be calculated every
time they are needed, which would result in a large increase in computational cost. Hierarchical
agglomeration and k-means are two algorithms which would not be suitable with this representation,
and any derivative algorithms of the two would most likely not be appropriate either.

7 Complexity Analysis of PMPDDP

There are many costs associated with computing a PMPDDP clustering. There is the cost of
clustering each section to obtain the centers used as basis vectors, the cost of getting the least-
squares approximation, and the cost of clustering the approximation.

We will use the same notation as in the explanation of the piecemeal PDDP algorithm with the
following assumptions: the data set is evenly distributed among the sections so that kc and kd are
the same for each section, and kz is the same for each section ks, kdks = m, and m >> n. Note
that these are not necessary conditions to perform a PMPDDP clustering, they are merely used to
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make the analysis clearer.

7.1 Obtaining the Basis

The basis consists of the cluster centers computed for each section of data. We assume that
PDDP will be used to compute the clustering. We further assume that the majority of the cost of
computation is the cost of computing the principal direction, and this cost in turn is dominated
by the cost of computing vector-matrix products. This cost is c1kdn, where c1 is a constant factor
representing the number of inner iterations (matrix-vector products) to convergence. If we further
assume that we are computing a balanced tree, and that each PDDP split perfectly divides the
data, then we can say that the splitting costs for one section of data are:

Number of clusters Cost

2 c1kdn

4 c1kdn + 2c1

(

kd

2

)

n = 2c1kdn

8 c1kdn + 2c1

(

kd

2

)

n + 4c1

(

kd

4

)

n = 3c1kdn

16 c1kdn + 2c1

(

kd

2

)

n + 4c1

(

kd

4

)

n + 8c1

(

kd

8

)

n = 4c1kdn

kc c1kdn log2(kc)

Therefore, the cost of computing the basis vectors for each section is c1kdn log2(kc). The total cost
of computing all basis vectors is:

c1kskdn log2(kc) = c1mn log2(kc).

7.2 Computing the Approximate Representation

Computing the representation is a multi-step process. First, it is necessary to compute the distance
from every data point kd in the section to each center kc in the section. It takes n multiplications
to compute the distance, and we can ignore the computation of the square root since we are only
interested in relative distances. Therefore it costs kdkcn to compute all the distances for a given
section, or kskdkcn = mnkc to compute the distances for the entire data set.

The next step is to find the kz closest centers to each data item kd in a section. The simplest
way to do this for a small kz is to search over all the distances to find the closest center, eliminate
the center from consideration, and repeat the process until the kz closest centers have been found.
For one data point, this will result in kzkc searches, which means the cost is kdkzkc searches for
each section. The overall cost for all sections is mkzkc. There are other ways to find the kz closest
centers without scanning the entire data set multiple times, but implementing them in MATLAB
would be slower since they would not be able to use as many intrinsic functions.

The final step is to compute the least-squares approximation for each data item using the kz

centers obtained in the previous step. The normal equations are the most inexpensive way to obtain
the approximations. They are not as accurate as other methods, but a high degree of accuracy
is not required in this application. The cost of computing a least-squares approximation for the
n × kz system using the normal equations is:

k2

zn +
1

3
k3

z ,
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if we ignore the O(k2
z) term. The total cost of obtaining the least-squares approximation for every

data item is:

m(k2

zn +
1

3
k3

z).

The overall cost for computing the approximate representations for all sections of data is:

mnkc + mkzkc + m(k2

zn +
1

3
k3

z) = m(nkc + kzkc + k2

zn +
1

3
k3

z).

The memory occupied by the final approximate representation of the entire data set is

Factor Dimensions
Number of mem-
ory cells needed

CM n × kskc kskcn (typically dense)
ZM kskc × m kzm (only kz nonzeroes per column)

Total kskcn + kzm

(16)

7.3 Clustering with the Approximate Representation

Replacing the original matrix M with the representation CZ in the PDDP method changes the
calculation in the splitting process from a vector-matrix product to a vector-matrix-matrix product.
This product can be written as (vTC)Z, where v is a “generic” n×1 vector, C is a n×kskc matrix
and Z is a kskc × m matrix. We will also assume that Z is a sparse matrix with kz non-zeroes
per column, and that the only computation cost with respect to Z is incurred when computing
the product of the non-zero elements in Z with the elements in vTC. The cost of computing the
principal direction is:

c2(kskcn + kzm)

The above cost is for the first split. As the tree is built (again assuming a binary, perfectly
balanced tree), the only thing that changes is the number of columns in Z which must be considered.
The cost of computing vTC is fixed, since C is fixed. We write the computations associated with
the number of clusters computed:

Number of clusters Cost

2 c2kskcn + c2kzm

4 c2kskcn + c2kzm + 2c2kskcn + 2c2kz

(

m

2

)

= 3c2kskcn + 2c2kzm

8 c2kskcn + c2kzm + 2c2kskcn + 2c2kz

(

m

2

)

+ 4c2kskcn + 4c2kz

(

m

4

)

= 7c2kskcn + 3c2kzm

16 c2kskcn + kzm + 2c2kskcn + 2c2kz

(

m

2

)

+ 4c2kskcn + 4c2kz

(

m

4

)

+ 8c2kskcn + 8c2kz

(

m

8

)

= 15c2kskcn + 4c2kzm

kf c2(kf − 1)kskcn + c2 log2(kf )kzm
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7.4 Collected Costs

For clarity, we reproduce all of the costs of performing a piecemeal PDDP clustering in one place:

Operation Cost

Obtaining Centers cmn log2(kc)

Computing the Approximation m(kckz + kcn + k2

zn +
1

3
k3

z)

Clustering Approximation c(kf − 1)kskcn + c log2(kf )kzm

The cost for computing a standard PDDP clustering is cmn log2(kf ). Depending on the dimen-
sionality and the variable choices, clustering the approximate representation can be less expensive
than clustering the original data set. However, the bulk of the expense of piecemeal PDDP is
associated with obtaining the representation in the first place.

8 Data

There are five real data sets which will be used to measure the performance of PMPDDP. Three of
them are small enough to fit into memory at once and be clustered comfortably on a computer with
512 MB of memory. One of them requires at least 1GB to be clustered at once, and the remaining
data set is too large to fit into the memory of most workstations.

The astronomical data was derived from the Minnesota Automated Plate Scan (APS) [27].
This is a project to digitize the contents of photographic plates of the heavens from the Palomar
Observatory Sky Survey (POSS I) originally produced in the 1950s, before the advent of artificial
satellites. The sample used consists of 212089 galactic objects, each with 26 attribute values. An
attribute might be coordinate information, color, brightness, etc. The attributes were generated by
analyzing the blobs in the images, and the values were normalized so they lie on the interval [0, 1].

The ISOLET (Isolated Letter Speech Recognition) data was generated by having 150 subjects
speak the name of each letter of the alphabet twice. The attributes were extracted from recordings
of the speakers, and include contour features, sonorant features, pre-sonorant features, and post-
sonorant features. A total of 617 attributes were extracted from the pronunciation of each letter,
and were scaled so they all lie on the interval [−1.0, 1.0]. There are a total of 7797 items available
when the training and test sets are combined. The data first appeared in [14], and is in the UCI
repository [24].

The k1 data set [6] consists of text documents selected from 20 news categories from the YAHOO
web site. This data set has been included to demonstrate the effectiveness of the algorithms on
document collections that might typically be retrieved from the World-wide Web. The data set
consists of 2340 documents spanning 21839 words. The words were stemmed using Porter’s suffix
stripping algorithm [15], and the stop words were removed. The document vectors were scaled to
until length, but no other scaling was performed.

The forest cover data set [18] consists of both continuous (e.g. elevation) and binary (e.g. soil
type) attributes associated with the types of forest cover in a 30x30 meter square area. There are
54 attributes per data item, and a total of 581012 data items in the set. All of the data were labeled
with respect to the kind of tree growing on the square. Each attribute scaled to have a mean of
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zero and a variance of one, again with the scaling only being done with respect to the data present
in memory. The scaling also had the side effect of turning a sparse data set into a dense one.

The kddcup99 data set [18] consists of a set of variables associated with network connections.
The original task in the competition was to build an intrusion detector which could distinguish
between “good” or normal connections and “bad” or intrusive connections. The data consists of
both numerical(e.g. number of failed logins) and qualitative (e.g. connection protocol type, such
as http or tcp) attributes. For the purpose of the experiments in this work, all of the qualitative
attributes were converted into binary form. This resulted in each item in the data set having 122
attributes. There are a total of 4,898,431 items in the data set. All of them were labeled as being
either a normal connection or one of a set of bad connections. Each attribute was scaled to have a
mean of zero and a variance of one, with the scaling being done only with respect to the data in
memory. Again, the scaling had the effect of turning a sparse data set into a dense data set.

dataset astro isolet k1
forest
cover

kddcup99

number of samples m 212089 7997 2340 581012 4898431

number of attributes per sample n 26 617 21839 54 122

sparsity (percentage nonzeroes) dense dense 0.68% dense dense

number of columns in assembled CM (14) kskc 10000 750 250 11620 97968

memory footprint: CMZM vs M: (16) 24% 10% 56% 11% 6%

number of centers in final clustering kf 2000 150 50 2000 2000

Figure 3: Datasets and parameter values used for experiments. The approximate memory footprint is
listed for kz = 3. In the k1 dataset, the C factor was sparse yielding a smaller memory footprint than
that predicted by (16), but the original data was also sparse limiting the total memory savings.

9 Experimental Results

The method was evaluated through a series of experiments. The first group of experiments was
designed to demonstrate that PMPDDP will give a clustering which is as good as standard PDDP
while allowing more data to be clustered due to the reduced memory requirements. This was done
on the smaller data sets. The second group of experiments was designed to demonstrate that it is
possible to predict the amount of time it will take to cluster a very large data set using PMPDDP
by computing a clustering on a small subset of the data.

In almost every case, the least-squares problem (10) was solved using the normal equations
applied to the kz closest centers. On the rare occasion that the kz closest centers were nearly linearly
dependent, the singular value decomposition was used to construct the least-squares solution.

9.1 Fixed Memory

For these experiments, the amount of memory used by the approximate representation was fixed.
The number of sections ks (see Fig. 2) was varied over a range of 1 to 20. The product kskc was
fixed, and the value of kz was 5. Given the different sizes for the datasets, we used different values
for the various parameters. These are summarized in Fig. 3. The results shown in the figures were
normalized with respect to standard PDDP (Fig. 1) using the same value for kf as was used in
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PMPDDP. Recall that each data item is being approximated by kz centers chosen out of a pool
of kc centers from its own section. As the number of sections grows, fewer centers are available
to approximate each data item in step 5 of Fig. 2. As a result, the quality of the approximations
would be expected to decrease as the number of sections increases. There are no results for the
astronomical data for ks = 1, kc = 10000, since there was not enough memory available to produce
10000 clusters.

The results for the normalized scatter values are shown in Fig. 4(a). In some cases, applying
PMPDDP to the entire data set together (ks = 1) unexpectedly improved the quality of the
clustering. This might be the result of the data being somewhat “smoothed” by the averaging
operation which results from using the centroids to approximate the data. The results are worse as
the number of sections increases, which is most likely the result of having fewer centers to choose
from when selecting the five closest centers while obtaining the least-squares approximation (step
5 of Fig. 2).
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Figure 4: Results for the scatter (a) and entropy (b) values for a varying number of sections ks, kz = 5
using the parameters in Fig. 3 normalized with respect to standard PDDP (Fig. 1) using the same value
for kf . The astronomical data is unlabeled, so no entropy can be calculated.

The results for the normalized entropy values are shown in Fig. 4(b). Note that since the
astronomical data is not labeled, no entropy values can be calculated. The entropy values again
indicate a reduction in quality as the number of sections increases, but for the Isolet data the
entropy is better than standard PDDP until the number of sections is 5 or more. The results
for the k1 document data are not as favorable, but are still comparable with the standard PDDP
results.

The results for the normalized time values are shown in Fig. 5(a). The time cost is the one
category in which PMPDDP suffers compared with PDDP. The expectation from [5] is that PDDP
should be approximately linear in the number of samples being clustered, depending on the conver-
gence of the singular value solver. Since the piecemeal algorithm must compute a large collection
of intermediate centers, we would expect a corresponding increase in the time cost. The code for
PDDP has been highly optimized, while the code for PMPDDP is not as mature. There is the
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additional expense in obtaining more singular values than in standard PDDP, finding the kz cen-
troids which are closest to each data item, obtaining the least-squares approximations, and in the
additional matrix multiplication required for every Lanczos iteration when the final clustering is
obtained. These comments apply when the data set is small enough to be processed by the standard
algorithm. The piecemeal method can be applied to data sets that are too large to be processed by
the standard algorithm, and in these cases the piecemeal method would become competitive with
any “out-of-core” variant of the standard method.

In the case of the astronomical data, PMPDDP varies from eight times to thirty times slower
than PDDP. The relative time required for PMPDDP on the other two data sets is not as high,
with the k1 data set taking a relatively steady six times longer, and the Isolet data taking from
two and a half to at most four and a half times longer.

A confusion matrix for the Isolet data is shown in Fig. 5(b). PDDP was used as the ground
truth, and the parameters for PMPDDP were kz = 5, ks = 5, kc = 150. The number of final
clusters kf was 150 for both methods. The rows of the matrix were permuted so the most similar
clusterings are along the diagonal. The figure shows that the clustering computed by PMPDDP is
similar to the clustering computed by standard PDDP. This was true for the astronomical and k1
data as well.
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Figure 5: Part (a) shows the results for the time values for a varying number of sections ks, kz = 5, and
using the parameters in Fig. 3, normalized with respect to standard PDDP (Fig. 1) using the same value
for kf . Part (b) is the confusion matrix for the isolet data with kz = 5, ks = 5, kc = 150, comparing
PMPDDP with standard PDDP with kf = 150. The rows were permuted so the most similar clusters
are along the diagonal.

Since the product kskc was fixed, the size of both CM and ZM remained constant throughout
these experiments. The memory used by the approximation for the astronomical data was about
32 percent of the memory used by the original data. The size of the approximation of the Isolet
data was roughly 11 percent of the size of the original data, and the approximation to the k1 data
was about 58 percent of the size of the original data. These results seem to indicate that dense data
will have the most memory savings when using this technique, and that the higher the attribute
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dimension of a dense data set, the more significant the memory savings.

9.2 Varying Number of Representatives

For the experiments in figs. 6–7(a), the number of centroids kz used to approximate each data point
was varied from 1 to 26, and the values of the other variables were fixed at kc = 1000, kf = 2000,
ks = 10 for the astronomical data, kc = 150, kf = 150, ks = 5 for the Isolet data, and kc = 50,
kf = 50, ks = 5 for the k1 data. The values reported in the figures were normalized with respect
to standard PDDP using the same value for kf as was used in PMPDDP.

The results for the scatter values are shown in Fig. 6(a). Using more centers to approximate
each data item improved the result for the astronomical and Isolet data sets, while the k1 data did
not seem to be sensitive to the number of centers used. The most dramatic improvement in scatter
value was for moving from using 1 center to using 2 centers to approximate each data item in the
astronomical data set. The results for random-start k-means are vertically stacked at the right hand
side of the graph, 10 runs each for the isolet and k1 data, and 1 run for the astronomical data. For
these data sets, k-means was able to produce a better clustering than either PDDP or PMPDDP,
but a k-means clustering takes substantially longer to compute. For each k-means iteration, it is
necessary to find the distance from every point to every center, find the closest center, and compute
a new center. This will cost mnkf +mkf +mn per iteration, or c3(mnkf +mkf +mn). The arrows
(<-) in the graph(s) refer to k-means applied to clusters computed by PDDP. PDDP seems to
provide good starting centers for k-means.
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Figure 6: Results for the scatter (a) and entropy (b) values for kz varying from 1 to 26, with (i)
ks = 10, kc = 1000, kf = 2000 (astronomical), (ii) ks = 5, kc = 150, kf = 150 (Isolet), and (iii)
ks = 5, kc = 50, kf = 50 (k1), normalized with respect to PDDP using the same kf . The astronomical
data is unlabeled, so no entropy can be calculated. The vertically stacked points to the right of both
graphs are the normalized results of random start k-means, 10 runs each for the isolet and k1 data, and
1 run for the astronomical data. The <- markers refer to k-means runs using the clusters from PDDP
as a starting point. For comparison, the cost of k-means is c3(mnkf + mkf + mn).

The results for the entropy values are shown in Fig. 6(b). The entropy values vary quite a bit
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over the range of the number of centers shown, but are always comparable to those from PDDP. In
some cases, they are even better. The most dramatic improvement seems to occur when going from
using 1 center to approximate each data item to using 2 centers. The entropies for the k-means
clustering of the k1 data set are similar to those for the PMPDDP clustering, while the entropies
for the isolet data set for the k-means clustering are substantially better than PMPDDP. Again,
using PDDP to provide starting centers for k-means appears to be superior to either method on
its own.

The time taken by PMPDDP was dependent on the number of centers kz used to approximate
each data item. As expected, increasing kz increases cost of the PMPDDP clustering. K-means
took roughly the same amount of time as standard PDDP for the k1 data set and 2-5 times longer
for the isolet data set, depending on the rate of convergence. The astronomical data took many
hours to cluster using k-means (exact times were unavailable due to load conditions), but only
about 90 seconds to cluster using standard PDDP.

The memory used by the approximations CMZM normalized with respect to M is shown in
Fig. 7(a). The values for the k1 data are the actual number of nonzeroes returned by MATLAB,
while the values for the astronomical and Isolet data were calculated experimentally. In all cases,
the amount of memory used by the approximation increases linearly with the number of centers
used to approximate each data item. This is expected. The results for the astronomical data show
that using more than 17 centers to approximate each data item is a break-even proposition as far
as memory is concerned. This is not surprising since the astronomical data has only 26 attributes.
Recall that the sparse array containing the matrix ZM has more overhead per entry than a dense
matrix. The Isolet data saves a significant amount of memory when it is approximated. The k1
document data saves some memory, but the effect is not as striking because the original dataset is
already very sparse. However, it is interesting to note that even with the sparsity of the original
data, it is still possible to obtain entropies as good as the original with less memory.
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Figure 7: Part (a) shows the results for the memory used for kz varying from 1 to 26, with the same
parameters as in Fig. 6, normalized with respect to standard PDDP using the same kf . Part (b) shows
the results for the scatter for 10 random orderings of the data sets with kz = 5 and the remaining
parameters the same as in Fig. 6, normalized with respect to standard PDDP using the same kf .
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9.3 Sensitivity to Ordering

To test the sensitivity of the method to the ordering of the data, the experiment with ks = 10,
kc = 1000, kf = 2000, kz = 5 for the astronomical data, ks = 5, kc = 150, kf = 150, kz = 5
for the Isolet data, and ks = 5, kc = 50, kf = 50, kz = 5 for the k1 data, was repeated 10 times
with a different random ordering of the data set. The results for the scatter values, normalized
with respect to standard PDDP using the same kf , are shown in Figure 7(b). The graph seems to
indicate that while there is some sensitivity to data ordering, it is not severe.

9.4 Predicting Clustering Expense

The previous results have indicated that it is more expensive to obtain a clustering using PMPDDP
than it is to cluster the data at once, as expected. However, PMPDDP was designed to be used
when the data set is too large to fit into memory and be clustered. We will now examine the
performance of the method on the two largest data sets, the forest cover type and the kddcup99
data.

Since this data will not fit into memory at once on most workstations, the order of the samples
in each data set was first randomized and then divided into smaller files. The smaller files consisted
of 100,000 data items apiece, with the last data file in a given data set containing the remainder of
the data items. The forest cover data was therefore divided into five files containing 100,000 items
and one additional file containing 81012 items, and the kddcup99 data was divided into 48 data
sets containing 100,000 items and one additional file containing 98,431 items. These numbers were
chosen so that it would be possible to cluster each data file separately while still allowing enough
memory for the overhead associated with PMPDDP on a computer with 512MB of memory. The
total number of centers used to approximate each section of data was adjusted for the last file
in both cases so that each section had a proportionate number of centers. For example, each of
the first 48 sections of the kddcup data had 2000 centers as a basis for approximation, so the last
section had 1968 centers as a basis.

Unlike the previous experiments in which all computations were done at once in one pass, in this
case the approximation to each section of data was computed separately and saved in a temporary
file. Then, when the clustering of the data was computed, the approximation to each section was
read in as necessary. The timing results reported are the sum of the costs incurred in computing
the approximation and the final clustering, but do not include any I/O costs. However, reading
the approximation in from a file and assembling the approximation to the data only takes a few
seconds at most, so the bulk of the unreported I/O costs are associated with the initial reading of
the data. These I/O costs are assumed to be independent of the clustering method.

The clusterings of the approximations were computed in the following manner. The approxima-
tion associated with the first section of data was read in and then clustered. Then the approximation
to the first two sections were read in and then clustered. This process continued until the last step,
which was the computation of the clustering of the entire data set using all the approximations.
The purpose of this approach was to demonstrate how the times increased as the size of the dataset
increased.

The costs for the kddcup data set are shown in Fig. 8. The results in part (a) are for a clustering
with kf = 2000 final clusters, and the results in part (b) are for a clustering with kf = 500. In
both cases, the approximations to each section of data were constructed using kc = 2000 (except
for the last section, which had kc = 1968) and kz = 3. The results are normalized with respect to
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the cost of computing the clustering of the first section of data. The theoretical costs of computing
the approximation and the clustering are also shown in each graph, again normalized with respect
to the theoretical cost of clustering the first section. As can be seen, the theoretical predication is a
linear increase in cost with a linear increase in the amount of data clustered, and that is supported
by the actual results. The numbers stop at 30 sections in part (a) due to a lack of memory.
The computer(s) (identical dual-processor PIIIs with 2 GB total RAM) used in the experiments
were shared, and the loads were sometimes unpredictable. However, each experiment was run on
a dedicated processor. We believe that the deviation from the predicted costs as the number of
sections rises are mostly due to cpu sharing and memory sharing/fragmentation issues. In any case,
it appears that even under less than ideal conditions, PMPDDP scales well for this data set.
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Figure 8: Costs for the kddcup99 data set. Part (a) shows the total clustering cost for kf = 2000. Part
(b) shows the total clustering cost for kf = 500. In both cases, the costs are normalized with respect
to the cost of clustering the first section of data. Each graph also contains the theoretical costs of
clustering the data, again normalized with respect to the cost of clustering the first section.

It is not possible to compare the entropy of a PMPDDP clustering of the kddcup99 data
with a PDDP clustering of the data, since a PDDP clustering of the data cannot be computed.
However, a PDDP clustering of each section of data was computed individually and the results were
compared with a clustering of the approximation to each section with the same number of final
clusters (kf = 500). The entropies in both cases were almost identical. In some cases, clustering
the approximation to the section of data produced a slightly better entropy, and in other cases a
PDDP clustering of the section of data had better entropy. These results would seem to indicate
that the approximations to each section are capturing the aspects of the data essential in obtaining
a good clustering.

The clustering costs for the forest cover data were similar to the results for the kddcup99 data
set. The cost of PMPDDP increased linearly with the number of data samples clustered. As in
the previous case, each section of data was clustered using PDDP and the entropies were compared
with a clustering of approximation to each section. The entropies compared favorably, with no
clear advantage to either method. Also, since the data set is large but not huge, it was possible
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to cluster the entire set at once when a large amount (over 1 GB) of memory was available. In
this case, the entropies for PDDP and PMPDDP were virtually identical when using kc = 2000 for
the first five sections and kc = 1620 for the last section. They only differed after the 4th decimal
place. This would seem to indicate that PMPDDP is able to cluster this data set well, and that
the approximations are of sufficient quality for clustering.

10 Conclusions

The experiments demonstrate that PMPDDP works for the data sets examined. The performance
indicated by the scatter and entropy values does not suffer significantly with respect to PDDP
when the approximations to the data are used to cluster the original data. The amount of memory
taken by the approximation can be varied to suit the application. In general, it appears that as
much memory as possible should be used to contain the approximation, since the accuracy of the
clustering generally increases with the number of centroids used to approximate each data item.

PMPDDP appears to be able to compute clusterings of a quality almost as good as that from
PDDP, and in some cases better, while using significantly less memory. PMPDDP does suffer from
an increased time cost due to the many intermediate clusters computed and all of the additional
costs associated with computing the approximations. These costs can, however, be predicted by
computing a PMPDDP clustering of a portion of the data set and using the analysis of the algorithm
to scale the results to the entire data set.

Most of the methods for large data sets involve some kind of sampling of the data. PMPDDP
examines every data point and creates an approximation to every data point. Other clustering
methods such as Birch [30] and the method in [7] examine every data point as well, but still use
only one vector to represent each data point. PMPDDP is more flexible in that it can use as many
centroids to represent each data point as memory allows, which seems to increase the accuracy of
the clustering. The result is a method which will cluster large data sets to good accuracy in a
reasonable amount of time.
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